當前位置:首頁 » 凈水方式 » 小型納濾裝置100t價格

小型納濾裝置100t價格

發布時間: 2020-12-15 19:48:01

Ⅰ 為什麼現在市場上納濾的價格高於RO

從膜的發展歷史和現狀就能知道為什麼納濾的價格高於RO

膜分離技術作為一種新型、高效的流體分離單元操作技術,近年來取得了令人矚目的飛速發展,已廣泛應用於國民經濟各個部門。2009年包括膜製品、裝置和相關工程的世界分離膜市場規模在450億美元左右,其中膜製品約80億美元。國內,2009年分離膜製品市場約為60億元人民幣,加上相關工程,市場規模達250億元人民幣。

目前,全國從事分離膜研究的院所、大學超過100家,膜製品生產企業300餘家,工程公司近1,000家,在分離膜幾乎所有的領域都開展了工作,產品生產規模化,涉及反滲透、納濾、超濾、微濾、電滲析等單元操作或集成的膜法水處理系統,氣體混合物的膜法分離,液體混合物分離的滲透汽化膜過程,以及醫用血液透析膜等。

水處理方面的應用約占國內分離膜市場的85%份額,單項處理能力已達到5萬~10萬立方米/日,單項工程合同金額越過億元人民幣大關。就分離膜研究、生產和應用的總體規模而言,我國現已與北美、歐洲並駕齊驅,並很快將躍居世界首位。從事分離膜製作和工程應用的研究機構數量、研究人員總數而言,已位居世界第一位。

——反滲透(RO)

反滲透膜分為高壓、中壓、低壓及超低壓膜幾類,近年又商品化了0.2MPa~0.3MPa下出水的極低壓膜。當今流行的芳香聚醯胺復合膜,其功能性也在不斷擴展,商品化了抗氧化、抗污染、高通量的膜。2005年世界RO膜產量4000萬平方米,銷售額近5億美元,2010年世界產量約為5500萬~6000萬平方米。

主要用於脫鹽和脫除水中有機物雜質的反滲透膜,2009年國內市場的規模約為20億人民幣。中、低壓及超低壓膜已實現國產化,性能優良;用於海水淡化的國產高壓膜的性能已接近國際先進水平。國產反滲透膜的年生產能力約為400萬平方米,市場佔有率已由5年前的3%~5%提升到目前的10%左右,並有部分出口。目前國內已建成的日產淡水100立方米以上的RO海水淡化裝置有近40套,總產水量為42.5萬立方米/日,擬建和在建的RO法海水淡化設施的總產水能力超過90萬立方米/日。RO法苦鹹水淡化方面,2000年在黃驊建成了規模為1.8萬立方米/日的亞海水RO淡化系統;2005年在東莞建成了10萬立方米/日的亞海水淡化系統。

近年來,我國在工業廢水、城市污水處理、再生水回收中廣泛採用了RO為核心的集成膜過程,在電力、鋼鐵、石化廢水及市政污水處理、再生水回用等方面都有1萬立方米/日以上規模的示範工程完成,成為膜法水資源再利用的技術發展趨勢。

——納濾(NF)

納濾膜最大的應用領域是飲用水軟化和有機物的脫除,在工業下游產品脫鹽與濃縮方面,它正取代傳統的離心分離、真空蒸餾、加熱蒸發等工藝;它也被用於廢(污)水處理再生水回用。國內納濾膜市場的規模大約是反滲透市場規模的1/10,內資企業只有2~3家能夠生產納濾膜,產量和產品性能都顯不足,尚未批量生產,應用領域與規模也有待拓展。

RO膜是目前世界上用量最大的膜類型,生產工藝最為成熟,產量最大,產量大了之後生產成本自然就低了。納濾膜的使用量遠遠低於反滲透膜,因此納濾的價格目前還是高於RO膜。

Ⅱ 金賽納濾膜直飲水裝置價格

反滲透直飲機是一種凈水機,集反滲透RO膜、微濾、活性炭吸附、超濾等技術為一體的專。以反滲透RO膜為屬核心元件,可以完全去除水中有益及有害物質,產出的是軟化的脫鹽水,其制出的純凈水比較新鮮衛生和安全,其用途比較廣泛。需要加壓加電,水的利用率低(廢水多、純水少),凈化成本高,流量小,適合人數較少的家庭和單位飲用。

Ⅲ 如果每100噸污水含有500mg/L氨氮(NH4+),它與零價鐵的的摩爾比是1:10,那麼換算成質量鐵是多少克的

氨氮廢水特點:氨氮廢水的一般的形成是由於氨水和無機氨共同存在所造成的,廢水中氨氮的構成主要有兩種,一種是氨水形成的氨氮,一種是無機氨形成的氨氮,主要是硫酸銨,氯化銨等等。氨氮廢水主要來自化工、冶金、化肥、煤氣、煉焦、鞣革、味精、肉類加工和養殖等行業。排放的廢水以及垃圾滲濾液等。氨氮廢水危害:氨氮廢水對魚類及某些生物也有毒害作用。另外,當含少量氨氮的廢水回用於工業中時,對某些金屬,特別是銅具有腐蝕作用,還可以促進輸水管道和用水設備中微生物的繁殖,形成生物垢,堵塞管道和設備。氨氮廢水處理方法:處理氨氮廢水的方法有很多,目前常見的有化學沉澱法、吹脫法、化學氧化法、生物法、膜分離法、離子交換法以及土壤灌溉等。氨氮廢水處理方法以及各種方法的優缺點: 1、化學沉澱法。又稱為MAP沉澱法,是通過向含有氨氮的廢水中投加鎂化物和磷酸或磷酸氫鹽,使廢水中的NH4﹢與Mg2﹢、PO43﹣在水溶液中反應生成磷酸按鎂沉澱,分子式為MgNH4P04.6H20,從而達到去除氨氮的目的。影響化學沉澱法處理效果的因素主要有pH值、溫度、氨氮濃度以及摩爾比(n(Mg2﹢):n(NH4﹢):n(P043-))等。化學沉澱法的缺點:由於受磷酸鐵鎂溶度積的限制,廢水中的氨氮達到一定濃度後,再投人葯劑量,則去除效果不明顯,且使投入成本大大增加,因此化學沉澱法需與其它適合深度處理的方法配合使用;葯劑使用量大,產生的污泥較多,處理成本偏高;投加葯劑時引人的氯離子和余磷易造成二次污染。 2、吹脫法。去除氨氮是通過調整pH值至鹼性,使廢水中的氨離子向氨轉化,使其主要以游離氨形態存在,再通過載氣將游離氨從廢水中帶出,從而達到去除氨氮的目的。影響吹脫效率的因素主要有pH值、溫度、氣液比、氣體流速、初始濃度等。吹脫法去除氨氮效果較好,操作簡便,易於控制。對於吹脫的氨氮可以用硫酸做吸收劑,生成的硫酸錢製成化肥使用。吹脫法是目前常用的物化脫氮技術。但吹脫法存在一些缺點,如吹脫塔內經常結垢,低溫時氨氮去除效率低,吹脫的氣體形成二次污染等。吹脫法一般與其它氨氮廢水處理方法聯合運用,用吹脫法對高濃度氨氮廢水預處理。 3、化學氧化法包含:折點氯化法、催化氧化法、電化學氧化法; 4、生物法包含:傳統生物脫氮技術、新型生物脫氮技術(同時硝化反硝化(SND)、短程消化反硝化、厭氧氨氧化) 5、膜分離法。利用膜的選擇透過性對液體中的成分進行選擇性分離,從而達到氨氮脫除的目的。包括反滲透、納濾和電滲析等。影響膜分離法的因素有膜特性、壓力或電壓、pH值、溫度以及氨氮濃度等。膜分離法的優點是氨氮回收率高,操作簡便,處理效果穩定,無二次污染等。但在處理高濃度氨氮廢水時,所使用的薄膜易結垢堵塞,再生、反洗頻繁,增加處理成本,故該法較適用於經過預處理的或中低濃度的氨氮廢水。 6、離子交換法。通過對氨離子具有很強選擇吸附作用的材料去除廢水中氨氮的方法。常用的吸附材料有活性炭、沸石、蒙脫石及交換樹脂等。離子交換法是通過對氨離子具有很強選擇吸附作用的材料去除廢水中氨氮的方法。常用的吸附材料有活性炭、沸石、蒙脫石及交換樹脂等。 7、土壤灌溉。是將低濃度氨氮廢水直接作為肥料使用的方法。對於有些含有病菌、重金屬、有機及無機等有害物質的氨氮廢水需經預處理將其去除後再進行灌溉。土壤灌溉要求氨氮濃度一般為幾十毫克每升。

Ⅳ 一級反滲透價格大概是多少

膜分離法既昂貴又不可行
反滲透膜分離法只適用於單一類型、水量十分巨大的鍍鎳回收回水,濃縮後返回相答應的鍍鎳溶液(亮鎳回收濃縮液也不允許加入半光亮鍍鎳液,這應是工藝常識)。其投資非常巨大,設備折舊費與維護費非常高。用於化學法處理後的廢水再作深度處理製取純水,也只適用於工藝本身需要絕大部分採用純水的某些高要求的電子電鍍生產。
而且反滲透膜也十分嬌氣。進入膜前的廢水須經粗濾、精濾、炭濾、甚至納濾才行。各級過濾又需用凈水反沖。就算是美國進口膜,正常使用壽命也不過2年,不正常使用則不足一年;而一顆4040型的膜價格就在1400左右。
反滲透膜的確只允許水分子透過而將其餘物質截留、濃縮,但濃縮液中的物質復雜,對濃縮的廢水又該如何處置?顯然不能直接排放。那麼如何去除濃縮廢水中的有機物呢?

Ⅳ 納濾錯流測試裝置的循環流量一般是多少

過濾方式分錯流過濾和死端過濾。 反滲透和納濾採用死端過濾,會導致進水端專鹽分持續濃縮,濃度越來越屬高,膜的除鹽率是一定的,如果鹽分越高,那麼透過膜的鹽分就會越多,造成出水水質電導率過高。其次是反滲透和納濾膜元件的結構決定的

Ⅵ 納濾膜分離技術如何應用在廢水處理

納濾膜分離技術經抄常被應用到工業重金屬廢水處理中,應用納濾膜分離技術對重工業生產過程中產生的廢水進行處理:一方面可以實現對90%以上的廢水進行回收,使其鈍化;另一方面可以使肺水腫的金屬離子含量濃縮約10倍。將納濾膜應用在造紙廢水處理中,不僅可以實現對廢水中COD(約90%)的處理,而且其膜通量與傳統的聚碸超濾膜相比更高。

Ⅶ 平板的膜怎麼弄的

首先平板的你買的時候一定要跟你的牌子,還有型號給匹配好,然後回來的話就可以進行貼膜使用了

Ⅷ 納濾膜的水滲透系數和溶質滲透系數是多少

利用孔模型分析膜孔結構

本文基於孔模型,從膜對NaCl溶液的透過實驗中,得到種膜的結構參數,實驗結果表明,從溶質透過膜的參數與從溶劑透過膜的參數得到的膜結構參數並不一致。根據孔模型由溶質的Stokes半徑γs得到的膜孔半徑γp與根據透過溶劑而計算出的膜孔半徑γω之間存在線性關系,對於CA膜,它們的關系式是:γω=10.50(γp-1.739),γp與γω之間的相關關系是0.9986,對於γp的標准偏差是0.14。
關鍵詞:孔模型;膜結構參數;CA膜
ANALYSIS OF MEMBRANE STRUCTURE PARAMETERS BY PORE MODEL

LUO Ju-fen, MO Jian-xiong
(The Development Centr of Water Treatment Technology, SOA Hangzhou 310012)

Abstract:Based on the pore model, structural parameters of the eight kinds of membranes were determined with permeation experiments of aqueous solution of sodium chloride. The parameters determined from P differ from that obtained from Lp. There is a good linear correlation between rp which obtained from the solute radius rs and rω which obtained from the pure water flux. For cellulose acetate membranes, the relation of rp and rω can be written as rω =10.50(rp-1.739). The linear correlation coefficient between rp and rω is 0.9986 and for rp its standard deviation is 0.14.
Key words:pore model; structure parameters; CA membrane

測定膜結構參數對於預測溶質透過膜的傳遞性能是很重要的。為了能測定膜的結構參數,出現了摩擦模型,孔模型,改進的孔模型,SHP模型等。Nakao和Kimura等針對單組分水溶液,將這些模型應用到超濾膜分離體系和納濾膜分離體系,以不同溶質的滲透實驗計算了超濾膜和納濾膜的γp和Ak/△x值〔1-3〕。
本文通過膜對NaCl水溶液的透過實驗,在確定不可逆過程熱力學遷移方程中的三個參數後,基於改進的孔模型〔6〕,得到8種分離膜的結構參數,並比較了從溶質和從溶劑透過性能所得到膜孔結構參數的區別。這些膜對NaCl的脫除率在15%~99%之間,其中有部分膜是超濾膜。

1 理 論
壓力驅動過程中膜的遷移過程可以用不可逆過程熱力學來描述。Kedem和Katchalsky〔4〕基於線性非平衡熱力學唯象理論提出如下的傳遞方程:

Jv=Lp(△P-σ△π) (1)

Js=ω△π+(1-σ)Jv. (2)

利用Van't Hoff等式△π=RT△Cs,則式(2)可以寫成

Js=P△Cs+(1-σ)Jv. (3)

為解決膜二邊平均濃度的問題,Spiegler等〔5〕將等式(3)改寫成另一種形式:

Js/△C=P+(1-σ)(JvCln/△C) (4)

等式(3)、(4)是作為反滲透膜(具有高溶質分離率)的傳遞方程提出的,Nakao在他的實驗中〔2〕說明等式(3)、(4)也適用於作為超濾膜的傳遞方程。
在這些等式中,膜的表徵以三個傳遞系數表示:純水透過系數Lp,溶質滲透系數ω或P和反射系數σ。但上述唯象方程屬於黑箱模型,不能得到有關膜內部透過機理的情況,因此,出現一些利用膜結構來說明σ和P的傳遞模型。
Pappenheimer等提出了傳遞「孔理論」來計算通過毛細管的遷移過程,在這個理論中,溶質通量包括過濾流和擴散流,這二種流動都受到進入膜孔時位阻障礙和孔內摩擦阻力的影響。Verniory等人〔6〕利用Haberman和Sayre的計算和摩擦模型改進了這種「孔理論」,根據這種改進的孔理論,膜結構可以用參數σ和P來預測。假設圓柱形膜孔的孔徑與孔長分別為常數rp和△x,並且球狀溶質半徑為rs,則溶質通量可表示成

(5)

這里Ak是總的貫通孔面積與膜有效面積之比,SD和SF分別是擴散流和過濾流的位阻因數,並且是rs與rp比值q的函數,其中:

SD=(1-q)2 (6)

SF=(1-q)2(1+2q-q2) (7)

f(q)和g(q)是圓形壁面效應的修正因數,由Haberman和Sayre計算如下:

f(q)=(1-2.1q+2.1q3-1.7q5+0.73q6)/(1-0.76q5) (8)

g(q)=〔1-(2/3)q2-0.2q5〕/(1-0.76q5) (9)

將式(5)與式(3)相比較,則膜的參數σ和P可用下式表示

σ=1-g(q)SF (10)

P=Df(q)SD(Ak/△X) (11)

在孔模型中,純水通量用Hagen-Poiseuille式表示,因此,純水透過速率Lp可以寫成:

Lp=(r2p/8μ).(AK/△X) (12)

2 實 驗
2.1 實驗裝置

實驗裝置如圖1所示。

圖1 實驗裝置示意圖
1.原液池,2.微濾器,3.恆流泵,4.測試池,
5.微型電導檢測器,6.磁攪拌子,6.硅壓力感測器

2.2 實驗條件和過程
首先,將膜充分潤濕後置於測試池,用純水預壓1h,預壓壓力為膜最高實驗壓力的1.2倍左右。然後原液換成0.01mol/L NaCl溶液,測定不同壓力時透過液流速JV和濃度C3,利用式(4),根據Js/△C和JVCln/△C的關系,採用最佳擬合,得到膜性能參數σ和P,將σ和P代入(10)和(11)式,就能根據溶質的Stokes半徑rs而算出膜孔半徑rp和膜的Ak/△X值。在25℃條件下,NaCl-H2O體系的Stokes半徑rs=1.616×10-10m。
利用式(1)計算膜的Lp值。
將Lp值和由式(11)得到的Ak/△X值代入Hegen-Poiseuille式(12)中,則可得到根據透過溶劑而計算出的膜孔孔徑rω。

3 結果和討論
在測試壓力范圍內,透過液流速與壓力成直線關系,並且實驗中透過液通量與純水通量幾乎一致,因此,實驗滲透壓可以忽略不計。並且這也表明,實驗過程中沒有出現污染或嚴重濃差極化現象。
3.1 壓力的影響
壓力對脫除率的影響是很大的,隨壓力增加,R值也增加,R值增加到某個數值後,變化趨緩。因此,對於表示膜的特徵來說,R不是一個很合適的參數。
3.2 膜性能參數的確定
用以下方法確定膜的三個遷移參數Lp、σ和P。
純水透過參數Lp利用實驗的透過速率從式(1)可以得到,滲透壓△π忽略不計,參數σ和P則利用對數平均濃度Cln從式(4)中可以確定。從實驗數值看,Js/△C和Jυ.Cln/△C是一相當好的直線關系,這樣參數σ和P也可從這條直線的斜率和截距中求得。
8種膜的三個性能參數列於表1。

表1 膜的性能參數Lp、σ、P

膜 1# 2# 3# 4# 5# 6# 7# 8#
σ 0.943 0.903 0.899 0.857 0.457 0.131 0.313 0.2998
P×107(m/s) 3.33 12.65 7.17 5.03 24.5 10.2 24.0 5.95
Lp×1012(m/Pa.s) 4.84 10.32 4.48 4.40 9.12 11.05 14.80 12.67

從表1可知,實驗所用膜對NaCl的σ值在0.131~0.943之間。
3.3 膜結構參數的計算
根據改進的「孔模型」,式(10)的關系式可如圖2所示,因此,在膜的σ值已知時,可從式(10)求出q值,再代入溶質的Stokes半徑即可得到膜的rp值(=rs/q)

圖2 σ與q之間關系

列於表2的膜的另一個結構參數Ak/△X也是基於孔模型,採用式(11)從q值和實驗數值溶質的滲透系數P計算得到。

表2 從孔模型中得到的膜結構參數rP和△X值

膜 1# 2# 3# 4# 5# 6# 7# 8#
rp×1010(m) 2.02 2.18 2.21 2.31 3.85 8.78 5.19 5.39
Ak/△x(m-1) 2.72×105 3.67×105 1.78×105 7.98×104 1.9×104 1.63×103 8.20×103 1.91×103

若將膜的Ak/△X值和表1中的Lp值代入式(12),則可得到由水的透過速率Lp得到的膜孔半徑,以rω表示,結果見表3。
表3 由水的透過速率得到的膜孔半徑rω

膜 1# 2# 3# 4# 5# 6# 7# 8#
rω×1010(m) 3.77 4.74 4.49 6.64 19.6 73.6 38.0 72.9

比較表2和表3,可看到,rω與rp並不一致,並且rω大於rp。
不同文獻〔1.3〕在利用「孔模型」時,提到由P得到的Ak/△X值與由Lp得到的Ak/△X值之間存在偏差,即從溶質透過膜參數與從溶劑透過膜參數得到的膜結構參數並不一致。
以rp對rω作圖,可看到除了8#膜,其餘膜的rp與rω幾乎落在一條直線上,見圖3。因8#膜為SPS膜,其餘的均為CA膜。8#膜的rp與rω的關系不在直線上。也許,因材料不同,它的斜率和截距不同。

圖3 rp與rω關系

除去8#膜的rp和rω值,對其餘7種膜的rp和rω進行線性回歸的結果是:

rp=0.09527rω+1.739 (13)

或者改寫成

rω=10.50(rp-1.739) (14)

rp與rω之間的線性相關系數是0.9986,對rp的標准偏差是0.14。因此,可以認為對於CA膜,在NaCl水溶液體系中,根據孔模型由膜性能參數σ和P得到的膜孔半徑rp與根據透過溶劑而計算出的膜孔半徑rω之間存在線性關系。
由式(14)和圖3可知,當rp小於1.74×10-10m時,rω已為零,也即此時,膜的純水透過速率為零。這與祝振鑫等〔7〕推導的當網路孔半徑小到2.0×10-10m時,膜產率為零的推論非常相近。水分子半徑為0.87×10-10m,也即當孔道小於兩個水分子時,水分子即被卡住,使水不能流動。

4 結 論
本文利用孔模型,對8種膜的性能參數和結構參數進行了測定。實驗表明,由溶質的Stokes半徑基於孔模型得到的膜孔半徑rp與從溶劑水的透過速率得到的膜孔半徑rω並不一致,但存在線性關系。對於CA膜,在NaCl水溶液體系中,它們的關系是: rω=10.50(rp-1.739)。相關關系是0.9986,對於rp的標准偏差是0.14。這也表明當rp小到1.74×10-10m時,膜的純水透過速率為零。
對其它材料製成的膜的rp與rω之間關系有待進一步實驗。

熱點內容
丁度巴拉斯情人電影推薦 發布:2024-08-19 09:13:07 瀏覽:886
類似深水的露點電影 發布:2024-08-19 09:10:12 瀏覽:80
《消失的眼角膜》2電影 發布:2024-08-19 08:34:43 瀏覽:878
私人影院什麼電影好看 發布:2024-08-19 08:33:32 瀏覽:593
干 B 發布:2024-08-19 08:30:21 瀏覽:910
夜晚看片網站 發布:2024-08-19 08:20:59 瀏覽:440
台灣男同電影《越界》 發布:2024-08-19 08:04:35 瀏覽:290
看電影選座位追女孩 發布:2024-08-19 07:54:42 瀏覽:975
日本a級愛情 發布:2024-08-19 07:30:38 瀏覽:832
生活中的瑪麗類似電影 發布:2024-08-19 07:26:46 瀏覽:239