edi裝置的壽命
⑴ 純水EDI在不使用的情況下能保持多久
這個要看你存放的環境的,如溫度什麼的。
存放前用小於5us/cm的純水沖洗後並密封,溫度在20攝氏度左右存放一個月左右是沒什麼問題的!
⑵ edi多久可以更換
如果進水水質穩定,EDI壽命可達5年以上。如果發現出水水質長時間不合格,或者壓力發生變化,可考慮樹脂及膜是否損壞。
⑶ RO膜使用壽命和EDI正常使用壽命各位幾年
想要作壽命預算
要先知道採用的品牌哦
一般RO膜廠家的保質期為3年,實際使用經專驗證明,無論你作怎麼屬樣的清洗
加阻垢劑
其後的產水水質都會明顯下降,但產水量不一定下降(尤其是清洗次數過頻,任何清洗劑都或多或少有腐蝕性,洗完的膜產水水質下降非常明顯)
現在的反滲透膜價格已經很低了,如果從壽命角度考慮,建議使用DOW膜,抗腐蝕性較強
關於EDI膜塊的壽命,不同品牌差異較大
由於EDI在國內應用時間不長,而且不同客戶的EDI進水水質千差萬別
所以准確的估算實際使用壽命很難
一般來說electropure
e-cell
等大品牌壽命較長
而加拿大和國產模塊相對較短
⑷ 電廠化學中 EDI是什麼意思
三.水處理系統中的EDI
EDI(Electrodeionization,電去離子技術),是一種將離子交換技術、離子交換膜技術和離子電遷移技術相結合的純水製造技術。它巧妙的將電滲析和離子交換技術相結合,利用兩端電極高壓使水中帶電離子移動,並配合離子交換樹脂及選擇性樹脂膜以加速離子移動去除,從而達到水純化的目的。在EDI除鹽過程中,離子在電場作用下通過離子交換膜被清除。同時,水分子在電場作用下產生氫離子和氫氧根離子,這些離子對離子交換樹脂進行連續再生,以使離子交換樹脂保持最佳狀態。 EDI設施的除鹽率可以高達99%以上,如果在EDI之前使用反滲透設備對水進行初步除鹽,再經EDI除鹽就可以生產出電阻率高達成15M .cm以上的超純水。
EDI 膜堆是由夾在兩個電極之間一定對數的單元組成。在每個單元內有兩類不同的室:待除鹽的淡水室和收集所除去雜質離子的濃水室。淡水室中用混勻的陽、陰離子交換樹脂填滿,這些樹脂位於兩個膜之間:只允許陽離子透過的陽離子交換膜及只允許陰離子透過的陰離子交換膜。 樹脂床利用加在室兩端的直流電進行連續地再生,電壓使進水中的水分子分解成 H+及 OH-,水中的這些離子受相應電極的吸引,穿過陽、陰離子交換樹脂向所對應膜的方向遷移,當這些離子透過交換膜進入濃室後, H +和 OH-結合成水。這種 H+和 OH-的產生及遷移正是樹脂得以實現連續再生的機理。
當進水中的 Na+及 CI-等雜質離子吸咐到相應的離子交換樹脂上時,這些雜質離子就會發生象普通混床內一樣的離子交換反應,並相應地置換出 H+及 OH-。一旦在離子交換樹脂內的雜質離子也加入到 H+及 OH-向交換膜方向的遷移,這些離子將連續地穿過樹脂直至透過交換膜而進入濃水室。這些雜質離子由於相鄰隔室交換膜的阻擋作用而不能向對應電極的方向進一步地遷移,因此雜質離子得以集中到濃水室中,然後可將這種含有雜質離子的濃水排出膜堆。
幾十年來純水的制備是以消耗大量的酸鹼為代價的,酸鹼在生產、運輸、儲存和使用過程中,不可避免地會帶來對環境的污染,對設備的腐蝕,對人體可能的傷害以及維修費用的居高不下。反滲透的使用大大減少了酸鹼的用量,但是,還留著條?/span>尾巴?/span>。反滲透和電除鹽的廣泛使用,將會帶給純水制備一次產業性革命。
EDI的工作原理
自來水中常含有鈉、鈣、鎂、氯、硝酸鹽、矽等溶解鹽。這些鹽是由負電離子(負離子)和正電離子(正離子)組成。反滲透可以除去其中超過99%的離子。自來水也含有微量金屬,溶解的氣體(如CO2)和其他必須在工業處理中去除的弱離子化的化合物(如矽和硼)。
RO出水(EDI進水)一般為4?0μ/cm(電導),根據不同需要,超純水或去離子水一般電阻為2?8.2MΩ穋m。
交換反應在模組的純化學室進行,在那裡陰離子交換樹脂用它們的氫氧根據離子(OH)來交換溶解鹽中的陰離了(如氯離子C1)。相應地,陽離子交換樹脂用它們的氫離子(H)來交換溶解鹽中的陽離子(如Na)。
在位於模組兩端的陽極(+)和陰極(?/span>)之間加一直流電場。電勢就使交換到樹脂上的離子沿著樹脂粒的表面遷移並通過膜進入濃水室。陽極吸引負電離子(如OH,CI)這些離子通過陰離子膜進入相臨的濃水流卻被陽離子選擇膜阻隔,從而留在濃水流中。陰極吸引純水流中的陽離子(如H,Na)。這些離子穿過陽離子選擇膜,進入相臨的濃水流卻被陰離子膜陰隔,從而留在濃水流中。當水流過這兩種平行的室時,離子在純水室被除去並在相臨的濃水流中聚積,然後由濃水流將其從模組中帶走。在純水及濃水中離子交換樹脂的使用是ElectropupreEDI技術和專利的關鍵。一個重要的現象在純水室的離子交換樹脂中發生。在電勢差高的局部區域,電化學反應分解的水產生大量的H和OH。在混床離子交換樹脂中局部H和OH的產生使樹脂和膜不需要添加化學葯品就可以持續再生。
要使EDI處於最佳工作狀態、不出故障的基本要求就是對EDI進水要求進行適當的預處理。進水中的雜質對去離子模組有很大影響。並可能導致縮短模組的壽命。
系統特點
⊙ 產水水質高而穩定。
⊙ 連續不間斷制水,不因再生而停機。
⊙ 無需化學葯劑再生。
⊙ 設想周到的堆疊式設計,佔地面積小。
⊙ 操作簡單、安全。
⊙ 運行費用及維修成本低。
⊙ 無酸鹼儲備及運輸費用。
⊙ 全自動運行,無需專人看護
純水處理技術的發展主要經歷了陰、陽離子交換器+混合離子交換器;反滲透+混合離子交換器;反滲透+電去離子裝置等階段。?/span>預處理 + 反滲透 + 電去離子?/span>整套除鹽系統,有著其他處理系統無可比擬的優點,正被廣泛應用於純水、高純水的制備中。
應用領域
⊙電廠化學水處理
⊙電子、半導體、精密機械行業超純水
⊙制葯工業工藝用水
⊙食品、飲料、飲用水的制備
⊙海水、苦鹹水的淡化
⊙精細化工、精尖學科用水
⊙其他行業所需的高純水制備
⑸ EDI的工藝是什麼
EDI電去離子工作原理:
EDI電去離子裝置將離子交換樹脂充夾在陰/陽離子交換膜之間形成EDI單元。EDI工作原理如圖所示。 EDI組件中將一定數量的EDI單元間用網狀物隔開,形成濃水室。又在單元組兩端設置陰/陽電極。在直流電的推動下,通過淡水室水流中的陰陽離子分別穿過陰陽離子交換膜進入到濃水室而在淡水室中去除。而通過濃水室的水將離子帶出系統,成為濃水。
EDI電去離子設備技術介紹:
EDI電去離子設備一般以反滲透(RO)純水作為EDI給水。RO純水電導率一般是40-2μS/cm(25℃)。EDI純水電阻率可以高達17MΩ.cm(25℃),但是根據去離子水用途和系統工藝、配置不同,EDI純水適用於制備電阻率要求在1-18.2MΩ.cm(25℃)的超純水。
EDI電去離子技術的發展歷程:
近幾十年以來,混合床離子交換技術一直作為超純水制備的標准工藝。由於其需要周期性的再生且再生過程中使用大量的化學葯品(酸、鹼)和純水,並造成一定的環境問題,因此需要開發無酸鹼處理的超純水系統。
正因為傳統的離子交換已經越來越無法滿足現代工業和環保的需要,於是將膜、樹脂和電化學原理相結合的EDI技術成為水處理技術的一場革命。其離子交換樹脂的的再生使用的是電,而不再需要酸鹼,因而更滿足於當今世界的環保要求。
自從1986年EDI 膜堆技術工業化以來,全世界已安裝了數千套EDI電去離子系統,尤其在制葯、半導體、電力和表面清洗等工業中得到了大力的發展,同時在廢水處理、飲料及微生物等領域也得到廣泛使用。
EDI電去離子設備的特點:
⊙ 產水水質高且穩定、連續 ⊙ 操作簡單、安全 ⊙ 不會因再生而停機
⊙ 不需酸、鹼化學葯劑再生 ⊙ 運行費用低於混床 ⊙ 佔地面積小
⊙ 無污水排放 ⊙ 容易實現全自動控制
⑹ 公司有一台超純水設備,最近發現EDI模塊電導率持續不斷的往下降從6兆歐降到2兆歐,是很平緩的下。看補充
EDI模塊的污染主要分為硬度、金屬氧化物、有機物和生物污染四種。若發現回EDI模塊壓差增大、產水,濃答水或極化水流量減小、電壓增大或產水水質降低,則預示著EDI模塊可能產生了污染,下面小編來講一下具體故障的分析檢測方法。
產水電阻率低原因分析
1、可以分析如下運行情況:各模塊的平均電流;各模塊的實際電流;淡水室和濃水室的壓力;流量過低;運行情況隨時間變化的趨勢。
2、可以分析檢測儀表:電極常數;校驗;溫度補償;探頭接線;儀表接地;取樣流經探頭的流量太小而導致取樣很差。
3、可以分析進水以下參數:電導率;pH;CO2;硅含量;硬度;檢查反滲透設備情況;對水質作實驗室分析。
產水電導率大於進水電導率原因
1、一個或多個模塊電極反向:濃水室反向進入淡水室;立即停止EDI系統運,並檢測原因。
2、濃水室壓力大於淡水室壓力。
3、電流增加,產水水質反而下降原因
離子交換膜損,例如:熱損壞;機械損壞。
EDI模塊發生故障應及時分析及時檢測,避免對EDI的系統造成損壞進而產生更大的損失。
⑺ edi長期不用如何保養
可參考:純水設備保養知識
1、粗濾器
、粗濾器有哪些類型?
粗濾器按過濾水量的大小不同,最常見的有砂過濾器、無紡布濾芯過濾器和PP纖維濾芯過濾器等,無紡布濾芯和PP纖維濾芯的長度最常用的有10英寸和20英寸兩種,作為粗濾器用的濾芯孔徑一般為25u左右。
②、粗濾器有什麼作用?
粗濾器的作用是去除水中粒徑較大的懸浮雜質,避免這些雜質進入活性炭過濾器,覆蓋活性炭表面,使活性炭的毛細孔結構失去吸附水中雜質的能力。
③、為什麼要對粗濾器進行維護及如何維護?
粗濾器隨著截留固體雜質的增加阻力急劇上升,水流量逐步下降。若不及時處理,無法滿足後續處理工序的水流量要求。 對砂過濾器,壓力升高至一定程度後應及時反沖洗。反沖洗時有部分細砂被沖出過濾器,所以對砂過濾器就應定期補加砂,砂經多次反沖洗後,破碎程度增加,同時每次反沖洗不可能百分之百地沖干凈,砂中的剩餘的淤泥逐漸增多,砂層會出現「板結」現象,此時應更換砂層。對無紡布或PP纖維濾芯,濾孔被堵塞後一般很難用水沖干凈,須定期更換濾芯。
2、活性炭過濾器
①、活性炭過濾器有什麼作用?
活性炭過濾器的作用主要是去除大分子有機物、鐵氧化物、余氯。有機物、余氯、鐵氧化物易使離子交換樹脂中毒,而余氯、陽離子表面活性劑等不但會 使樹脂中毒,還會破壞膜結構,使反滲透膜失效。
②、為什麼要對活性炭過濾器進行維護
活性炭過濾器是利用活性炭所具有的豐富的毛細孔對水中的大分子有機物、余氯、鐵氧化物等膠體物進行吸附過濾,這種吸附是不可逆的,即活性炭有一 定的飽和吸附容量,一旦吸附飽和後,活性炭就失去吸附性能,無法用反沖洗的方法沖去污染物。另外,活性炭吸附有機物後,為細菌提供了豐富的營養,造成細菌在活性炭過濾器內的大量繁殖,水中的微生物含量經活性炭過濾後反而升高。
③、活性炭過濾器如何維護?
在活性炭吸附飽和之前,定期進行反沖洗,以沖出活性炭表面的大量菌團及懸 浮固體物。活性炭吸附飽和後,應馬上更換新的活性炭,否則會造成反滲透膜不可彌補的損傷。
3、軟水器
①、軟水器有什麼作用?
軟水器的作用是去除水中的鈣、鎂離子,使水得到軟化。如果沒有軟水器或軟水器失效,鈣、鎂鹽在反滲透膜表面因濃度急劇升高而形成難溶於水的沉澱物,
堵塞反滲透膜孔,使反滲透膜的使用壽命縮短。
②、為什麼要對軟水器進行維護及如何維護?
制純水用的軟水器一般用鈉型陽離子交換樹脂,樹脂交換飽和後用食鹽再生。使用幾年後樹脂破碎程度越來越嚴重,逐漸失去軟化能力。特別是當活性炭過
濾器吸附飽和而又未及時更換活性炭時,原水中的鐵、有機物、余氯會直接進入軟水器,使樹脂中毒,樹脂一旦中毒,就無法用再生的方式使其恢復活性。
當樹脂的工作交換容量明顯下降時,應更換樹脂。
4、反滲透是純水系統的核心部件,經預處理並達到反滲透膜要求的原水經反滲透
過濾後就成了純水,因此做好反滲透的維護工作是保證純水質量的關鍵。 反滲透膜在工作過程中膜表面的鹽濃度高於主體流體中的濃度,這種現象稱為 濃差極化。濃差極化的後果是使一些鹽在膜表面上沉澱,堵塞反滲透膜產水通 道,使膜的產水量下降。給水中的有機物不被連續沖掉或被定期沖洗掉時會在膜表面沉積,特別是一些表 面帶電荷的反滲透膜,會吸引帶電的有機物並將其粘滯在膜表面上。有機物在膜表面的沉積對膜造成的損害比鹽在膜表面的沉澱還要嚴重,有時這種損害是不可 逆轉的。膜表面有機物及各種鹽類的濃度都遠遠高於主體水流,這為細菌的繁殖提供了豐 富的營養。大量的微生物菌團不但堵塞產水通道,而且由於反滲透膜本身也是有 機物,會被微生物所分解,造成不可逆轉的損傷。水中氧化性物質如余氯等在膜表富集,富集至一定程度後超出膜本身所能承受的 濃度,反滲透膜就會被子氧化分解。 以上種種因素都使反滲透膜的產水量逐步下降,透鹽率逐步上升,純水質量下降。一般情況下,反滲透膜的使用壽命是三年。反滲透膜損壞後應及時更換,否則不但影響產水量,而且水質變差。
⑻ 那家EDI設備好一點
從專業的做工、豐富的系列、性能、價格、品牌及市場佔有率等綜合來版看,我認為權當屬西門子的Ionpure-CEDI系列了。其中LX-HI
CEDI膜堆可以進行即時巴氏高溫消毒(不需要緩慢升降溫),該系列符合FDA,不過較LX-Z系列更貴,使用壽命更短一些。http://www.ionpure.com.cn。
⑼ EDI 的系統組成是什麼
EDI系統由技術標准、EDI軟體及硬體、EDI技術通信網路3個要素組成。EDI裝置由增壓泵、電去離子(EDI)膜塊、直流穩壓電源、流量計、儀表等組成。
EDI系統是利用混合離子交換樹脂吸附給水中的陰、陽離子,同時被吸附的離子又在直流電壓的作用下,分別透過陰、陽離子交換膜而被去除的過程。電滲析器的一對電極之間,通常由陰膜,將一定數量的EDI單元間用網狀網隔開,構成濃室和淡室。
淡室水中陽離子向負極遷移透過陽膜,被濃室中的陰膜截留,水中陰離子向正極方向遷移陰膜,被濃室中的陽膜截留,淡水又在單元組兩端設置陰/陽離子分別穿過陰、陽離子交換膜進入濃水室而被去除。而通過濃水室的水將離子帶出系統,成為濃水。從而達到淡化、提純、濃縮或精製的目的。
(9)edi裝置的壽命擴展閱讀
EDI膜堆是EDI工作的核心,膜堆是由陰、陽離子交換膜,淡、濃水室隔板,離子交換樹脂和正負電極等按一定規則排列組合並夾緊所構成的單元。膜堆中淡 水室相當於一個混床,使用的離子交換樹脂是磺酸型陽樹脂和季胺型陰樹脂,淡水室中的樹脂必須裝填緊密。
EDI膜堆系統在每個單元內都有兩類不同的室,待除鹽的淡水室和收集所除去雜質離子的濃水室。淡水室中用混勻的陰、陽離子交換樹脂填滿,這些樹脂位於兩個膜之間,只允許陽離子透過的陽離子交換膜及只允許陰離子透過的陰離子交換膜。
⑽ EDI系統的系統運行
(1)EDI進水電導率的影響。在相同的操作電流下,隨著原水電導率的增加EDI對弱電解質的去除率減小,出水的電導率也增加。如果原水電導率低則離子的含量也低,而低濃度離子使得在淡室中樹脂和膜的表面上形成的電動勢梯度也大,導致水的解離程度增強,極限電流增大,產生的H+和OH-的數量較多,使填充在淡室中的陰、陽離子交換樹脂的再生效果良好。
(2)工作電壓-電流的影響。工作電流增大,產水水質不斷變好。但如果在增至最高點後再增加電流,由於水電離產生的H+和OH-離子量過多,除用於再生樹脂外,大量富餘離子充當載流離子導電,同時由於大量載流離子移動過程中發生積累和堵塞,甚至發生反擴散,結果使產水水質下降。
(3)濁度、污染指數(SDI)的影響。EDI組件產水通道內填充有離子交換樹脂,過高的濁度、污染指數會使通道堵塞,造成系統壓差上升,產水量下降。
(4)硬度的影響。如果EDI中進水的殘存硬度太高,會導致濃縮水通道的膜表面結垢,濃水流量下降,產水電阻率下降;影響產水水質,嚴重時會堵塞組件濃水和極水流道,導致組件因內部發熱而毀壞。
(5)TOC(總有機碳)的影響。進水中如果有機物含量過高,會造成樹脂和選擇透過性膜的有機污染,導致系統運行電壓上升,產水水質下降。同時也容易在濃縮水通道形成有機膠體,堵塞通道。
(6)進水中CO2的影響。進水中CO2生成的HCO3-是弱電解質,容易穿透離子交換樹脂層而造成產水水質下降。
(7)總陰離子含量(TEA)的影響。高的TEA將會降低EDI產水電阻率,或需要提高EDI運行電流,而過高的運行電流會導致系統電流增大,極水余氯濃度增大,對極膜壽命不利。
另外,進水溫度、pH值、SiO2以及氧化物亦對EDI系統運行有影響。 (1)進水電導率的控制。嚴格控制前處理過程中的電導率,使EDI進水電導率小於40μS/cm,可以保證出水電導率合格以及弱電解質的去除。
(2)工作電壓-電流的控制。系統工作時應選擇適當的工作電壓-電流。同時由於EDI凈水設備的電壓-電流曲線上存在一個極限電壓-電流點的位置,與進水水質、膜及樹脂的性能和膜對結構等因素有關[4]。為使一定量的水電離產生足夠量H+和OH-離子來再生一定量的離子交換樹脂,選定的EDI凈水設備的電壓-電流工作點必須大於極限電壓-電流點。
(3)進水CO2的控制。可在RO前加鹼調節pH,最大限度地去除CO2,也可用脫氣塔和脫氣膜去除CO2。
(4)進水硬度的控制。可結合除CO2,對RO進水進行軟化、加鹼;進水含鹽量高時,可結合除鹽增加一級RO或納濾。
(5)TOC的控制。結合其他指標要求,增加一級RO來滿足要求。
(6)濁度、污染指數的控制。濁度、污染指數是RO系統進水控制的主要指標之一,合格的RO出水一般都能滿足EDI的進水要求。
(7)Fe的控制。運行中控制EDI進水的Fe低於0.01
mg/L。如果樹脂已經發生了「中毒」,可以用酸溶液作復甦處理,效果比較好。
(8) EDI系統進水水質要求
綜合以上各方面的分析,對於EDI進水的水質要求如表所示,可以保證其出水指標達到電子行業半導體製造需要的高純水的要求。 EDI技術被制葯工業、微電子工業、發電工業和實驗室所普遍接受。在表面清洗、表面塗裝、電解工業和化工工業的應用也日趨廣泛。 YR-EDI 進水要求成 分 范 圍總可交換陽離子(包括Co2) < 25mg/L(以CaCo3計) PH值 5-9 硬度(CaCo3計) < 0.1 < 0.5 < 0.75 < 1.0 回收率 95% 90% 85% 80% 活性Sio2 < 0.5mg/L 總有機碳(TOC) < 0.5mg/L 游離氧 < 0.5mg/L YR-EDI 技術規格參 數 范 圍單個模塊流量 7.2-15GPM(1.6-3.4m3/h)正常回收率 80-95% 溫度 40-100°F(5to38°C)進口壓力 45-100psi(3.1-6.8Bar)輸入電壓 600VDC(最大)電耗 0.32-0.66KW.h/m3 外形尺寸 12"Wx24"Hx19"D 300mmWx610mmHx(90mmD