鈾的離子交換分離法
❶ 分離方法
分離鋁的方法很多,常用的方法有氫氧化銨、苯甲酸銨、氫氧化鈉等沉澱分離、離子交換分離以及萃取分離等,其中以銅鐵試劑-三氯甲烷萃取法對於從大量鐵、鈦中分離鋁的效果較好。
用氫氧化銨沉澱鋁可使鋁與硼、鎂、鹼金屬、鹼土金屬,及一定量的鎳、錳分離,沉澱的酸度為pH5~7。為了更好地控制沉澱的條件,常採用尿素或六次甲基四胺等弱氨性試劑,但鐵、鈦以及很多金屬離子與鋁同時沉澱,不能分開。因此,用這種方法分離鋁必須和其他分離手段並用時方有效。
苯甲酸銨使鋁沉澱,可與鈷、鎳、釩、錳和鋅等元素分離,但鐵(Ⅲ)也同時沉澱。為了防止鐵(Ⅲ)沉澱,測鋁溶液中應先加入次亞硫酸鈉還原鐵,再加苯甲酸銨沉澱鋁。這樣,大量鐵雖可除去,但仍有少量鐵(Ⅱ)很快地氧化為鐵(Ⅲ)夾雜在鋁沉澱中。因此必須將苯甲酸鋁沉澱用酸溶解,在還原劑存在下,反復沉澱多次,才能使鐵與鋁完全分離。用苯甲酸銨沉澱鋁,酸度應在pH3.8左右,加入次亞硫酸鈉的量,以溶液中鐵的顏色消失並過量0.2~0.3g為宜。
用氫氧化鈉分離鋁是沿用已久的方法,但分離並不很完全。為了減低氫氧化物沉澱對鋁的吸附,通常在大量氯化鈉存在下,小體積沉澱鐵、鈦等元素。即使如此,微克量的鋁也難免不被吸附,特別是鎂、鎳、鈣的氫氧化物沉澱對鋁的吸附較大。分離方法是:將含鋁的鹽酸溶液,加熱蒸發至體積為1~2mL,冷卻,加入15gNaCl,攪拌均勻。加入10mL500g/LNaOH溶液,再攪勻後,加水稀釋至60~70mL,用中速濾紙過濾,用洗液(250mL水中含2gNaCl、5gNaOH)充分洗滌沉澱,濾液酸化後測鋁。
銅鐵試劑又稱亞硝基苯胲銨,在無機酸溶液中與很多金屬離子包括鐵(Ⅲ)、鈦(Ⅳ)、釩(Ⅴ)、鈾(Ⅳ)和錫(Ⅳ)等形成難溶性螯合物,此螯合物能用有機溶劑,如三氯甲烷、乙醚、乙酸乙酯、甲基異丁酮、鄰-二氯苯等萃取。有機溶劑對金屬螯合物的萃取能力與螯合物沉澱在酸中的溶解度有關,一般金屬螯合物在強酸中的溶解度愈小愈易被萃取。萃取應在鹽酸或硫酸溶液中進行,酸度通常約為10%(鹽酸為1mol/L,硫酸為1.5mol/L)。這樣可以保證微量鋁也能與其他金屬離子分離,酸度過低,例如pH>3.4時,鋁亦被萃取進入有機相。銅鐵試劑的用量,在理論上每0.1g鐵只需要0.84g銅鐵試劑。在實際工作中,銅鐵試劑用量卻要比理論值大,0.1g鐵最少需要16mL60g/L銅鐵試劑溶液,反應方能完全。銅鐵試劑易於分解,配製時勿加熱,萃取的全部過程均應在冷溶液中進行。
鋁的分離,還包括離子交換分離和汞陰極電解等方法。離子交換分離是在9mol/LHCl中利用陰離子交換樹脂使鋁與銅、鋅、鎘、鐵(Ⅱ)、鐵(Ⅲ)、鈷、錫(Ⅱ)、錫(Ⅳ)、銻(Ⅲ)、銻(Ⅴ)、鋅、釩(Ⅴ)、鉬(Ⅵ)、鎢(Ⅵ)、鉻(Ⅵ)、鈾(Ⅵ)和錳(Ⅶ)等元素分離,鋁不被吸附,交換後的溶液可測定鋁。汞陰極分離是在硫酸或高氯酸溶液中以鉑絲為陽極,汞為陰極進行電解,可使很多金屬離子包括鐵、鉻、鎳、銅、錫、鉬、鋅和鉛等與鋁分離,電流密度約為0.1~0.2A/cm2。上述兩種方法測定鋁時,分離雜質雖是有效的,但已很少使用。
❷ 鈾235原子是怎樣進行分離的
鈾235是原子彈的主要裝葯。要獲得高加濃度的鈾235並不是一件輕而易舉的事,這是因為,天然鈾235的含量很小,大約140個鈾原子中只含有1個鈾235原子,而其餘139個都是鈾238原子;尤其是鈾235和鈾238是同一種元素的同位素,它們的化學性質幾乎沒有差別,而且它們之間的相對質量差也很小。因此,用普通的化學方法無法將它們分離;採用分離輕元素同位素的方法也無濟於事。
為了獲得高加濃度的鈾235,早期,科學家們曾用多種方法來攻此難關。最後「氣體擴散法」終於獲得了成功。
❸ 美國科學家研究鈾同位素分離方法有哪些
當時美國的科學家已經在研究4種不同的鈾同位素分離方法:
(1)擴散法。它利用克勞修斯熱平衡原理,把質量不同的同位素分離,美國海軍實驗室很熱心於這一方法。這種方法的缺點是效率太低。
(2)離心法。它利用不同質量的氣體在旋轉時所受的離心力不同而將同位素分離。原則上它可有很高的效率,哥倫比亞大學的尤里和弗吉尼亞大學的皮姆斯在這方面已經做了很多工作,主要涉及到材料和離心泵的問題。
(3)氣體擴散法。它利用不同質量的氣體穿過一些多孔膜時的透過系數不一樣,從而把同位素分離。哥倫比亞大學的鄧寧估計,如果讓天然鈾的氟化物氣體通過5000層膜,氟化鈾中的鈾-235含量可以達到原子彈材料的要求。
(4)電磁分離法。它利用不同質量的帶電粒子在磁場中的偏轉不同,從而把鈾同位素分離。1941年夏,勞倫斯從實驗上突破了這一障礙,為鈾同位素的大規模電磁分離開辟了道路。
另一種裂變材料鈈-239的生產,首先要取決於自持式鏈式反應堆的建造成功,以及鈈-239從鈾中的化學分離。費米在哥倫比亞大學用石墨作緩沖劑的「晶格式」指數實驗反應堆的中子增殖系數,已達到0.9以上,物理學家們認為這個系數可隨材料純度的提高而增大。另外一種用重水作緩沖劑的反應堆的研究也在進行,核工廠所需要的原料供應沒有遇到很大的困難。
❹ 離子交換分離
將含鈹的9mol/L鹽酸溶液通過強鹼性陰離子交換樹脂時,可以有效地分離銅、鈷、鎳、鎘內、鉻、鐵、錳、鋯和鈾容離子。鈹和鋁離子則保留於溶液中。
將pH3.5並含有EDTA和過氧化氫的溶液通過強酸性陽離子交換樹脂(鈉型),此時鈹不形成穩定的EDTA配合物,而被吸附;鋁及鐵的EDTA配合物和鈦與過氧化氫及EDTA的配合物都不被吸收,而與鈹分離,被吸附的鈹再用3mol/L鹽酸淋洗。
❺ 什麼是提取鈾的兩步法
兩步法就是 兩步萃取法 (具體方法看下面解釋)
主要包括磷酸預處理、第一步萃取、第二步萃取三個環節,最終製得核純Auc產品。
第一步萃取 磷酸和鈾醯離子有很強的絡合能力,能與有機相中的鈾萃合物競爭,使鈾的分配比降低。單獨使用中性或酸性磷酸酯萃取劑都不能有效地萃取鈾,而改用它們的混合物時,由於有協同萃取效應,而獲得好的萃取效果。工業上主要由二一(2一乙基己基)磷酸(D2EHPA)和三正辛基氧膦(TOPO)混合物及煤油組成的有機相。也有用辛苯基磷酸酯(OPAP)、辛基焦磷酸(OPPA)作萃取劑的。當用D2EHPA一TOPO時,只能萃取六價鈾,而濕法磷酸中的鈾主要呈四價狀態,需加入氧化劑使四價鈾氧化成六價狀態。
經過預處理的濕法磷酸溶液,用0.5mol/L D2EHPA和0.125mol/L TOPO的煤油有機相,用4~6級?昆合澄清器逆流萃取時,鈾萃取率為90%~95。載鈾有機相用含Fe2+ 15~30g/L,的8mol/L磷酸進行三級逆流反萃取,由於二價鐵離子將有機相中的六價鈾還原成四價鈾,使鈾進入反萃取液中。反萃取液中的鈾濃度為10g/L左右。
第二步萃取 為了得到高純鈾產品,反萃取液用過氧化氫或氯酸鈉將四價鈾再氧化成六價鈾,然後用0.3mol/L D2EHPA和0.075mol/L TOPO的煤油有機相進行第二次萃取。載鈾有機相用293~298K溫度的水進行三段洗滌除去雜質,特別是洗去夾帶的P2O5。洗滌後的載鈾有機相,用碳酸銨溶液反萃取,然後結晶製成碳酸鈾醯銨產品,從濕法磷酸提取鈾的總回收率為89%~91%。
離子交換 為解決溶劑萃取過程中產生的乳化、有機溶劑夾帶損失等問題,及從未澄清的磷酸中回收鈾,人們正在研究用離子交換從濕法磷酸中提取鈾的方法。經過試驗的有採用在不同的D2EHPA與TOPO摩爾比的溶劑中浸漬過的球狀含溶劑樹脂和含氨基膦酸功能基團的大孔聚苯乙烯一二乙烯苯共聚物螯合離子交換樹脂。螯合離子交換樹脂能吸附四價和六價鈾離子,並可直接從333K溫度的濃磷酸溶液中吸附鈾,從而節省磷酸預處理費用。
液膜萃取 美國埃克森(EXXON)公司發明並發展的液膜萃取法(見膜分離),已應用於從濕法磷酸中提鈾。液膜由D2EHPA—TOPO和稀釋劑組成,內相由常規的反萃取劑組成,並加表面活性劑形成乳狀液。液膜萃取用的磷酸料液不需冷卻,也不必除去可溶性有機物,萃取過程中產生的乳化塊只有溶劑萃取法的1/4~1/5。
❻ 鈾是如何提取的
最重的天然元素鈾已經成為新能源的主角,那麼鈾又是怎樣提煉出來的呢? 在居里夫婦發現鐳以後,由於鐳具有治療癌症的特殊功效,鐳的需要量不斷增加,因此許多國家開始從瀝青鈾礦中提煉鐳,而提煉過鐳的含鈾礦渣就堆在一邊,成了「廢料」。 然而,鈾核裂變現象發現後,鈾變成了最重要的元素之一。這些「廢料」也就成了「寶貝」。從此,鈾的開采工業大大地發展起來,並迅速地建立起了獨立完整的原子能工業體系。 鈾是一種帶有銀白色光澤的金屬,比銅稍軟,具有很好的延展性,很純的鈾能拉成直徑0.35毫米的細絲或展成厚度0.1毫米的薄箔。鈾的比重很大,與黃金差不多,每立方厘米約重19克,像接力棒那樣的一根鈾棒,竟有十來公斤重。 鈾的化學性質很活潑,易與大多數非金屬元素發生反應。塊狀的金屬鈾暴露在空氣中時,表面被氧化層覆蓋而失去光澤。粉末狀鈾於室溫下,在空氣中,甚至在水中就會自燃。美國用貧化鈾製造的一種高效的燃燒穿甲彈—「貧鈾彈」,能燒穿30厘米厚的裝甲鋼板,「貧鈾彈」利用的就是鈾極重而又易燃這兩種性質。 鈾元素在自然界的分布相當廣泛,地殼中鈾的平均含量約為百萬分之2.5,即平均每噸地殼物質中約含2.5克鈾,這比鎢、汞、金、銀等元素的含量還高。鈾在各種岩石中的含量很不均勻。例如在花崗岩中的含量就要高些,平均每噸含3.5克鈾。依此推算,一立方公里的花崗岩就會含有約一萬噸鈾。海水中鈾的濃度相當低,每噸海水平均只含3.3毫克鈾,但由於海水總量極大,且從水中提取有其方便之處,所以目前不少國家,特別是那些缺少鈾礦資源的國家,正在探索海水提鈾的方法。 由於鈾的化學性質很活潑,所以自然界不存在游離的金屬鈾,它總是以化合狀態存在著。已知的鈾礦物有一百七十多種,但具有工業開采價值的鈾礦只有二、三十種,其中最重要的有瀝青鈾礦(主要成分為八氧化三鈾)、品質鈾礦(二氧化鈾)、鈾石和鈾黑等。很多的鈾礦物都呈黃色、綠色或黃綠色。有些鈾礦物在紫外線下能發出強烈的熒光,我們還記得,正是鈾礦物(鈾化合物)這種發熒光的特性,才導致了放射性現象的發現。 雖然鈾元素的分布相當廣,但鈾礦床的分布卻很有限。國外鈾資源主要分布在美國、加拿大、南非、西南非、澳大利亞等國家和地區。據估計,國外已探明的工業儲量到1972年已超過一百萬噸。隨著勘探活動的廣泛和深入,鈾儲量今後肯定還會增加。我國鈾礦資源也十分豐富。 鈾礦是怎樣尋找的呢?鈾及其一系列衰變子體的放射性是存在鈾的最好標志。人的肉眼雖然看不見放射性,但是藉助於專門的儀器卻可以方便地把它探測出來。因此,鈾礦資源的普查和勘探幾乎都利用了鈾具有放射性這一特點:若發現某個地區岩石、土壤、水、甚至植物內放射性特別強,就說明那個地區可能有鈾礦存在。 鈾礦的開采與其它金屬礦床的開采並無多大的區別。但由於鈾礦石的品位一般很低(約千分之一),而用作核燃料的最終產品的純度又要求很高(金屬鈾的純度要求在99.9%以上,雜質增多,會吸收中子而妨礙鏈式反應的進行),所以鈾的冶煉不象普通金屬那樣簡單,而首先要採用「水冶工藝」,把礦石加工成含鈾60~70%的化學濃縮物(重鈾酸銨),再作進一步的加工精製。 鈾水冶得到的化學濃縮物(重鈾酸氨)呈黃色,俗稱黃餅子,但它仍含有大量的雜質,不能直接應用,需要作進一步的純化。為此先用硝酸將重鈾酸銨溶解,得到硝酸鈾醯溶液。再用溶劑萃取法純化(一般用磷酸三丁酯作萃取劑),以達到所要求的純度標准。 純化後的硝酸鈾醯溶液需經加熱脫硝,轉變成三氧化鈾,再還原成二氧化鈾。二氧化鈾是一種棕黑色粉末,很純的二氧化鈾本身就可以用作反應堆的核燃料。 為製取金屬鈾,需要先將二氧化鈾與無水氟化氫反應,得到四氟化鈾;最後用金屬鈣(或鎂)還原四氟化鈾,即得到最終產品金屬鈾。如欲製取六氟化鈾以進行鈾同位素分離,則可用氟氣與四氟化鈾反應。 至此,能作核燃料使用的金屬鈾和二氧化鈾都生產出來了,只要按要求製成一定尺寸和形狀的燃料棒或燃料塊(即燃料元件),就可以投入反應堆使用了。但是對於鈾處理工藝來說,這還只是一半。 我們知道,核燃料鈾在反應堆中雖然要比化學燃料煤在鍋爐中使用的時間長得多,但是用過一段時間以後,總還是要把用過的核燃料從反應堆中卸出來,再換上一批新的核燃料。從反應維中卸出來的核燃料一般叫輻照燃料或「廢燃料」。燒剩下的煤渣一般都丟棄不要了,可這種不能再使用的廢燃料卻還大有用處呢! 廢燃料之所以要從反應堆中卸出來,並不是因為裡面的裂變物質(鈾235)已全部耗盡,而是因為能大量吸收中子的裂變產物積累得太多,致使鏈式反應不能正常進行了。所以,廢燃料雖「廢」,但裡面仍有相當可觀的裂變物質沒有用掉,這是不能丟棄的,必須加以回收。而且在反應堆中,鈾238吸收中子,生成鈈239。鈈239是原子彈的重要裝葯,它就含在廢燃料中,這就使得用過的廢燃料甚至比沒有用過的燃料還寶貴。除此而外,反應堆運行期間,還生成其它很多種有用的放射性同位素,它們 蘑菇雲
也含在廢燃料中,也需要加以回收。 從原理上講,廢燃料的處理與天然鈾的生產並無多大差別。一般先把廢燃料溶解,再用溶劑萃取法把鈾、鈈和裂變產物相互分開,然後進行適當的純化和轉化。但實際上,廢燃料的處理是十分困難的。世界上很多國家都能生產天然鈾,很多國家都有反應堆,但是能處理廢燃料的國家卻並不多。 廢燃料的處理有三個特點:一是廢燃料具有極強的放射性,它們的處理必須有嚴密的防護設施,並實行遠距離操作;二是廢燃料中鈈含量很低而鈈又極貴重,所以要求處理過程的分離系數和回收率都很高;三是鈈能發生鏈式反應,因此必須採取嚴格的措施,防止臨界事故的發生。目前,廢燃料的處理大都採用自動化程度很高的磷酸三丁酯萃取流程。 我們看到,在鈾處理的工藝鏈中,相對於反應堆而言,鈾水冶工藝在反應堆之前進行,所以通常叫做前處理,廢燃料處理在反應堆之後進行,所以通常叫做後處理。而從鈾礦石加工開始的整個工藝過程,包括鈾同位素分離以及核燃料在反應堆中使用在內,一般總稱為核燃料循環。 從以上極為簡單的介紹就可以看出,鈾和鈈確是得之不易的。原子能工業猶如一條長長的巨龍,要最重的天然元素鈾做出轟轟烈烈的事業,得經過多少次加工和處理、分析和測量、計算和核對啊!原子能工業又猶如一座高高的金字塔,要製造一顆原子彈,就要使用一、二十公斤鈾235或鈈239;要生產一、二十公斤鈾235或鈈239,就要消耗十來噸天然鈾;要生產十來噸天然鈾就要加工近萬噸鈾礦石。我們贊賞核電站的雄姿,驚嘆原子彈的威力,可千萬不能忽視支撐這座金字塔塔尖的無數塊磚石啊!
❼ 60年代中國如何分離濃縮鈾
提純濃縮鈾-235含量的技術比較復雜,因為元素的各種同位素,如同「孿生姐妹」,無論在物理性質和化學性質上都十分相似,採用通常的各種物理提純方法或者化學提純方法收效都甚微,代價卻很高。現時用來提純鈾-235的主要方法有氣體擴散法、離子交換法、氣體離心法、蒸餾法、電解法、電磁法、電流法等,其中以氣體擴散法最成熟,製造第一顆原子彈用的鈾核材料就是用這種方法製造出來的。所有這些提純方法,它們的工藝過程都比較復雜,辦廠投資高,運轉過程中消耗的能量也高;而且產量低,生產出的鈾核燃料成本大。因此,科學家一直在找新提純方法。現在,激光科學工作者提出用激光進行提純,或許這種方法能夠大大地降低生產鈾燃料的成本。
用激光提純、濃縮鈾-235的主要依據是激光有極好的單色性,以及各同位素原子的同位素光譜位移。各個同位素原子核含的中子數目不同,它們的能級發生所謂同位素位移,發射出來的光輻射波長出現差異,當然,相差的數值是十分小的。但是,激光的單色性很好,能夠做到用和某種同位素原子發射的光輻射波長相同的激光去激發其中的一種原子,而不會把其他同位素原子一起激發,亦即是說,用激光可以做到單獨把各種同位素原子中的一種激發到高能態,或者把它的原子電離。被電離的同位素原子再用電場就可以把它從同位素混合物堆中單獨「拉」出來,收集後就可以單獨獲得這種同位素。如果是把這種同位素的原子激發到高能級去的,我們便可以利用在高能級的原子和在基態的原子參加化學反應的活動能力不同,通過化學反應方法把它給分離出來。
用激光的方法提純濃縮鈾-235,比現有的各種方法都優越,生產設備可以大大簡化,生產成本也可以大大降低。根據科學家的估計,生產投資大約只有氣體擴散法的1/2,生產過程中消耗的能量只有氣體擴散法的1/10左右。所以,世界各國都很重視開發這種鈾核燃料生產技術。美國從1977年就開始研究用激光提純濃縮鈾燃料,從實驗上證實了這種方法在原理上的可行性。1982年,美國能源部確定,今後使用激光來生產鈾核燃料。
用激光提純濃縮鈾-235的技術路線有兩條:一條稱為原子法,另一條稱為分子法。原子法提純時用的原料是經過提煉鈾礦得到的鈾塊。先用爐子把這鈾塊加熱到高溫,形成鈾原子蒸氣,在這鈾蒸氣裡麵包含有鈾元素的同位素鈾-234、鈾-235、鈾-238的原子。然後用在可見光波段的激光(比如用銅蒸氣激光泵浦的染料激光器)照射這鈾原子蒸氣。調諧激光器的輸出波長,讓它落在鈾-235的原子吸收譜線中心,使它單獨獲得激發或者電離。其後再使用其他物理方法便可以把鈾-235原子從同位素鈾混合氣體中分離出來。這條技術路線現在已經比較成熟,達到生產應用階段。分子法使用的原料是鈾的分子化合物(比如六氟化鈾)。用在中紅外波段的激光(比如波長16微米的激光)照射這種化合物,並且選擇的激光波長正好是讓鈾-235的這種化合物的分子獲得激發(或電離),再通過前面在原子法中用的物理方法或化學方法把含鈾-235的分子化合物從混合中分離出來,再對含鈾-235的分子化合物作化學分解反應,便可以獲得鈾-235。這條技術路線現在還未達到生產階段,不過,從發展的潛力來說,分子法比原子法優越。一方面是因為分子法分離時使用的原料是鈾的分子化合物,原料來源比較豐富;其次是在分離的工作過程中不需要加熱,而原子法則需要加熱到2000多度,使鈾原料形成蒸氣。高溫鈾蒸氣有很強的腐蝕性。因此分子法的生產設備會比較簡單,生產成本也相應較低。
❽ 海水中的鈾元素以什麼型式存應怎樣分離
海水中的鈾一般以鈾醯離子與碳酸根,氫氧根絡合的形式存在,也以鈾醯離子單獨的形式存在,海水pH約為8.2,在此pH條件下鈾醯離子與碳酸根的絡合UO2(CO3)44-的存在比重達到了84%。實現從海水中分離濃縮鈾是可行的,可以利用萃取(extraction)以及過濾(nanofiltration)的方法,但是由於海水鈾濃度低,加上處理體積大,實際工業上難以實現。我現在實習就在做這個方向的課題。那些亂打一氣的人可以go die了。。
❾ 離子交換分離法
將含有鎳的9mol/LHCl溶液,流經氯型強鹼性陰離子交換樹脂柱,由於鐵、鈷、銅、鋅、內鉍等金屬離子在鹽容酸溶液中形成相應的配陰離子,而被吸附在陰離子交換樹脂柱中。鎳在此條件下不形成配陰離子,因而不被樹脂所吸附,仍留在溶液中,由此可與上述金屬離子得到分離。與鎳一起進入溶液的有鹼金屬,鹼土金屬以及鈦、釩、錳等。
AG50W陽離子交換樹脂從6mol/LHCl-丙酮介質中吸附分離鎳,鎳的分配系數可達227。在同一條件下,易形成氯配陰離子的一些元素分配系數在1以下,而鐵、鈷、銅、鋅、鎘、汞、鉛、鉍、錳、鉬、釩、鎵、銦、鈾等的分配系數不超過4;因此,鎳可與上述元素得到完全分離。