Edi熵指
1. 「熵」是什麼意思
科學上的一種單位
詳細釋義
1:物理學上指熱能除以溫度所得的商,標志內熱量轉化為功的程度。
2: 科學技術上用來描述、表徵體系混亂度的函數。亦被社會科學用以借喻人類社會某些狀態的程度。
3:熵是生物親序,是行為攜靈現象。科容學家已經發明了測量無序的量,它稱作熵,熵也是混沌度,是內部無序結構的總量
2. 熵這個概念指什麼 熵的定義式是:dS=dQ/T,因此計算某一過程的熵變時,必須用與這個過程的始態
始態指能量傳遞前狀態 終態傳遞後的狀態, 不可逆:熱量總是從高溫物體傳到低溫物體,不可能作相反的傳遞。
3. \"一般熵指數\"是什麼意思
熵:為了衡量熱力體系中不能利用的熱能,用溫度除熱能所得的商。
我沒見過這樣表達的,確實不知道它和指數有什麼聯系
4. 熵是什麼為什麼有此稱
熵shāng ◎ 物理學上指熱能除以溫度所得的商,標志熱量轉化為功的程度。 ◎ 科學技術上泛指某些物質系統狀態的一種量(liàng)度,某些物質系統狀態可能出現的程度。亦被社會科學用以借喻人類社會某些狀態的程度。 ◎ 在資訊理論中,熵表示的是不確定性的量度。 1.只有當你所使用的那個特定系統中的能量密度參差不齊的時候,能量才能夠轉化為功,這時,能量傾向於從密度較高的地方流向密度較低的地方,直到一切都達到均勻為止。正是依靠能量的這種流動,你才能從能量得到功。 江河發源地的水位比較高,那裡的水的勢能也比河口的水的勢能來得大。由於這個原因,水就沿著江河向下流入海洋。要不是下雨的話,大陸上所有的水就會全部流入海洋,而海平面將稍稍升高。總勢能這時保持不變。但分布得比較均勻。 正是在水往下流的時候,可以使水輪轉動起來,因而水就能夠做功。處在同一個水平面上的水是無法做功的,即使這些水是處在很高的高原上,因而具有異常高的勢能,同樣做不了功。在這里起決定性作用的是能量密度的差異和朝著均勻化方向的流動。 熵是混亂和無序的度量.熵值越大,混亂無序的程度越大. 我們這個宇宙是熵增的宇宙.熱力學第二定律,體現的就是這個特徵. 生命是高度的有序,智慧是高度的有序. 在一個熵增的宇宙為什麼會出現生命?會進化出智慧?(負熵) 熱力學第二定律還揭示了, 局部的有序是可能的,但必須以其他地方更大無序為代價. 人生存,就要能量,要食物,要以動植物的死亡(熵增)為代價. 萬物生長靠太陽.動植物的有序, 又是以太陽核反應的衰竭(熵增),或其他的熵增形勢為代價的. 人關在完全封閉的鉛盒子里,無法以其他地方的熵增維持自己的負熵. 在這個相對封閉的系統中,熵增的法則破壞了生命的有序. 熵是時間的箭頭,在這個宇宙中是不可逆的. 熵與時間密切相關,如果時間停止"流動",熵增也就無從談起. "任何我們已知的物質能關住"的東西,不是別的,就是"時間". 低溫關住的也是"時間". 生命是物質的有序"結構"."結構"與具體的物質不是同一個層次的概念. 就象大廈的建築材料,和大廈的式樣不是同一個層次的概念一樣. 生物學已經證明,凡是到了能上網歲數的人, 身體中的原子,已經沒有一個是剛出生時候的了. 但是,你還是你,我還是我,生命還在延續. 倒是死了的人,沒有了新陳代謝,身體中的分子可以保留很長時間. 意識是比生命更高層次的有序.可以在生命之間傳遞. 說到這里,我想物質與意識的層次關系應該比較清楚了. 這里之所以將"唯物"二字加上引號. 是因為並不徹底.為什麼熵減是這個宇宙的本質,還沒法回答. (摘自人民網BBS論壇) 不管對哪一種能量來說,情況都是如此。在蒸汽機中,有一個熱庫把水變成蒸汽,還有一個冷庫把蒸汽冷凝成水。起決定性作用的正是這個溫度差。在任何單一的、毫無差別的溫度下——不管這個溫度有多高——是不可能得到任何功的。 「熵」(entropy)是德國物理學家克勞修斯(Rudolf Clausius, 1822 – 1888)在1850年創造的一個術語,他用它來表示任何一種能量在空間中分布的均勻程度。能量分布得越均勻,熵就越大。如果對於我們所考慮的那個系統來說,能量完全均勻地分布,那麼,這個系統的熵就達到最大值。 在克勞修斯看來,在一個系統中,如果聽任它自然發展,那麼,能量差總是傾向於消除的。讓一個熱物體同一個冷物體相接觸,熱就會以下面所說的方式流動:熱物體將冷卻,冷物體將變熱,直到兩個物體達到相同的溫度為止。如果把兩個水庫連接起來,並且其中一個水庫的水平面高於另一個水庫,那麼,萬有引力就會使一個水庫的水面降低,而使另一個水面升高,直到兩個水庫的水面均等,而勢能也取平為止。 因此,克勞修斯說,自然界中的一個普遍規律是:能量密度的差異傾向於變成均等。換句話說,「熵將隨著時間而增大」。 對於能量從密度較高的地方向密度較低的地方流動的研究,過去主要是對於熱這種能量形態進行的。因此,關於能量流動和功-能轉換的科學就被稱為「熱力學」,這是從希臘文「熱運動」一詞變來的。 人們早已斷定,能量既不能創造,也不能消滅。這是一條最基本的定律;所以人們把它稱為「熱力學第一定律」。 克勞修斯所提出的熵隨時間而增大的說法,看來差不多也是非常基本的一條普遍規律,所以它被稱為「熱力學第二定律」。 2.資訊理論中的熵:信息的度量單位:由資訊理論的創始人Shannon在著作《通信的數學理論》中提出、建立在概率統計模型上的信息度量。他把信息定義為「用來消除不確定性的東西」。 Shannon公式:I(A)=-logP(A) I(A)度量事件A發生所提供的信息量,稱之為事件A的自信息,P(A)為事件A發生的概率。如果一個隨機試驗有N個可能的結果或一個隨機消息有N個可能值,若它們出現的概率分別為p1,p2,…,pN,則這些事件的自信息的平均值: H=-SUM(pi*log(pi)),i=1,2…N。H稱為熵。 參考資料: http://ke..com/view/936.htm
5. 什麼是熵的含義(急)
化學及熱力學中所指的熵[3],是一種測量在動力學方面不能做功的能量總數。熵亦被用於計算一個系統中的失序現象。熵是一個描述系統狀態的函數,但是經常用熵的參考值和變化量進行分析比較。
熵的增減與熱機
參見:熱機
克勞修斯認為熵是在學習可逆及不可逆熱力學轉換時的一個重要元素。在往後的章節,我們會探討達至這個結論的步驟,以及它對熱力學的重要性。
熱力學轉換是指一個系統中熱力學屬性的轉換,例如溫度及體積。當一個轉換被界定為可逆時,即指在轉換的每一極短的步驟時,系統保持非常接近平衡的狀態,稱為「准靜態過程」。否則,該轉換即是不可逆的。例如,在一含活塞的管中的氣體,其體積可以因為活塞移動而改變。可逆性體積轉變是指在進行得極其慢的步驟中,氣體的密度經常保持均一。不可逆性體積轉變即指在快速的體積轉換中,由於太快改變體積所造成的壓力波,並造成不穩定狀態。無耗散的准靜態過程為可逆過程[5]。
熱機是一種可以進行一連串轉換而最終能回復開始狀態的熱力學系統。這一進程被稱為一個循環。在某些轉換當中,熱力機可能會與一種被稱之為高溫熱庫的大型系統交換熱能,並因為吸收或釋放一定的熱量而保持固定溫度。一個循環所造的結果包括:
系統對外所做的功(等於外界對系統做功的相反數)
高溫熱庫之間的熱能傳遞
基於能量守恆定律,高溫熱庫所失的熱能正等於熱力機所做的功,加上低溫熱庫所獲得的熱能。
當循環中的的每個轉換皆是可逆時,該循環是可逆的。這表示它可以反向操作,即熱的傳遞可以相反方向進行,恢復到初始狀態而不對外界產生影響,以及所作的功可以正負號調轉。最簡單的可逆性循環是在兩個高溫熱庫之間傳遞熱能的卡諾循環。
熵的統計學定義,玻爾茲曼原理
1877年,玻爾茲曼發現單一系統中的熵跟構成熱力學性質的微觀狀態數量相關。可以考慮情況如:一個容器內的理想氣體。微觀狀態可以以每個組成的原子的位置及動量予以表達。為了一致性起見,我們只需考慮包含以下條件的微觀狀態:(i)所有粒子的位置皆在容器的體積范圍內;(ii)所有原子的動能總和等於該氣體的總能量值。玻爾茲曼並假設:
S = k(lnΩ)
公式中的k是玻爾茲曼常數,Ω則為該宏觀狀態中所包含之微觀狀態數量。這個被稱為玻爾茲曼原理的假定是統計力學的基礎。統計力學則以構成部分的統計行為來描述熱力學系統。玻爾茲曼原理指出系統中的微觀特性(Ω)與其熱力學特性(S)的關系。
根據玻爾茲曼的定義,熵是一則關於狀態的函數。並且因為Ω是一個自然數(1,2,3,...),熵必定是個正數(這是對數的性質)。
[編輯] 熵作為混亂程度的度量
我們可以看出Ω 是一個系統混亂程度的度量,這是有道理的,因為作為有規律的系統,只有有限的幾種構型,而混亂的系統可以有無限多個構型。例如,設想有一組10個硬幣,每一個硬幣有兩面,擲硬幣時得到最有規律的狀態是10個都是正面或10個都是反面,這兩種狀態都只有一種構型(排列)。反之,如果是最混亂的情況,有5個正面5個反面,排列構型可以有 = 252 種。(參見組合數學)
根據熵的統計學定義,熱力學第二定律說明一個孤立系統的傾向於增加混亂程度,根據上述硬幣的例子可以明白,每一分鍾我們隨便擲一個硬幣,經過一段長時間後,我們檢查一下硬幣,有「可能」10個都是正面或都是反面,但是最大的可能性是正面和反面的數量接近相等。
我們發現,混亂程度傾向於增加的觀念被許多人接受,但容易引起一些錯誤認識,最主要的是必須明白ΔS ≥ 0 只能用於「孤立」系統,值得注意的是地球並不是一個孤立系統,因為地球不斷地從太陽以太陽光的形式接收能量。但能認為宇宙是一個孤立系統,宇宙的混亂程度在不斷地增加,可以推測出宇宙最終將達到「熱寂」狀態,因為(所有恆星)都在以同樣方式放散熱能,能源將會枯竭,再沒有任何可以作功的能源了。
[編輯] 微觀計算
在經典統計力學中,微觀狀態的數量實際是無限的,所以經典系統性質是連續的,例如經典理想氣體是定義於所有原子的位置和動量上,是根據實際數量連續計算的。所以要定義Ω,必須要引入對微觀狀態進行「分類」的方法,對於理想氣體,我們認為如果一個原子的位置和動量分別在δx 和 δp 范圍之內,它只屬於「一種」狀態。因為δx 和 δp 的值是任意的,熵沒有一個確定值,必須如同上述增加一個常數項。這種微觀狀態分類方法叫做「組元配分」,相對應於量子力學選擇的組元狀態。
這種模糊概念被量子力學理論解決了,一個系統的量子狀態可以被表述為組元狀態的位置,選擇作為非破缺的哈密頓函數的典型特徵狀態。在量子統計力學中,Ω 是作為具有同樣熱力學性質的基本狀態的數量,組元狀態的數量是可以計算的,所以我們可以確定Ω 的值。
但是組元狀態的確定還是有些隨意,決定於微觀狀態的「組元配分」和經典物理學中不同的微觀狀態。
這導致了能斯特定理,有時也叫熱力學第三定律,就是說系統在絕對溫度零度時,熵為一恆定常數,這是因為系統在絕對溫度零度時存在基礎狀態,所以熵就是它基礎狀態的簡並態。有許多系統,如晶格點陣就存在一個唯一的基礎狀態,所以它在絕對溫度零度時的熵為零。(因為ln(1) = 0)。
http://cid-7ac88da2990aa393.spaces.live.com/?_c11_BlogPart_pagedir=Next&_c11_BlogPart_handle=cns!7AC88DA2990AA393!160&_c11_BlogPart_BlogPart=blogview&_c=BlogPart
http://book.douban.com/review/2763394/
6. 什麼是「熵」
熵
熵
shāng
◎ 物理學上指熱能除以溫度所得的商,標志熱量轉化為功的程度。
◎ 科學技術上泛指某些物質系統狀態的一種量(liàng)度,某些物質系統狀態可能出現的程度。亦被社會科學用以借喻人類社會某些狀態的程度。
◎ 在資訊理論中,熵表示的是不確定性的量度。
1.只有當你所使用的那個特定系統中的能量密度參差不齊的時候,能量才能夠轉化為功,這時,能量傾向於從密度較高的地方流向密度較低的地方,直到一切都達到均勻為止。正是依靠能量的這種流動,你才能從能量得到功。
江河發源地的水位比較高,那裡的水的勢能也比河口的水的勢能來得大。由於這個原因,水就沿著江河向下流入海洋。要不是下雨的話,大陸上所有的水就會全部流入海洋,而海平面將稍稍升高。總勢能這時保持不變。但分布得比較均勻。
正是在水往下流的時候,可以使水輪轉動起來,因而水就能夠做功。處在同一個水平面上的水是無法做功的,即使這些水是處在很高的高原上,因而具有異常高的勢能,同樣做不了功。在這里起決定性作用的是能量密度的差異和朝著均勻化方向的流動。
熵是混亂和無序的度量.熵值越大,混亂無序的程度越大. 我們這個宇宙是熵增的宇宙.熱力學第二定律,體現的就是這個特徵. 生命是高度的有序,智慧是高度的有序. 在一個熵增的宇宙為什麼會出現生命?會進化出智慧?(負熵) 熱力學第二定律還揭示了, 局部的有序是可能的,但必須以其他地方更大無序為代價. 人生存,就要能量,要食物,要以動植物的死亡(熵增)為代價. 萬物生長靠太陽.動植物的有序, 又是以太陽核反應的衰竭(熵增),或其他的熵增形勢為代價的. 人關在完全封閉的鉛盒子里,無法以其他地方的熵增維持自己的負熵. 在這個相對封閉的系統中,熵增的法則破壞了生命的有序. 熵是時間的箭頭,在這個宇宙中是不可逆的. 熵與時間密切相關,如果時間停止"流動",熵增也就無從談起. "任何我們已知的物質能關住"的東西,不是別的,就是"時間". 低溫關住的也是"時間". 生命是物質的有序"結構"."結構"與具體的物質不是同一個層次的概念. 就象大廈的建築材料,和大廈的式樣不是同一個層次的概念一樣. 生物學已經證明,凡是到了能上網歲數的人, 身體中的原子,已經沒有一個是剛出生時候的了. 但是,你還是你,我還是我,生命還在延續. 倒是死了的人,沒有了新陳代謝,身體中的分子可以保留很長時間. 意識是比生命更高層次的有序.可以在生命之間傳遞. 說到這里,我想物質與意識的層次關系應該比較清楚了. 這里之所以將"唯物"二字加上引號. 是因為並不徹底.為什麼熵減是這個宇宙的本質,還沒法回答. (摘自人民網BBS論壇)
不管對哪一種能量來說,情況都是如此。在蒸汽機中,有一個熱庫把水變成蒸汽,還有一個冷庫把蒸汽冷凝成水。起決定性作用的正是這個溫度差。在任何單一的、毫無差別的溫度下——不管這個溫度有多高——是不可能得到任何功的。
「熵」(entropy)是德國物理學家克勞修斯(Rudolf Clausius, 1822 – 1888)在1850年創造的一個術語,他用它來表示任何一種能量在空間中分布的均勻程度。能量分布得越均勻,熵就越大。如果對於我們所考慮的那個系統來說,能量完全均勻地分布,那麼,這個系統的熵就達到最大值。
在克勞修斯看來,在一個系統中,如果聽任它自然發展,那麼,能量差總是傾向於消除的。讓一個熱物體同一個冷物體相接觸,熱就會以下面所說的方式流動:熱物體將冷卻,冷物體將變熱,直到兩個物體達到相同的溫度為止。如果把兩個水庫連接起來,並且其中一個水庫的水平面高於另一個水庫,那麼,萬有引力就會使一個水庫的水面降低,而使另一個水面升高,直到兩個水庫的水面均等,而勢能也取平為止。
因此,克勞修斯說,自然界中的一個普遍規律是:能量密度的差異傾向於變成均等。換句話說,「熵將隨著時間而增大」。
對於能量從密度較高的地方向密度較低的地方流動的研究,過去主要是對於熱這種能量形態進行的。因此,關於能量流動和功-能轉換的科學就被稱為「熱力學」,這是從希臘文「熱運動」一詞變來的。
人們早已斷定,能量既不能創造,也不能消滅。這是一條最基本的定律;所以人們把它稱為「熱力學第一定律」。
克勞修斯所提出的熵隨時間而增大的說法,看來差不多也是非常基本的一條普遍規律,所以它被稱為「熱力學第二定律」。
2.資訊理論中的熵:信息的度量單位:由資訊理論的創始人Shannon在著作《通信的數學理論》中提出、建立在概率統計模型上的信息度量。他把信息定義為「用來消除不確定性的東西」。
Shannon公式:I(A)=-logP(A)
I(A)度量事件A發生所提供的信息量,稱之為事件A的自信息,P(A)為事件A發生的概率。如果一個隨機試驗有N個可能的結果或一個隨機消息有N個可能值,若它們出現的概率分別為p1,p2,…,pN,則這些事件的自信息的平均值:
H=-SUM(pi*log(pi)),i=1,2…N。H稱為熵。
7. 能否盡量通俗地解釋什麼叫做熵
熵
熵
shāng
◎ 物理學上指熱能除以溫度所得的商,標志熱量轉化為功的程度。
◎ 科學技術上泛指某些物質系統狀態的一種量(liàng)度,某些物質系統狀態可能出現的程度。亦被社會科學用以借喻人類社會某些狀態的程度。
只有當你所使用的那個特定系統中的能量密度參差不齊的時候,能量才能夠轉化為功,這時,能量傾向於從密度較高的地方流向密度較低的地方,直到一切都達到均勻為止。正是依靠能量的這種流動,你才能從能量得到功。
江河發源地的水位比較高,那裡的水的勢能也比河口的水的勢能來得大。由於這個原因,水就沿著江河向下流入海洋。要不是下雨的話,大陸上所有的水就會全部流入海洋,而海平面將稍稍升高。總勢能這時保持不變。但分布得比較均勻。
正是在水往下流的時候,可以使水輪轉動起來,因而水就能夠做功。處在同一個水平面上的水是無法做功的,即使這些水是處在很高的高原上,因而具有異常高的勢能,同樣做不了功。在這里起決定性作用的是能量密度的差異和朝著均勻化方向的流動。
熵是混亂和無序的度量.熵值越大,混亂無序的程度越大. 我們這個宇宙是熵增的宇宙.熱力學第二定律,體現的就是這個特徵. 生命是高度的有序,智慧是高度的有序. 在一個熵增的宇宙為什麼會出現生命?會進化出智慧?(負熵) 熱力學第二定律還揭示了, 局部的有序是可能的,但必須以其他地方更大無序為代價. 人生存,就要能量,要食物,要以動植物的死亡(熵增)為代價. 萬物生長靠太陽.動植物的有序, 又是以太陽核反應的衰竭(熵增),或其他的熵增形勢為代價的. 人關在完全封閉的鉛盒子里,無法以其他地方的熵增維持自己的負熵. 在這個相對封閉的系統中,熵增的法則破壞了生命的有序. 熵是時間的箭頭,在這個宇宙中是不可逆的. 熵與時間密切相關,如果時間停止"流動",熵增也就無從談起. "任何我們已知的物質能關住"的東西,不是別的,就是"時間". 低溫關住的也是"時間". 生命是物質的有序"結構"."結構"與具體的物質不是同一個層次的概念. 就象大廈的建築材料,和大廈的式樣不是同一個層次的概念一樣. 生物學已經證明,凡是到了能上網歲數的人, 身體中的原子,已經沒有一個是剛出生時候的了. 但是,你還是你,我還是我,生命還在延續. 倒是死了的人,沒有了新陳代謝,身體中的分子可以保留很長時間. 意識是比生命更高層次的有序.可以在生命之間傳遞. 說到這里,我想物質與意識的層次關系應該比較清楚了. 這里之所以將"唯物"二字加上引號. 是因為並不徹底.為什麼熵減是這個宇宙的本質,還沒法回答. (摘自人民網BBS論壇)
不管對哪一種能量來說,情況都是如此。在蒸汽機中,有一個熱庫把水變成蒸汽,還有一個冷庫把蒸汽冷凝成水。起決定性作用的正是這個溫度差。在任何單一的、毫無差別的溫度下——不管這個溫度有多高——是不可能得到任何功的。
「熵」(entropy)是德國物理學家克勞修斯(Rudolf Clausius, 1822 – 1888)在1850年創造的一個術語,他用它來表示任何一種能量在空間中分布的均勻程度。能量分布得越均勻,熵就越大。如果對於我們所考慮的那個系統來說,能量完全均勻地分布,那麼,這個系統的熵就達到最大值。
在克勞修斯看來,在一個系統中,如果聽任它自然發展,那麼,能量差總是傾向於消除的。讓一個熱物體同一個冷物體相接觸,熱就會以下面所說的方式流動:熱物體將冷卻,冷物體將變熱,直到兩個物體達到相同的溫度為止。如果把兩個水庫連接起來,並且其中一個水庫的水平面高於另一個水庫,那麼,萬有引力就會使一個水庫的水面降低,而使另一個水面升高,直到兩個水庫的水面均等,而勢能也取平為止。
因此,克勞修斯說,自然界中的一個普遍規律是:能量密度的差異傾向於變成均等。換句話說,「熵將隨著時間而增大」。
對於能量從密度較高的地方向密度較低的地方流動的研究,過去主要是對於熱這種能量形態進行的。因此,關於能量流動和功-能轉換的科學就被稱為「熱力學」,這是從希臘文「熱運動」一詞變來的。
人們早已斷定,能量既不能創造,也不能消滅。這是一條最基本的定律;所以人們把它稱為「熱力學第一定律」。
克勞修斯所提出的熵隨時間而增大的說法,看來差不多也是非常基本的一條普遍規律,所以它被稱為「熱力學第二定律」。
2.資訊理論中的熵:信息的度量單位:由資訊理論的創始人Shannon在著作《通信的數學理論》中提出、建立在概率統計模型上的信息度量。他把信息定義為「用來消除不確定性的東西」。
Shannon公式:I(A)=-logP(A)
I(A)度量事件A發生所提供的信息量,稱之為事件A的自信息,P(A)為事件A發生的概率。如果一個隨機試驗有N個可能的結果或一個隨機消息有N個可能值,若它們出現的概率分別為p1,p2,…,pN,則這些事件的自信息的平均值:
H=-SUM(pi*log(pi)),i=1,2…N。H稱為熵。
8. 什麼是熵
從熱力學角度(宏觀)講,熵是體系的一個狀態函數,它的絕對值由熱力學第三定內律規定(即完美晶體在0K時的容熵為零),體系某一變化過程的熵變等於可逆過程的熱溫商。
從統計熱力學角度(微觀)講,熵是一定溫度下體系混亂度的度量,其絕對值由體系微觀狀態數決定(S=k*lnΩ)
熵的概念擴展到信息科學就是信息熵。信息等於熵的減少。
信息熵使熵的概念擴展到許多領域,諸如
氣象學用氣象信息熵來進行天氣預報
新聞學用信息熵的熵增規律來研究新聞體例的演化規律
天文學的「黑洞熵」
大物理學家惠勒說:一個人如果不懂得熵是怎麼回事,就不能說是有科學素養的人。
9. 電廠中焓 熵的定義 是什麼
內能和焓及熵都是水蒸汽的狀態參數,內能和焓越大,表明蒸汽的做工能力越強,但熵是衡量熱力體系中不能利用的熱能指標,熵增大,表示做功的能力越差。