電泳離子交換樹脂
❶ 電泳分離四種核苷酸時,通常將緩沖液調到什麼ph
① 電泳分離4種核苷酸時應取pH3.5 的緩沖液,在該pH時,這4種單核苷酸之間所帶版負電荷差異較大,它權們都向正極移動,但移動的速度不同,依次為:UMP>GMP>AMP>CMP;
② 應取pH8.0,這樣可使核苷酸帶較多負電荷,利於吸附於陰離子交換樹脂柱。雖然pH 11.4時核苷酸帶有更多的負電荷,但pH過高對分離不利。
③ 當不考慮樹脂的非極性吸附時,根據核苷酸負電荷的多少來決定洗脫速度,則洗脫順序為CMP>AMP> GMP > UMP,但實際上核苷酸和聚苯乙烯陰離子交換樹脂之間存在著非極性吸附,嘌呤鹼基的非極性吸附是嘧啶鹼基的3倍。靜電吸附與非極性吸附共同作用的結果使洗脫順序為:CMP> AMP > UMP >GMP。
❷ 離子交換樹脂的問題
樹脂在未使用之前,可能會含有一定的雜質,當樹脂使用的時候,雜質也會隨著樹脂一起進入溶液中,影響產水的水質,嚴重可能會導致樹脂失效,為了防止這些有機物和無機的雜質影響出水質量效率,因此對新樹脂要進行預處理。還可以考慮在離子交換樹脂後,再加混床樹脂,如果要求達到18兆歐,可以使用拋光樹脂。
樹脂預處理的方法有哪些?1.對出廠很久的離子交換樹脂,需要用飽和食鹽浸泡處理,處理後沖洗至清,再進行再生。2.弱鹼樹脂預處理,將樹脂用溫水浸泡4-8小時後,用水洗至PH=6再用,2-4%氫氧化鈉浸泡4-8小時,用水洗至中性,待用。3.應用於醫葯、食品行業的樹脂,預處理最好先用乙醇浸泡,而後再用酸鹼進行交替處理,大量清水淋洗至中性待用。4.預處理中最後一次通過交換柱的是酸還是鹼,決定於使用時所要求的離子型式。5.為了保證所要求的離子型式的徹底轉換,所用的酸、鹼應是過量的。6.各種樹脂因品種、用途不一,預處理的方法也有區別,預處理時的酸鹼濃度及接觸時間等,可具體參考各型號樹脂的介紹。
預處理有哪些注意事項?
1.預處理時的用水必須使用干凈的水,一般使用除鹽水或者軟化水,因為如果使用生活用水清洗樹脂,生活用水中含有一定的污染物,這些污染物也會對樹脂造成污染,樹脂的預處理就沒有意義了,而且陰樹脂非常容易被污染。
2.預處理浸泡時,使用的液體體積一般是樹脂體積的兩倍,防止樹脂浸泡不完全的情況出現,也必須要使用干凈的水。
3.如果是小型制水制備,樹脂可以不用進行預處理,直接使用再生制水,使用2倍的再生劑,對樹脂進行再生,然後用干凈的水清洗樹脂就可以了。
詳情點擊:網頁鏈接
❸ 能不能用電泳的方法分離核酸,為什麼
① 電泳分離4種核苷酸時應取pH3.5 的緩沖液,在該pH時,這4種單核苷酸之間所帶負電荷差異較大,它們都向正極移動,但移動的速度不同,依次為:UMP>GMP>AMP>CMP;
② 應取pH8.0,這樣可使核苷酸帶較多負電荷,利於吸附於陰離子交換樹脂柱。雖然pH 11.4時核苷酸帶有更多的負電荷,但pH過高對分離不利。
③ 當不考慮樹脂的非極性吸附時,根據核苷酸負電荷的多少來決定洗脫速度,則洗脫順序為CMP>AMP> GMP > UMP,但實際上核苷酸和聚苯乙烯陰離子交換樹脂之間存在著非極性吸附,嘌呤鹼基的非極性吸附是嘧啶鹼基的3倍。靜電吸附與非極性吸附共同作用的結果使洗脫順序為:CMP> AMP > UMP >GMP。
❹ 試分析電滲析分離法與離子交換分離法和電泳分離法的區別與聯系
一類單元操作的傳質為各種均勻混合物的主要理論依據。早在公元前,人們會知道從礦石,這是最早的傳質應用中的分離過程的植物提取金屬和葯品的方法。在現代化工產業的發展過程中,質量分離過程中發揮了特別重要的作用。如:傳質分離,得到氮純氫氣體混合物,氨的工業生產,能夠;的原油被分離,以獲得各種燃料油,潤滑油和石化原料,這是基礎石化;類似地,無分離和純化,以獲得高純度的乙烯,丙烯,丁二烯,氯乙烯單體,就不可能生產出各種合成樹脂,合成橡膠,纖維和合成纖維。幾乎沒有一個化學生產過程中不需要的原料或反應產物分離和純化。用作傳質分離裝置參天塔是化工廠的最明顯的跡象,並在分離過程的傳質的應用不限於化學工業中,范圍例如核工業用各種分離方法提取核燃料,以及治療後的廢物。它可以在現代生活中可以說,從太空梭到海底,從生物的化學物質對環境的保護,從所述混合物分離分不開的。
通過物理和化學原理,在工業和質量分離的分離過程通常使用可分為平衡和速率分離分為兩類:由單獨的媒體的裝置
平衡分離方法(如熱,溶劑和吸附劑) ,以使所有相混合物體系的兩相系統中,然後在混合物中的成分是在這兩個階段的相位平衡是不等同於根據所取得的分離的分配。根據狀態可分為兩個階段:①氣體(蒸汽)的液體傳質過程,如蒸餾,吸收; ②液 - 液傳質過程,諸如萃取; ③氣(汽)固傳質過程,如吸附,色層分離,分離泵參數; ④液固傳質過程,如浸出,吸附,離子交換層析,分離和泵的其它參數。在這兩個階段的時候
平衡,您可以使用平衡的比例(或分配系數)文的關系,組分濃度,說:
其中yi和喜表示分兩期組分i的濃度。對於命名為x和y相,根據氣體或稱為相汽相,萃取液萃取為y相的吸收,蒸餾的習慣。在一般情況下,平衡比取決於兩相的組合物的溫度和壓力線的特性。 Ki和KJ的比例的兩種組分的i和j平衡比稱為分離因子αij:
在一些傳質分離的過程中,該分離因子往往有專門的名稱。例如:被稱為蒸餾的相對揮發;被稱為選擇性提取系數。平衡一般比文價值觀的分子較大,所以αij大於一。只要這兩種組分的平衡比是不相等的(即αij≠1),可以通過平衡分離方法來分離,αij越大越容易分離。均衡的比例,最系統的分離系數並不大,平衡,可實現一次接觸分離是非常有限的,你需要採取行動,以提高多級逆流分離。以適應各種系統和操作條件和分離的要求,以提供多種不同類型的傳質設備中的相應的使用。下,在分離過程中的驅動力
率(密度差,壓力差,溫度差,像差量的電勢)的效果,有時具有選擇性滲透膜,利用各成分的擴散率,實現組間差異的分離點。原料及這些方法的加工產品通常屬於相同的相位,只在該組合物的差異。的分離方法的速率可分為:①膜分離,如超濾,反滲透,滲析和電滲析。 ②場分離,如電泳,熱擴散,超速離心分離。
差分分離膜分離和場:前者與分離兩種流體的膜,後者不被挪用。不同類型的分離過程率,分別使用不同的設備和不同的方法來設計的計算和操作控制。
Outlook和質量分離過程蒸餾,吸附,萃取,有些單位已與經營的非常廣泛的悠久歷史,並進行了大量的研究,積累了豐富的運作經驗和信息。但是,進一步研究這些過程的機理和傳質規律,高效傳質設備,研究開發和掌握他們的放大規律,改進和其他設備的設計計算方法,仍然有許多工作要做。能耗和大規模分離過程,並且常常構成了單位能耗的主要部分,因此降低了能源消耗和質量分離的過程中,引起了普遍的關注。膜分離是一個新的領域,一類分離,稀溶液處理的分離,生化產品,節約能源,不污染產品,已顯示出其優越性。研究和開發新的分離方法的開發,在組合使用,以提高工作效率,以及利用化學反應的要被分離的各種分離方法,是非常值得關注的發展方向。
❺ 有人說在水處理行業中、有一種設施叫EDI,請問它對設備起到什麼作用
EDI技術可以用來代替傳統的混床離子交換樹脂來製取純水或超純水,與混床不同專的是EDI淡水室隔板中填充的離屬子交換樹脂在工作時能夠自動獲得再生而不會飽和,不需要化學再生,從而使產水程度及出水水質非常穩定。除此之外,EDI技術還具有很多優點,比如可以不間斷的出水,再生過程無需酸鹼試劑,並且可以做到無人看管的全自動運行裝置。
❻ 陽陰離子交換樹脂在水處理中應用范圍
像我電廠用在兩個地方,1.除鹽區域,用於凝汽器補水。2.凝結水精處理,用於把凝汽器凝結的水凈化。
❼ 在什麼pH時電泳,分離效果最好
①
電泳分離4種核苷酸時應取ph3.5
的緩沖液,在該ph時,這4種單核苷酸之間所帶負電荷差異較大,它們都向正極移動,但移動的速度不同,依次為:ump>gmp>amp>cmp;
②
應取ph8.0,這樣可使核苷酸帶較多負電荷,利於吸附於陰離子交換樹脂柱。雖然ph
11.4時核苷酸帶有更多的負電荷,但ph過高對分離不利。
③
當不考慮樹脂的非極性吸附時,根據核苷酸負電荷的多少來決定洗脫速度,則洗脫順序為cmp>amp>
gmp
>
ump,但實際上核苷酸和聚苯乙烯陰離子交換樹脂之間存在著非極性吸附,嘌呤鹼基的非極性吸附是嘧啶鹼基的3倍。靜電吸附與非極性吸附共同作用的結果使洗脫順序為:cmp>
amp
>
ump
>gmp。
❽ 電泳膜和EDI膜有區別嗎
不是一碼事。
EDI中文叫工業用電去離子模塊,利用電流對反滲透(版RO)產水進行去離子和拋光處理。EDI的產水屬權於超純水,適用於當今對於水質要求最為嚴苛的行業。
EDI 利用傳統的離子交換樹脂將水中的污染離子去除,其最大的優點在於:EDI 技術採用直流電迫使污染離子持續的從進水中遷移出來,並穿過離子床和離子交換膜進入濃水室。同時直流電能夠將水分子電離成氫離子和氫氧根離子,持續的對樹脂進行再生。因此 EDI 可以連續、可預知的生產出等同甚至優於混床出水的高純水。以下是GE EDI模塊的原理圖
以上內容僅對於GE E-CELL EDI模塊。
GE總代北京盛大維新為您解答,希望能幫助到您
❾ 離子交換樹脂的選擇原則是什麼
離子交換樹脂的吸附交換原理:
離子交換樹脂本身的離版子一般是低價離子,所以離子交換樹脂在與權水接觸時,根據樹脂的吸附選擇性,會將水中的高價離子吸附,將低價離子釋放,而這些被釋放的低價離子會與水中的其他離子結合,成為無害的物質,而在實際使用的過程中,經常都是將樹脂轉化為其他的離子形式進行使用,比如一般陽離子交換樹脂會轉化為鈉型樹脂再進行使用,從而達到軟化水的目的。
離子交換樹脂的吸附順序:
1.離子交換樹脂對陽離子的吸附順序:
Fe3+ > Al3+ > Pb2+ > Ca2+ > Mg2+ > K+ > Na+ > H+
2.強鹼性陰離子交換樹脂對陰離子的吸附順序:
SO42- > NO3- > Cl- > HCO3- > OH-
3.弱鹼性陰離子交換樹脂對陰離子的吸附順序:
OH- > 檸檬酸根3- > SO42- > 酒石酸根2- >草酸根2- > PO43- >NO2- > Cl- >醋酸根- > HCO3-
詳情點擊:離子交換樹脂的選擇性