污水處理科普題目
㈠ 科學-污水處理方法
、連續循環曝氣系統(CCAS)
A、CCAS工藝簡介
CCAS工藝,即連續循環曝氣系統工藝(Continuous Cycle Aeration System),是一種連續進水式SBR曝氣系統。這種工藝是在SBR(Sequencing Batch Reactor,序批式處理法)的基礎上改進而成。SBR工藝早於1914年即研究開發成功,但由於人工操作管理太煩瑣、監測手段落後及曝氣器易堵塞等問題而難以在大型污水處理廠中推廣應用。SBR工藝曾被普遍認為適用於小規模污水處理廠。進入60年代後,自動控制技術和監測技術有了飛速發展,新型不堵塞的微孔曝氣器也研製成功,為廣泛採用間歇式處理法創造了條件。1968年澳大利亞的新南威爾士大學與美國ABJ公司合作開發了「採用間歇反應器體系的連續進水,周期排水,延時曝氣好氧活性污泥工藝」。1986年美國國家環保局正式承認CCAS工藝屬於革新代用技術(I/A),成為目前最先進的電腦控制的生物除磷、脫氮處理工藝。
CCAS工藝對污水預處理要求不高,只設間隙15mm的機械格柵和沉砂池。生物處理核心是CCAS反應池,除磷、脫氮、降解有機物及懸浮物等功能均在該池內完成,出水可達標排放。
經預處理的污水連續不斷地進入反應池前部的預反應池,在該區內污水中的大部分可溶性BOD被活性污泥微生物吸附,並一起從主、預反應區隔牆下部的孔眼以低流速(0.03-0.05m/min)進入反應區。在主反應區內依照「曝氣(Aeration)、閑置(Idle)、沉澱(Settle)、排水(Decant)」程序周期運行,使污水在「好氧-缺氧」的反復中完成去碳、脫氮,和在「好氧-厭氧」的反復中完成除磷。各過程的歷時和相應設備的運行均按事先編制,並可調整的程序,由計算機集中自控。
CCAS工藝的獨特結構和運行模式使其在工藝上具有獨特的優勢:
(1)曝氣時,污水和污泥處於完全理想混合狀態,保證了BOD、COD的去除率,去除率高達95%。
(2)「好氧-缺氧」及「好氧-厭氧」的反復運行模式強化了磷的吸收和硝化-反硝化作用,使氮、磷去除率達80%以上,保證了出水指標合格。
(3)沉澱時,整個CCAS反應池處於完全理想沉澱狀態,使出水懸浮物(SS)極低,低的SS值也保證了磷的去除效果。
CCAS工藝的缺點是各池子同時間歇運行,人工控制幾乎不可能,全賴電腦控制,對處理廠的管理人員素質要求很高,對設計、培訓、安裝、調試等工作要求較嚴格。
B、國內外城市污水處理廠發展概況
水是經濟發展和社會可持續發展的一個重要因素。隨著城市規模的不斷擴大和人口的增加,水環境污染成了一大難題。城市污水是目前江河湖泊水域污染的重要原因,是制約許多城市可持續發展的主要原因之一。「環境保護」是我國的基本國策,中國可持續發展的戰略與對策制定的2000年治理目標,要求城市污水集中處理率達20%。目前,我國正處於城市污水處理事業的大發展時期,尤其隨著國家西部大開發戰略的實施,中國中西部環境與生態保護已被提上首要議事日程。
城市生活污水處理自200年前工業革命以來,越來越受到人們的重視。城市污水處理率已成為一個地區文明與否的一個重要標志。近200年來,城市污水處理已從原始的自然處理、簡單的一級處理發展到利用各種先進技術、深度處理污水,並回用。處理工藝也從傳統活性污泥法、氧化溝工藝發展到A/O、A2/O、AB、SBR(包括CCAS工藝)等多種工藝,以達到不同的出水要求。我國城市污水處理相對於國外發達國家、起步較晚,目前城市污水處理率只有6.7%。在我們大力引起國外先進技術、設備和經驗的同時,必須結合我國發展,尤其是當地實際情況,探索適合我國實際的城市污水處理系統。
http://chinasludge.com/data/2006/0107/article_466.htm
太多了 自己看吧
㈡ 關於污水處理文章的題目有沒有人了解知道的啊,在線求大神科普,超急的那種!!拜託拜託🙏
你去知網查查看,或者你們學校自己的電子圖書館里,這種課題研究每年都會有很多文章發表的
㈢ 冷門科普:古人是怎麼處理污水的
下水道是一種城市公共設施,早在古羅馬時期就有該設備出現。現代下水道的雛形源於拿破崙統治時期的法國巴黎,至今巴黎仍擁有世界上最大的城市下水道系統。一般說來,下水道系統是用於收集和排放城市產生的生活廢水以及工業生產上所產生的工業廢水。
我國古代在城市建設中也講究一個城市的供水與排水系統的規劃。我國古代有關下水道的名稱有好幾種,諸如溝、竇、續、石渠、埔墁等。所用的材料和方法也有多種,有用陶管鋪設,有用石塊修造,或用磚塊砌成。據《考工記》記載:「竇,其崇三尺」,表明當時的下水道已有3尺高度。據《左傳》"成公六年"(公元前585年)記載:「土厚水深,居之不疾,有汾澮以流其惡」(這里的惡指污穢),可見當時人民已發現積存污水今致人疾病,要排除污水以保障人體健康。後來的記載更為明朗,如宋代《養生類纂》引《魯般宅經》說:「廳前天井停水不出主病患」;同書又引《瑣碎錄》說:「溝渠通浚,屋字潔凈無穢氣,不生瘟疫病」。根據這些記載,說明古人對污水處理,基本上是從衛生學角度來考慮的。
隋唐時代,我國封建文化高度繁榮,當時的城市建設和衛生設施,較前代更加進步。唐代的長安,為當時規模最大的都城,整個城市的設計布局,合理整齊,皇宮、百官的衙署、住宅、市場都分區設立。當時,把外廓城規整地劃分為108個坊(居民區),王室所佔的宮城和國家機構所在的皇城,位於北部正中,整個長安城不但街道寬敞,兩旁還栽種整齊的樹木,街道兩側普遍建有排水溝。從發掘到的朱雀街的排水溝來看,溝寬3.3米,深達2.3米。考古工作者又在東西兩市的巷道下面,發現有磚砌的排水暗溝,這些暗溝最後都通向大街兩側的明溝。唐代長安的城市規劃及衛生設施,在世界古文明史上無疑是領先的。
明、清都城北京的設計,即是參照唐代長安的城市規劃。據清昭漣《哨亭雜錄》記載,明宮廷內下水道工程更為壯大,或用生銅鑄成,或用巨石砌成,管徑粗達數尺。這在當時世界范圍來說,也屬少有的衛生工程。
㈣ 圍繞「環境污染與科學發展觀」這一主題,自擬題目,自選角度,寫一篇議論文,字數在10
轉變經濟發展方式 大力發展循環經濟
水污染防治是實現經濟、社會與環境保護和諧協調發展的重要組成部分,關繫到國家現代化建設和廣大人民群眾的切身利益。當前我國水污染形勢十分嚴峻,防治水污染任務非常艱巨,為了確保人民喝上干凈的水,保障經濟、社會和環境和諧協調發展,我們必須轉變傳統的經濟增長發展方式,走循環經濟之路。用循環經濟的發展理念,探尋防治水污染的措施,保護水資源永續利用,讓人民喝上干凈的水。
傳統的粗放型經濟增長方式是我國水污染嚴重產生的根本原因面對水污染的嚴峻現實,要求我們積極尋找其產生的原因和對策。我國水污染嚴重,究其原因,既有硬體的問題,又有軟體的問題;既有經濟實力不足和防治設施落後問題;也有認識跟不上和管理落後的問題;既有經濟增長發展模式的問題,也有政策上的弊端和法制不完備的問題。而其中最根本的原因我認為是受傳統的粗放型經濟增長發展模式的影響和束縛。(1)長期以來,把傳統的依賴資源消耗的單向流動的線形增長經濟發展模式來發展經濟,以資源高開采——高消耗——高污染來帶動經濟的高增長,結果導致水資源的高度破壞,造成水污染嚴重後果;(2)受傳統粗放型經濟增長模式的影響,在工業經濟增長發展中不是以提高廢棄物的最大利用率,提高水的資源化程度來減少污水的排放,而是把資源持續不斷地變成廢棄物來實現經濟的數量型增長。結果增加污水排放總量,加劇水的污染。(3)錯誤地將經濟建設與環境保護對立起來,在經濟發展中先經濟後環保;先污染後治理,結果污水處理設施缺乏穩定的資金來源,污水處理設施嚴重不足,污水處理率低,中水不能很好的回收利用,污水綜合利用差,水污染不能有效控制。
解決水污染防治的根本出路在於發展循環經濟解決水污染防治,保護好水資源永續利用必須轉變傳統的粗放型經濟增長發展模式,走以最有效利用資源和保護環境為基礎的循環經濟發展之路。循環經濟的核心是最有效利用資源,在經濟發展中保護環境。發展循環經濟是實現生態與環境污染治理目標的決定性舉措。我們必須很好地學習、掌握循環經濟,運用循環經濟的理念去探索水污染防治的措施。
用循環經濟的發展理念探索水污染防治措施胡錦濤總書記在2004年中央人口資源環境工作座談會上明確指示「要加快轉變經濟增長方式,將循環經濟的發展理念貫穿到區域經濟發展,城鄉建設和產品生產中,使資源得到最有效利用,最大限度的減少廢棄物排放,逐步使生態步入良性循環,努力建設環境保護模範城市、生態示範區、生態省。」這些重要指示為我們發展循環經濟,搞好水污染防治,保護環境指明了方向。走最有效利用資源和保護環境為基礎的循環經濟之路,運用循環經濟的發展理念,探索水污染防治措施是保護水資源,做好經濟與環境保護可持續發展,全面建設小康社會的必然選擇。
1、用循環經濟的發展理念,推進企業清潔生產,發展以清潔生產為主的生態產業。清潔生產是一種對生產原料、生產過程和產品售後服務全過程進行預防控制達到資源利用率最高,環境污染最少的科學方法。它既著眼於減輕水污染,保護環境,又重視節約水資源,發展經濟。同時它實施生產全過程的控制,不斷採取改進設計,使用清潔的能源和原料,採用先進的工藝技術與設備,改善管理,綜合利用等措施,從源頭削減污染,提高資源利用率,減少或者避免生產、服務和產品使用過程中污染物的產生和排放,力求做到資源的最有效利用和廢棄物(污水)的最小排放。以達到經濟、社會與生態的和諧統一和可持續發展。
2、按照循環經濟的理念,建立由共生企業群組成生態工業園區,形成循環經濟產業鏈,促進經濟社會與環境保護的可持續發展。在工業園區內,根據生態學原理組織生產,通過企業間的物質、能量和信息集成,形成企業間的工業代謝和共生關系,使上游企業的「廢料」成為下游的原料,實現資源利用最大化。污水集中綜合處理,中水四用,實現廢水零排放,大大提高水污染防治能力,保護水資源永續利用,保護環境。
3、在一些區域流域積極開展循環經濟的試點工作,用循環經濟的發展理念,探索區域流域水污染防治的措施,建立生態補償機制,防治水污染。
三、以循環經濟觀點防治水污染的具體措施
當前我國各區域的水污染形勢有了新的發展。不僅有工業點源污染、城市污染,農業面源污染和農村污染也日益加劇,江河湖庫的內源污染迅速上升,水生態系統嚴重蛻化,自我修復能力大大降低。
沒有水資源保障,循環經濟將無法發展。必須按流域保護水資源。區域水污染防治的創新考慮的出發點是:從大系統的觀念出發,各部門協作,整體規劃,防治並重,以防為主。通過產業結構調整、清潔生產、資源循環,把污染擋在上游;與此同時,在工業和農業,城市和農村,陸地和水體,生活污水、工業廢水和農業污染綜合治理;把處理後的中水有效地回收利用,形成水資源的循環利用;在可能的條件下,大力稀釋、清淤,加強水生態系統建設。
1.建立負國內生產總值參照體系,以產業結構調整為防污主線
有條件的區域可以先行建立水污染的負國內生產總值參照體系,對產值較高,表面經濟效益較好的產業和企業,按循環經濟的原則規范。促進發展循環經濟的產業結構調整,使企業真正產生循環經濟的效益;不能保護由國家和地方政府投入治污,表面、片面上有產值能贏利的企業。初步、簡單地統計負國內生產總值約等於國家、地方政府治污的投入。
2.建立行業萬元國內生產總值用水定額指標體系,真正實現污水減量化
目前我國萬元國內生產總值(GDP)的用水量是世界平均水平的4倍,是美國的8倍,是日本的25倍;而《21世紀初期首都水資源可持續利用規劃》中有的地區是全國平均水平的3倍,也就是說,是日本的75倍!而我國的人均水資源量是世界平均水平的1/4。如此大的耗水量,如何支撐得了?如此多的污水,如何處理得了?只有使行業萬元國內生產總值用水定額進入國家和區域的國民經濟統計體系,有了法定的約束,才能真正實現污水減量化。
值得特別注意的是,我國加入世貿組織以後,如果仍然允許如此之高的耗水量存在,勢必形成高耗水、高污染的產業向我國轉移,污水量進一步增加,使我國的水污染形勢進一步惡化,大大降低國際競爭能力。
3.以飲用水源地水質標準的制定帶動治污標準的提高,保證人民身體健康,提高人民生活水平
目前還沒有從人體健康出發的飲用水水源地水質標准,應由水利、衛生、建設和環保部門聯合起來,抓緊制定,以此嚴格要求,提高污水處理標准,從源頭保證自來水達標,讓居民飲用水和生活用水的質量有可靠的保證,生活質量有所改善。飲用水源地水質狀況應是區域全面建設小康社會的重要指標。上海自來水市北公司已於2001年2月按國際慣例向用戶公布年度水質,應在其他特大城市推廣。
4.清淤、輸水加強水生態系統建設
水利部門要利用自己獨特的優勢,通過水利工程手段進行河湖本底清淤,不要先污染後治理,把二次污染即內源污染消除在上升階段。
同時,要在排污總量超標的枯水時段,通過水資源的統一管理調水輸水,稀釋污染,使得水體達標。
以上兩方面都是水生態系統建設,即整治已蛻變的水生態系統和防止對水生態平衡的大沖擊,從而保持一個可以承載人類生存環境的良好水生態系統。
5.將中水回收利用納入區域循環經濟體系
目前我國的大多數污水處理廠沒有正常運行,生產效率低下,如此也造成沒能真正實現中水回收利用,考慮建立良性循環的水生態系統的需要,應將中水回收利用納入區域循環經濟體系。中水回收利用的辦法:一是在水費中徵收污水處理費,上交作為地方政府污水治理和中水回收利用管路的投入。二是由污水處理廠出售中水給市政環境部門、企業和用戶,作為污水處理廠的成本和利潤。三是地方政府制定一系列鼓勵中水回收利用的政策,鼓勵中水產業。
6.在特定區域試點節水型產業的循環經濟
太湖流域和珠江三角洲等地區人均國內生產總值超過3000美元,有投入能力;水污染嚴重,全面治污迫在眉睫的地區,應按新思路制定一個全面的水資源規劃。先建立污染負國內生產總值統計參照指標體系和行業萬元國內生產總值用水定額指標體系,用這兩個指標體系約束、限制以至禁止高耗水、高污染企業,進行產業結構調整,控制點源污染。做到生活污水截流,工業廢水減排,農業污染控制,引水清淤修復水生態系統,建設節水防污型社會。以上述兩個統計指標體系為標准,在上述地區以流域為單元,根據水資源狀況提出納污總量,按地區和企業分解,實行總量控制,保證地區經濟發展;劃分水功能區,實行區域控制,鼓勵效益高、污染少的產業、企業和農戶,控制面源污染;進行系統分析,科學計算來確定排污口,監測地下水質,充分利用水體自凈能力,保證水質污染積累不再增加;在有條件的情況下,湖庫清淤,河道疏浚,採取工程和生物措施控制內源污染。在此基礎上,盡可能利用高新技術集中治污,促進中水回收利用。
在全面防治污染方面貫徹循環經濟的理念,是水資源保護的新思路,是以水資源可持續利用保障可持續發展,全面建設小康社會的當務之急。
㈤ 污水處理入門必看的幾個關鍵點
1COD、CODcr、BOD、BOD5差別
B/C比是BOD5比CODcr,B不是BOD。以實例來看,如好氧進水CODcr=1000mg/L,BOD5=400 mg/L,出水CODcr=100 mg/L,BOD5=20 mg/L。那麼CODcr共去除900 mg/L,BOD5共去除不到400 mg/L。900-380 mg/L的CODcr怎麼去除的?
1))BOD-BOD5那一部分被生化;
2)污泥吸附(低負荷下要忽略些) 這個BOD5還是BOD都很復雜,出口的一般不是進水中的那些,而是基質、菌類的相關產物;詳細的說比較復雜,理解一二就可以,而且最主要的是認定不可降解的不會發生變化,其餘的可能都是變的。不可生物降解的是沒有變化的,除去吸附等等之類的作用,無論是厭氧還是好氧SMP都是一樣的。
一般情況,污水處理的CODcr可以達標,BOD5是都達標的。
2COD檢測方法的差別
嚴格規范的蒸餾法和快速消解法,以前者為准。操作中為了簡便想採取後者怎麼辦?取同濃度范圍內的實測水樣做兩種方法的對比試驗,找到二者的近似關系。
偷懶法:同濃度范圍內實測水樣,蒸餾一小時和蒸餾兩小時,對比試驗,找關系。
3關於溶解氧
好氧池中的溶解氧是曝氣設備供氧與有機物或無機物被活性微生物氧化或自然氧化兩種過程達到平衡之後的結果。或者可以說成曝氣供氧,發生生化或化學反應和散失兩個過程的殘余。所以曝氣池,控制溶氧2.0mg/L,只要設計與實際不差太多,那麼OK。
但是如果沒有持續的供氧,比如曝氣調節池的出水不在有氧氣供入(跌水曝氣之類的忽略),而有機物含量有比較高,碰巧還遇上可以利用氧的大量微生物(比如UASB污泥中的兼性細菌或者A池中的好氧細菌),那麼殘留的那一個左右的DO顯然不是成百上千的COD的對手。
4關於厭氧
厭氧是什麼?是UASB?是A2/O一部分?是水解酸化?是消化池?其實厭氧是一種生化反應的條件,它不是厭氧工藝,是厭氧的工藝。為什麼談到這個問題,歸根是有眾多諸如:XX厭氧和XX厭氧有什麼差異,溶解氧應該控制多少的問題;在這之前則需要搞明白厭氧這個條件是針對誰的。厭氧反應,主體是有機物逐步轉化為甲烷和CO2的過程,注意這里的「逐步」。
再者,很多人又說了厭氧反應器就得與空氣隔絕,所以要進行封頂。對此,想說以下幾點:
說厭氧反應器,明顯沒搞懂厭氧的是什麼?厭氧的是反應器?是水?還是微生物?
與空氣隔絕,這個更可悲了,姑且不說他分不清水中的溶解氧和微生物環境的溶解氧,單是溶解氧與空氣中的氧就搞不清楚。我們不妨回顧一下曝氣設備的氧利用率,穿孔管3-5%,曝氣軟管8-12%,曝氣頭10-20%。如果空氣向水中溶氧那麼無敵,那麼我們對出售曝氣頭的該如何處置?
對於封頂並不反對,厭氧消化池和EGSB等厭氧反應器都是利用封頂去收集沼氣,(當然UASB和IC不是,靠三分)還可以減少臭味擴散。不過把封頂放在廣泛使用的UASB上並且以此來隔絕空氣,實在是有些搞笑。
1)水解酸化純粹的控制到產甲烷之前,是不可能的,也就是說,或多或少總有一點甲烷產生;而且厭氧過程產生一點氫氣也很正常,有聽說過產氫產乙酸過程吧。所以,水解酸化池表面浮起的一個個泡泡,也許就是你想找的原因之一。
2)細菌不管是什麼樣的,總有繁殖下一代的職責,水解酸化菌群也是,它們或多或少的總要利用有機物合成點細胞物質。
3)進水SS如果量很大,會被水解酸化污泥吸附相當量的一部分,這個對COD的影響不可忽略,有時甚至十分巨大。
1)水解+好氧工藝,處理的廢水濃度確實常見的要低一些,因為水解並不能提供較有力的COD消解能力,當然這個工藝相比較直接好氧而言,更多的可以用在進水COD1k-2k之間的項目,這種水質進厭氧節約的曝氣能耗和提升水用的動力能耗差不多,厭氧降解程度上優勢也不明顯,但是直接進好氧濃度又偏高。因此常搞出水解+好氧,利用水解過程微量講解和吸附去除COD來減少好氧的負擔。當然這是在不討論改善生化性方面的前提下。
2)假如水解酸化+UASB+氧化就相當於兩相厭氧,有文章說「厭氧發酵產生沼氣過程可分為水解階段、酸化階段、乙酸化階段和甲烷階段等四個階段。水解池(水解池進行的就是水解酸化反應吧)是把反應控制在第二階段完成之前,不進入第三階段。」
下面再簡單科普下厭氧的工藝如何簡單識記:
A、厭氧接觸:消化池+厭氧沉澱池+厭氧污泥迴流系統,這個與好氧工藝中的接觸氧化沒有關系,莫聯想到填料上。
B、UASB:上流式厭氧污泥床反應器,污水從下而上穿過污泥床體,但是有很多UASB的布水器是位於池頂的,也不是UASB就沒有迴流。
C、UBF:就是UASB+AF,形象點說UASB上面再加上填料層。
D、EGSB:UASB拉高,做上迴流,上流速度比UASB高很多,要力圖控制污泥顆粒化。
E、IC:甭管有沒有外迴流(水泵迴流),有內迴流就行。
F、ABR:上下折流板。
有關厭氧產甲烷去除水中有機物的原理在這里也多說幾句。
先是「厭氧產甲烷」,厭氧過程,如果我們不談釋放磷,常見的是水中有機物厭氧發酵的過程。有機物好氧發酵的過程,大家都清楚是一個氧化還原反應,進入水中的氧氣作為氧化劑,氧化水中的有機污染物變成CO2和H2O,使得(還原性的)COD得以氧化去除。所以很多人理所應當的認為,厭氧是個還原反應嘍。
這就有必要讓抱有該觀點的朋友先回憶一下初中化學,氧化反應和還原反應,可以剝離開嗎?
顯然是不能的,厭氧也是,在進行到產甲烷之前的厭氧發酵過程,基本上是有機物自身相互的氧化和還原(這話說得並不嚴謹,但是方便理解),也就是說有機物本身是還原性的,它反應之後變成一部分還原性更強,一部分還原性相對弱一些的兩種有機物,而這總體上相抵消。所以如果厭氧發酵未到產甲烷地步,COD變化可以忽略不計(這就是水解酸化COD去除率低下的原因)。
當這個過程進行的非常徹底時,產物逐漸轉化為CO2和CH4,主要體現還原性也就是導致水中COD的甲烷因為溶解度低,脫離水相,這是產甲烷過程去除有機物COD的原因。
5
關於水解酸化
水解酸化的目的是改善生化性,為下一個生化處理單元服務,其評價指標有酸化度、pH、B/C、COD去除率等,其中COD去除率是裡面可靠性最差的。
對於在上一環節說到的「水解酸化COD去除率低下」,有水友可能要反駁說「我的水解酸化去除率不低下呢」;對此,澄清下這一水解酸化去除率是從哪裡來的。
6
工藝中的兩級與兩相
眾所周知,不同的水質決定不同的工藝。產甲烷是厭氧去除水中有機物的關鍵因素,兩級和兩相的差別也就在第一個厭氧反應器是否產甲烷上;如果第一個產甲烷,第二個有機負荷勢必要小很多,這是問題的關鍵。
一般來說,兩級厭氧適應的水質是較高濃度的廢水,它的生化性並不很差,第一級通過沉降和發酵產氣降低第二級的負荷。兩相厭氧,一是主要針對難生化降解廢水,靠第一相改善生化性,二是針對硫酸鹽廢水,靠第一相進行硫酸鹽還原,然後去除硫化物再進第二相產甲烷,三是針對易酸化廢水易波動廢水,放在前面徹底酸化掉以穩定pH。
如酒精項目常用兩級,那些幾萬以上的,如果生化性不差並且水量不小,個人建議也用兩級,但是控制其實並不簡單,尤其是第一級在高濃度、高VFA下運行。生化性較差用兩相的就很多了,其實生化性不差的也常常用兩相。
有的工藝是用水解酸化+氧化(處理COD較低的廢水),有的是UASB+氧化(一相厭氧,處理COD高的廢水),有的是水解酸化+UASB+氧化(就相當於兩相厭氧);對此分析如下:
那麼水解酸化產生的應該是有機酸吧,那乙酸化階段在哪發生的?兩相厭氧的產酸相產的是什麼酸?它的乙酸化階段又是在哪發生的呢?
產乙酸這個詞和產乙酸階段是應該分開的,因為在產酸階段就會產生一部分乙酸了但並不一定作為過程的主體,這要看廢水的有機物組成。產乙酸階段,這裡麵包含了兩類反應,一是更長碳鏈的VFA以及乳酸、丙酮酸和醇類等分解產生乙酸,二是同型產乙酸菌,利用CO2和H2的無機組合進行產乙酸。兩相的水解酸化過程中產生的有機酸,有可能是甲酸、乙酸、丙酸、丁酸…以及乳酸中的任一種,也有可能是未完全降解的長鏈脂肪酸。
個人認為在實際工程中,兩相的分界線並不徹底分明,水解酸化相先後延伸至產乙酸甚至少量產甲烷都是經常遇見的。至於產甲烷相,它就沒有不含水解酸化這兩個過程的時候,產甲烷相四個過程都會存在,只不過前兩個過程被之前的相分擔了一部分。乙酸化發生在哪裡,這個過程應該大部分在後一相,兩相的定義並不是「水解酸化階段+乙酸化產甲烷階段」,只要在流程上將其主體分開即可叫做兩相,至於分界線模糊,沒有關系。
基於水解和酸化兩個過程無法分開的事實,三相取決於產乙酸和產甲烷是否可以分開。
對於三相分離器的工作原理大致可表述為:氣液固三相在氣體擾動和液體升流的作用下從下方進入三相分離器;污泥(固)撞擊在三相分離器上,上面吸附的沼氣氣泡釋放出來;沼氣氣體被三角形集氣罩收集;脫離氣體的泥水(固液相)穿過三相分離器集氣罩之間的縫隙,到達沉澱區;污泥(固)在沒有氣體擾動的條件下沉澱,落回三相分離器下方。核心是氣體被收集和污泥沉澱。
㈥ 污水處理改造問題怎樣實施科學的環保管理
保護環境已經成為我國經濟持續發展的基本國策,因此,廢水處理應符合我國制定的環境保護法規和方針政策。在環保的規劃設計中,必須把生產觀點和生態觀念、環境保護結合起來統籌考慮,把治理廢水和改進生產工藝、實行清潔生產結合起來統籌考慮。通過系統的分析和考證,尋求比較合理的治理方案。環保管理的主要原則歸納起來有以下幾點:
(1)淘汰不合理的產品
對於一些傳統的、低產值的、廢水治理難度極大的垃圾產品應該下決心用高產值的、技術含量高的產品置換掉。如果某產品的年利潤還抵不上每年用於廢水的治理成本,這樣的產品應下決心停止生產,換上污染少且易於治理達標的產品。
(2)加強管理,減少污染
企業管理也是防治污染的一個重要因素。如設備的跑、冒、滴、漏;不按操作規程辦事造成的生產事故或產品報廢等導致的大量高濃度廢水的產生;用大量的水沖洗設備與地面,造成廢水量的增加;冷卻水與生產廢水未做到「清濁分流」,都會增加廢水的水量和廢水的治理難度。
(3)建立區域性的小型污水處理廠
對工廠比較集中的地方,不必套用「誰污染,誰治理」的原則,而應該加強各企業間的聯系,統籌考慮污染的治理對策,若有必要和可能,可將各個工廠的 廢水集中處理,建立統一的污水處理廠,實行「誰污染,誰出錢」的治理方法。因為各個工廠由於產品的不同,廢水的水質也不是一樣的,如有的工廠的廢水是酸性的,而有的工廠的廢水卻是鹼性的,放在一起處理可以減少中和葯劑的處理費用;有的工廠排出的高鹽分低COD的廢水,而有的工廠的廢水卻是高濃度易生物降解的,如果單獨處理的話,都是治理難度很大的廢水,但如果放在一起進行生化處理,由於水質條件的改善,不僅可以減少廢水的處理難度,而且可以提高處理效率。
(4)提高水的循環利用率
為了減少廢水水量,首先應該在廢水產生的源頭上多做文章。如可以考慮水的循環利用、或多次重復利用,提高水的循環利用率,盡量減少外排水量。在國外,某些先進企業水的循環利用率已經達到96%以上,而上海生產企業水的循環利用率還停留在20-30%的較低水平,尚有很大的潛力可以挖掘。提高生產用水的循環利用率不僅可以減輕環境污染,而且還能減少新鮮水的補充用量,在一定程度上可以緩和日益緊張的水資源問題。在廢水處理時,也應該盡量考慮處理出水的循環使用。
(5)回收利用和綜合利用
廢水中的污染物,都是在生產過程中進入水中的原材料、半成品、成品和反應介質(如溶劑),特別是精細化工生產中一些化學反應往往不能十分安全,產品的分離過程也不可能十分徹底,因此在廢水中尤其是在反應母液中常含有一定數量的有用物質。排放這些污染物質,就會污染環境,造成危害。但若加以回收利用或綜合利用,便可以變廢為寶,化害為利;或以廢治廢,取長補短,綜合治理,就可以節省水處理的費用。
武漢格林環保公司還不錯,你可以了解一下。
㈦ 科普知識:中水處理和污水處理有什麼區別
水處理中水處理聽起來有些陌生,中水就是指循環再利用的水。其實中水處理離我們的生活並不遙遠,許多家庭都習慣把洗衣服和洗菜的水收集起來,用於沖廁所和拖地板,其實這就是最原始、最簡單的中水處理辦法。
中水一詞最早起源於日本,是不同於給水(日本稱上水)、排水(日本稱下水)的一種水處理方法。中水是把水質較好的生活污水經過比較簡單的技術處理後,作為非飲用水使用。中水主要用於洗車、噴灑綠地、沖洗廁所、冷卻用水等,這樣做充分利用了水資源、減少污水直接排放對環境造成的污染。對於淡水資源缺乏、供水嚴重不足的城市來說,中水系統是緩解水資源不足,防治水污染,保護環境的重要途徑。
對於小區居民來講,中水處理系統可以提供很大的實惠。首先是降低水費支出。像綠化用水、洗車用水等公共用水,一般小區都是直接引用自來水,這筆水費最終還會攤到每戶業主身上。如果使用循環再利用後的中水,就等於一水二用,一個小區,一年算下來就是不小的費用。現在居民沖洗廁所一般使用自來水,如果用中水,一次可以省9升自來水,全家一個月,算下來有多少噸?不過,由於消費心理的原因,很多設計師不打算將中水用於戶內的清潔用水。當然,自來水、中水會走兩趟管路,可能會占點面積。
中水處理系統成本很低,不會增加買房者的負擔。說簡單點,就是要加幾個池子的問題。中水處理後的水質也較有保證,比城市地區一般河水的水質要好。
中水系統的水凈化過程也很簡單,一般有三級。一級階段,主要是靠格柵將水中體積較大的雜質與水分離。由於生活中,用水量時高時低,所以需要專備個蓄水池調節水量。水中的污染物90%以上是通過二級處理去除的。更多可關注易凈水網(www.ep360.cn0主要有生物處理法、物理化學法和膜法。所有的處理方式都不需要專門投入人力、物力。
以前,中水系統多用在賓館、飯店、大型文化體育等水費較貴而用水量又很大的公共建築中。但是,隨著水資源的不斷減少和人們環保意識的增強,越來越多的居民住宅建築也開始採用中水處理系統。中水正在逐漸走進尋常百姓的生活。
水處理中水的鹼度指什麼?
鹼度是指水中能與強酸相作用的物質的含量,在水中主要指重碳酸根(HCO3_)、碳酸根(CO32_)、氫氧根(OH等。
中水處理回用後的水質
經處理後出水可達到電鍍用水標准,具體見下表
項目 酸鹼廢水 回用水
PH 2.5-6.5 6.5-7.5
COD <200mg/L <5mg/L
電導率 ≤3000~5000μs/cm ≤30μs/cm
總銅 <100mg/l <0.05mg/l
總鎳 <10mg/l <0.05mg/l
污水處理就是利用物理、化學和生物的方法對廢水進行處理,使廢水凈化,減少污染,以至達到廢水回收、復用,充分利用水資源。
㈧ 去關於污水處理廠處理的實踐報告3000個字
環境保護是我國的基本國策。世界經濟發展的實踐證明,為實現經濟的持續穩定的發展,必須解決好發展與環境保護的矛盾。隨著我國社會和經濟的高速發展,城市環境污染特別是水污染的問題日趨嚴重。城鎮生活污水的排放量逐年增加,2002年全國工業和城鎮生活廢水排放總量為439.5億噸,比上年增加1.5%。其中工業廢水排放量207.2億噸,比上年增加2.3%;城鎮生活污水排放量232.3億噸,比上年增加0.9%,其中僅有10%得到處理。[1]生活污水中含有較高的氮、磷等營養物質,未經處理直接排入江河湖海,是導致水域富營養化污染的主要原因。2002年監測數據顯示,遼河、海河水系污染嚴重,劣V類水體佔60%以上;淮河幹流水質以III-V類水體為主,支流及省界河段水質仍然較差;黃河水系總體水質較差,幹流水質以III-IV類水體為主,支流污染普通嚴重;松花江水系以III-IV類水體為主;珠江水系水質總體良好,以II類水體為主;長江幹流及主要一級支流水質良好,以II類水體為主。由於「污染性」造成的水資源短缺,已成為嚴重製約我國社會經濟持續發展的突出問題,丞待解決。目前我國水污染控制的重點已從以工業點源為主,逐步轉變為以城市污水污染為主的控制。根據預測 [2],到2010年我國城市污水排放總量為1050億m3,城市污水處理率要達到50%,預計需新建污水處理廠1000餘座,而決定城市污水處理廠投資和運行成本的主要因素是污水處理工藝和技術的選擇,因此開發適合我國國情的、高效、低耗、能滿足排放要求、基建和運行費用低的污水處理新技術和新工藝,具有十分重要的現實意義。
二、生活污水處理工藝研究和應用領域共同關注的問題
長期以來,城市生活污水的二級生物處理多採用活性污泥法,它是當前世界各國應用最廣的一種二級生物處理流程,具有處理能力高,出水水質好等優點。但卻普遍存在著基建費、運行費高,能耗大,管理較復雜,易出現污泥膨脹、污泥上浮等問題,且不能去除氮、磷等無機營養物質。對於我國這樣一個資源不足、人口眾多的發展中國家,從可持續發展的角度來看,並不適合中國國情。由於污水處理是一項側重於環境效益和社會效益的工程,因此在建設和實際運行過程中常受到資金的限制,使得治理技術與資金問題成為我國水污染治理的「瓶頸」。歸納起來,目前在城市生活污水處理研究和應用領域,普遍存在的問題有:
(1)採用傳統的活性污泥法,往往基建費、運行費高,能耗大,管理較復雜,易出現污泥膨脹現象;工藝設備不能滿足高效低耗的要求。
(2)隨著污水排放標準的不斷嚴格,對污水中氮、磷等營養物質的排放要求較高,傳統的具有脫氮除磷功能的污水處理工藝多以活性污泥法為主,往往需要將多個厭氧和好氧反應池串聯,形成多級反應池,通過增加內循環來達到脫氮除磷的目的,這勢必要增加基建投資的費用及能耗,並且使運行管理較為復雜。
(3)目前城市污水的處理多以集中處理為主,龐大的污水收集系統的投資遠遠超過污水處理廠本身的投資,因此建設大型的污水處理廠,集中處理生活污水,從污水再生回用的角度來說不一定是唯一可取的方案。
因此,如何使城市污水處理工藝朝著低能耗、高效率、少剩餘污泥量、最方便的操作管理,以及實現磷回收和處理水回用等可持續的方向發展。已成為目前水處理技術研究和應用領域共同關注的問題,就要求污水處理不應僅僅滿足單一的水質改善,同時也需要一並考慮污水及所含污染物的資源化和能源化問題,且所採用的技術必須以低能耗和少資源損耗為前提。
三、生物膜法處理工藝在生活污水處理中的應用研究發展
在污水生物處理的發展和應用中,活性污泥和生物膜法一直占據主導地位。隨著新型填料的開發和配套技術的不斷完善,與活性污泥法平行發展起來的生物膜法處理工藝在近年來得以快速發展。由於生物膜法具有處理效率高,耐沖擊負荷性能好,產泥量低,佔地面積少,便於運行管理等優點,在處理中極具競爭力。
1.生物膜法凈化污水機理
污水中有機污染物質種類繁多,成分復雜。但對於生活污水來說,其有機成分歸納起來主要包括:蛋白質(40%-60%),碳水化合物(25%-50%)和油脂(10%),此外還含有一定量的尿素[3]。生物膜法依靠固定於載體表面上的微生物膜來降解有機物,由於微生物細胞幾乎能在水環境中的任何適宜的載體表面牢固地附著、生長和繁殖,由細胞內向外伸展的胞外多聚物使微生物細胞形成纖維狀的纏結結構,因此生物膜通常具有孔狀結構,並具有很強的吸附性能。
生物膜附著在載體的表面,是高度親水的物質,在污水不斷流動的條件下,其外側總是存在著一層附著水層。生物膜又是微生物高度密集的物質,在膜的表面上和一這深度的內部生長繁殖著大量的微生物及微型動物,形成由有機污染物 →細菌→原生動物(後生動物)組成的食物鏈。生物膜是由細菌、真菌、藻類、原生動物、後生動物和其他一些肉眼可見的生物群落組成。其中細菌一般有:假單苞菌屬、芽苞菌屬、產鹼桿菌屬和動膠菌屬以及球衣菌屬,原生動物多為鍾蟲、獨縮蟲、等枝蟲、蓋纖蟲等。後生動物只有在溶解氧非常充足的條件下才出現,且主要為線蟲。污水在流過載體表面時,污水中的有機污染物被生物膜中的微生物吸附,並通過氧向生物膜內部擴散,在膜中發生生物氧化等作用,從而完成對有機物的降解。生物膜表層生長的是好氧和兼氧微生物,而在生物膜的內層微生物則往往處於厭氧狀態,當生物膜逐漸增厚,厭氧層的厚度超過好氧層時,會導致生物膜的脫落,而新的生物膜又會在載體表面重新生成,通過生物膜的周期更新,以維持生物膜反應器的正常運行。
生物膜法通過將微生物細胞固定於反應器內的載體上,實現了微生物停留時間和水力停留時間的分離,載體填料的存在,對水流起到強制紊動的作用,同時可促進水中污染物質與微生物細胞的充分接觸,從實質上強化了傳質過程。生物膜法克服了活性污泥法中易出現的污泥膨脹和污泥上浮等問題,在許多情況下不僅能代替活性污泥法用於城市污水的二級生物處理,而且還具有運行穩定、抗沖擊負荷強、更為經濟節能、具有一定的硝化反硝化功能、可實現封閉運轉防止臭味等優點。
通過人工強化作用將生物膜引入到污水處理反應器中,便形成了生物膜反應器。近年來,物物膜反應器發展迅速,由單一到復合,有好氧也有厭氧,逐步形成了一套較完整的生物處理系統。
填料是生物膜技術的核心之一,它的性能對廢水處理工藝過程的效率、能耗、穩定性以及可靠性均有直接關系。
2、厭氧生物膜法處理工藝在生活污水處理中的應用研究進展
(1)、復雜物料的厭氧降解階段
在廢水的厭氧處理過程中,廢水中的有機物經大量微生物的共同作用,被最終轉化為甲烷、二氧化碳、水、硫化氫和氨。在此過程中,不同的微生物的代謝過程相互影響,相互制約,形成復雜的生態系統。對復雜物料的厭氧過程的敘述,有助於我們了解這一過程的基本內容。所謂復雜物料,即指那些高分子的有機物,這些有機物在廢水中以懸浮物或膠體形式存在。
復雜物料的厭氧降解過程可以被分為四個階段。
水解階段:高分子有機物因相對分子質量巨大,不能透過細胞膜,因此不可能為細菌直接利用。因此它們在第一階段被細菌胞外酶分解為小分子。例如纖維素被纖維素酶水解為纖維二糖與葡萄糖,澱粉被澱粉酶分解為麥芽糖和葡萄糖,蛋白質被蛋白酶水解為短肽與氨基酸等。這些小分子的水解產物能夠溶解於水並透過細胞膜為細菌所利用。
發酵(或酸化)階段:在這一階段,上述小分子的化合物在發酵細菌(即酸化菌)的細胞內轉化為更為簡單的化合物並分泌到細胞外。這一階段的主要產物有揮發性脂肪酸(簡寫作VFA)、醇類、乳酸、二氧化碳、氫氣、氨、硫化氫等。與此同時,酸化菌也利用部分物質合成新的細胞物質,因此未酸化廢水厭氧處理時產生更多的剩餘污泥。
產乙酸階段:在此階段,上一階段的產物被進一步轉化為乙酸、氫氣、碳酸以及新的細胞物質。
產甲烷階段:這一階段里,乙酸、氫氣、碳酸、甲酸和甲醇等被轉化為甲烷、二氧化碳和新的細胞物質。
在以上階段里,還包含著以下這些過程:a、水解階段里有蛋白質水解、碳水化合物的水解和脂類水解;b、發酵酸化階段包含氨基酸和糖類的厭氧氧化與較高級的脂肪酸與醇類的厭氧氧化;c、產乙酸階段里有從中間產物中形成乙酸和氫氣和由氫氣和 氧化碳形成乙酸;d、甲烷化階段包括由乙酸形成甲烷和從氫氣和二氧化碳形成甲烷。除以上這些過程之外,當廢水含有硫酸鹽時還會有硫酸鹽還原過程。復雜化合物的厭氧降解可以利用圖來表述(見圖1)
(2)厭氧生物膜法處理工藝的應用研究進展
a、厭氧濾器(AF)
厭氧濾器是60年代末由美國McCarty 等在Coulter等研究基礎上發展並確立的第一個高速厭氧反應器。傳統的好氧生物系統一般容積負荷在2KgCOD/(m3?d)以下。而在AF發明之前的厭氧反應器一般容積負荷也在4-5kgCOD/(m3?d)以下。但AF在處理溶解性廢水時負荷可高達10-15 kgCOD/(m3?d)。[4]因此AF的發展大大提高了厭氧反應器的處理速率,使反應器容積大大減少。
AF作為高速厭氧反應器地位的確立,還在於它採用了生物固定化的技術,使污泥在反應器內的停留時間(SRT)極大地延長。McCarty發現在保持同樣處理效果時,SRT的提高可以大大縮短廢水的水力停留時間(HRT),從而減少反應器容積,或在相同反應器容積時增加處理的水量。這種採用生物固定化延長SRT,並把SRT和HRT分別對待的思想推動了新一代高速厭氧反應器的發展。
SRT的延長實質是維持了反應器內污泥的高濃度,在AF內,厭氧污泥的濃度可以達到10-20gVSS/L。AF內厭氧污泥的保留由兩種方式完成:其一是細菌在AF內固定的填料表面(也包括反應器內壁)形成生物膜;其二是在填料之間細菌形成聚集體。高濃度厭氧污泥在反應器內的積累是AF具有高速反應性能的生物學基礎,在一定的污泥比產甲烷活性下,厭氧反應器的負荷與污泥濃度成正比。同時,AF內形成的厭氧污泥較之厭氧接觸工藝的污泥密度大、沉澱性能好,因而其出水中的剩餘污泥不存在分離困難的問題。由於AF內可自行保留高濃度的污泥,也不需要污泥的迴流。
在AF內,由於填料是固定的,廢水進入反應器內,逐漸被細菌水解酸化、轉化為乙酸和甲烷,廢水組成在不同反應器高度逐漸變化。因此微生物種群的分布也呈現規律性。在底部(進水處),發酵菌和產酸菌佔有最大的比重,隨反應器高度上升,產乙酸菌和產甲烷菌逐漸增多並佔主導地位。細菌的種類與廢水的成分有關,在已酸化的廢水中,發酵與產酸菌不會有太大的濃度。
細菌在反應器內分布的另一特徵是反應器進水處(例如上流式AF的內部)細菌由於得到營養最多因而污泥濃度最高,污泥的濃度隨高度迅速減少。
污泥的這種分布特徵賦予AF一些工藝上的特點。首先,AF內廢水中有機物的去除主要在AF底部進行(指上流式AF),據Young和Dahab報道[4], AF反應器在1m以上COD的去除率幾乎不再增加,而大部分COD是在0.3m以內去除的。因此研究者認為在一定的容積負荷下,淺的AF反應器比深的反應器能有更好的處理效率。其次,由於反應器底部污泥濃度特別大,因此容易引起反應器的堵塞。堵塞問題是影響AF應用的最主要問題之一。據報道,上流式AF底部污泥濃度可高達60g/L。厭氧污泥在AF內的有規律分布還使得反應器對有毒物質的適應能力較強,可以生物降解的毒性物質在反應器內的濃度也呈現出規律性的變化,加之厭氧生物膜形成各種菌群的良好共生體系,因此在AF內易於培養出適應有毒物質的厭氧污泥。例如在處理三氯甲烷和甲醛廢水中,發現AF反應器內的污泥產生了良好的適應性,這些有毒物質的去除效果和允許的進液濃度逐漸上升。AF同時也具有較大的抗沖擊負荷能力。一般認為在相同的溫度條件下,AF的負荷可高出厭氧接觸工藝2~3倍,同時會有較高的COD去除率。
AF在應用上的問題除了堵塞和由局部堵塞引起的溝流以外,另一個問題是它需要大量的填料,填料的使用使其成本上升。由於以上問題,國外生產規模的AF系統應用也不是很多。據Le-ttinga在1993年估計,國外生產規模的AF系統大約僅有30~40個。[4]
作為升流式厭氧濾池的革新技術——厭氧膜床(S?pecial Anaerobic Film Bed, SAFB),採用較大顆粒及孔隙率的填料代替傳統的小粒徑填料,有效地解決了反應器的堵塞問題。厭氧膜床具有如下特點:
有效克服了厭氧濾池易堵塞和出水水質差的缺點;
生物固體濃度高,因此可獲得較高的有機負荷;
在厭氧膜床內微生物通過附著在填料表面形成生物膜,以及懸浮於填料孔隙間形成細菌聚集體,因此在厭氧膜床內可以保持較高的生物量。因此可縮短水力停留時間,耐沖擊負荷能力較強;
啟動時間短,停止運行後再啟動也較容易;
不需要迴流污泥,運行管理方便;
在水量和負荷有較大變化的情況下,耐沖擊性較好。
b、厭氧流化床反應器(AFBR)
在流化床系統中依靠在惰性的填料微粒表面形成的生物膜來保留厭氧污泥,液體與污泥的混合、物質的傳遞依靠使這些帶有生物膜的微粒形成流態化來實現。
流化床反應器的主要特點可歸納如下:
流態化能最大程度使厭氧污泥與被處理的廢水接觸;
由於顆粒與流體相對運動速度高,液膜擴散阻力小,且由於形成的生物膜較薄,傳質作用強,因此生物化學過程進行較快,允許廢水在反應器內有較短的水力停留時間;
克服了厭氧濾器堵塞和溝流問題;
高的反應器容積負荷可減少反應器體積,同時由於其高度與直徑的比例大於其它厭氧反應器,因此可以減少佔地面積。
但是,厭氧流化床反應器存在著幾個尚未解決的問題。其一,為了實現良好的流態化並使污泥和填料不致從反應器流失,必須使生物膜顆粒保持均勻的形狀、大小和密度,但這幾乎是難以做到的,因此穩定的流態化也難以保證。[5]其次,一些較新的研究認為流化床反應器需要有單獨的預酸化反應器。同時,為取得高的上流速度以保證流態化,流化床反應器需要大量的迴流水,這樣導致能耗加大,成本上升。由於以上原因,流化床反應器至今沒有生產規模的設施運行。有人認為它在今後應用的前景也不大。[5]
c、厭氧附著膜膨脹床反應器(AAFEB)
厭氧附著膜膨脹床(Anaerobic Attached Film Expanded Bed)是Jewell等人在1974年研究和開發出來的一種污水處理工藝。與生物流化床相比,區別在於載體的膨脹程度。以填料層高度計,膨脹床的膨脹率約為10%~20%,此時顆粒間仍保持互相接觸,而流化床則為20%~70%。Bruce J.Alderman等[6]通過對比厭氧膨脹床、滴濾池和活性污泥法等工藝的經濟性,發現對於小型污水處理廠而言,厭氧膨脹床後續滴濾池的設計是最為經濟的選擇,能耗量少,污泥產率量低。但目前此工藝仍主要停留在小試和中試研究階段。
綜上所述,採用厭氧生物膜反應器為主體的厭氧處理技術,作為生活污水處理的核心方法,在技術上已經成熟,並且較之其它方法有獨到的一些優勢。但是,厭氧方法在濃縮營養物(氮和磷)方面效果不大,同時它僅能除去部分病源微生物。此外,殘存的BOD、懸浮物或還原性物質可能影響到出水的質量。所以厭氧生物膜反應器要成為完整的環境治理技術,合適的後處理手段必不可少。
3、好氧生物膜法處理技術——生物接觸氧化
生物接觸氧化法是由生物濾池和接觸曝氣氧化池演變而來的。早在20世紀30年代,已在美國出現生產型裝置。當時的生物接觸氧化池,填料的材質是砂石、竹木製品和金屬製品,主要用於處理低濃度、低有機負荷的污水,它克服了活性污泥法在處理此類污水時,因污泥流失而不能維持正常運行的缺點,並取得了較好的效果。進入70年代,隨著大孔徑、高比表面積的蜂窩直管填料和立體波紋塑料填料的出現,使生物接觸氧化法的應用范圍得到拓寬,它不僅可用於處理生活污水,而且可用於處理高濃度有機廢水和有毒有害工業廢水,與其他生物處理方法相比,展現出了優越性,我國在70年代開始對生物接觸氧化法進行了研究,第一座生產性試驗裝置用於處理城市污水,在處理效果、動力消耗、經濟效益和管理維護等方面都明顯優於活性污泥法。與活性污泥法比較,生物接觸氧化具有以下主要優點:①生物接觸化法以填料作為載體,供生物群棲息生長,形成穩定的生態體系,有較高的微生物濃度,一般可達10~20g/l;氧的利用率高,可達10%。具有較高的耐沖擊負荷能力和對環境變化的適應能力,剩餘污泥量少。②生物接觸氧化法可以充分利用絲狀菌的強氧化能力且不產生污泥膨脹。並且不需要象活性污泥法那樣採用污泥迴流以調整污泥量和溶解氧濃度,易於管理和操作。隨著十餘年的大量實踐,對氧化池結構形式、填料的品種和安裝方式、供氣裝置的種類和布置形式等方面進行了不斷創新、不斷優化。目前,生物接觸氧化技術已經廣泛應用處理生活污水、生活雜用水和不同有機物濃度的工業廢水。
填料是微生物棲息的場所、生物膜的載體。填料的表面生長生物膜,生物膜的新陳代謝過程使污水得利凈化。填料的性能直接影響著生物接觸氧化技術的效果和經濟上的合理性,因而填料的選擇是生物接觸氧化技術的關鍵。
填料的特性取決於填料的材質和結構形式。填料的材質應具有分子結構穩定、抗老化、耐腐蝕和生物穩定性好等特性。填料的結構形式應具有比表面積大、空隙率高、硬度高、有布水布氣和切割氣泡的功能。填料之間的空隙在外力作用下可發生變化,有利於剝落的生物膜及時排出填料區,以及填料的體積應具有可壓縮性,並在復原後不發生變形,便於運輸和安裝。
固定化載體的發展
(1)固定式填料
固定式填料以蜂窩狀及波紋狀填料為代表,多用玻璃鋼、各種薄形塑料片構成。新近有陶土直接燒結生產的陶瓷蜂窩填料,孔形為六角形,孔徑在20~100mm之間。由於比表面積小,生物膜量小,表面光滑,生物膜易脫落,填料橫向不流通,造成布氣不均勻,易堵塞以至無法正常運轉,且造價較高,近年來,此類填料已逐漸淘汰。
(2)懸掛式填料
懸掛式填料包括軟性、半軟性及組合填料、軟性填料,理論比表面積大,空隙率>90%,掛膜快,空隙的可變性使之不易堵塞,而且造價低,組裝方便,出水穩定,處理效果較好,COD和BOD5去除率達80%以上。但廢水濃度高或水中懸浮物較大時,填料絲會結團,大大減少了實際利用的比表面積,且易發生斷絲、中心繩斷裂等情況,影響使用壽命,其壽命一般為1~2年。半軟性填料,具有較強的氣泡切割性能和再行布水布氣的能力、掛膜脫膜效果較好、不堵塞;COD和BOD去除率在70-80%。使用壽命較軟性填料長。但其理論比表面積較小(87-93m2/m3)生物膜總量不足影響污水處理效果,且造價偏高。
組合式填料,是鑒於軟性、半軟性存在的上述缺點並吸取軟性填料比表面積大、易掛膜和半軟性填料不結團,氣泡切割性能好而設計的新型填料,在填料中央設計半軟性部件支撐著外圍的軟性纖維束,其平面有如盾形,故又稱盾式填料。其比表面積1000~2500 m2/m3,空隙率98%-99%,具有掛膜快,生物總量大,不結團等優點。污水處理能力優於軟性、半軟性填料,在正常水力負荷條件下COD去除率70%-85%,BOD5去除率達80%~90%,與之類似的還有燈籠式(或龍式)和YDT彈性立體填料。
(3)分散式填料
分散式填料包括堆積式、懸浮式填料,種類繁多。特點是無需固定和懸掛,只需將之放置於處理裝置之中,使用方便,更換簡單。北京曉清環保公司的多孔球形懸浮填料和北京桑德公司的SNP無剩餘污泥懸浮填料等,具有充氧性能好,掛膜快,使用壽命長等優點。江西萍鄉佳能環保工程公司新近開發的堆積式填料—球形輕質陶料,填料粒徑2~4 mm,有巨大的比表面積,使反應器中單位體積內可保持較高的生物量,而且填料上的生物膜較薄,其活性相對較高,具有完全符合曝氣生物濾池填料的國際性能標准,在法國承建的我國大連馬欄河污水處理廠使用,這是我國新型填料開發的一項重大突破。
四、水解酸化—好氧活性污泥工藝在生活污水處理中的應用
城市污水經厭氧處理後,在現有的技術條件下,要達到二級出水標准,需要相當長的停留時間,結果使厭氧處理雖然在運行管理費用上佔有優勢,但在基建投資上卻失去了競爭力。因此從微生物和化學角度講,厭氧處理僅僅提供了一種預處理,它一般需要後處理方能滿足新的污水排放標准。印度和南美國家在積極推廣應用厭氧生活污水處理技術的同時,普遍意識到由於厭氧處理後氮和磷基本上沒有去除,因此對厭氧出水進一步處理很有必要。缺乏合適的後處理技術,是導致厭氧生物處理技術在生活污水處理領域應用緩慢的主要原因之一。雖然已有的小試實驗結果表明,兩級厭氧系統組合可以獲得良好的處理效果。但目前,在實際生產中,應用最為廣泛的仍然是厭氧與好氧組合系統。在印度,氧化塘是最常用的後處理方法。經厭氧、氧化塘兩級處理後的出水BOD5、CODcr和TSS去除率分別為87%、81%和90%。在巴西NovaVista市的7000人生活污水處理工程中,以及哥倫比亞Bucarmanga鎮的160000人生活污水處理工程中,後處理均採用的是兼性氧化塘。在墨西哥的厭氧生活污水處理工程中,後處理方法比較多樣化,二沉池+氯消毒、淹沒濾池+二沉池+氯消毒、氧化溝等,最後直接排入城市污水管網或用於農灌。在日本,城鎮生活污水一般採用厭氧消化+好氧活性污泥法聯合處理、厭氧濾池+好氧濾池以及厭氧濾池+接觸氧化法組合處理。並且最新研製的具有脫氮除磷功能的高級型JOHKASO小型家用生活污水凈化器系統,廣泛應用於分散處理生活污水方面。[7]厭氧和好氧生物處理技術的組合能夠有效的去除大部分有機和無機污染物。厭氧生物專家G·Lettinga教授斷言厭氧處理生物技術如果有合適的後處理方法相配合,可以成為分散型生活污水處理模式的核心手段,這一模式較之於傳統的集中處理方法更具有可持續性和生命力,尤其適合發展中國家的情況。[8]
厭氧-好氧組合處理工藝,充分發揮了厭氧技術節能、好氧技術高效的優勢,成為目前污水處理工藝發展的主要趨勢。在國外,由上流式厭氧污泥床反應器(UASB)和好氧生物膜反應器組成的厭氧—好氧組合處理工藝一直是研究的重點,[9,10,11]並針對組合工藝的硝化/反硝化性能和動力學機理展開了較為深入的研究。[12,13]近年來,Ricardo Franci Goncalves等[14,15]進行的小試和中試的研究結果表明,採用UASB和淹沒式曝氣生物濾池(BF)組合工藝處理生活污水,兩段HRT分別為6h和0.17h時系統對CODcr 、BOD5 和SS去除率均在90%以上,並且該組合系統相對單一的UASB污水處理系統而言,有更好的穩定出水水質的作用。當BF段的污泥迴流至UASB段時,厭氧反應器內有機物甲烷化的能力提高,使產氣量增加、剩餘污泥量減少,可以減少甚至省去污泥濃縮池和消化池。
由於以UASB為主體的厭氧-好氧組合處理工藝,受溫度的影響較大,特別是在低溫條件下,系統的性能不能得到充分的發揮。Igor Bodik等[16]通過中試試驗研究了厭氧折流板生物濾池反應器和淹沒式曝氣生物濾池組合工藝低溫下處理生活污水時的脫氮性能。系統經過一年的運行,在厭氧段和好氧段的水力停留時間分別為15 h和4h的條件下,即使環境溫度低於10℃(平均氣溫5.9℃),對CODcr、BOD5和SS的去除率仍達80%左右。低溫使硝化的活性受到一定的影響,溫度在4.5-23℃范圍內,TKN的去除率在46.4-87.3%間變化,並且該系統也具有一定的反硝化功能,為低溫環境下生活污水的脫氮處理提供了參考。
㈨ 求關於污水處理的科學發展觀演講稿
五月的××大地,處處生機勃勃、秀色萬千。踏著綠色理念的節拍,穿行於××縣各企業生產廠區,隨時可以感受到循環發展、綠色發展、生態發展的濃厚氛圍,無不為映入眼簾的一幕幕污水處理、循環利用、回收資源的場景所動容。
近年來,××縣從源頭抓起,以壯士斷腕的決心和信心,打響了治理和保護生命之源的人民戰爭,以加強污水綜合治理為切入點,描繪出一幅幅動人的畫卷,為人民群眾營造了一個天藍水綠的優美環境。
深度處理,實現閉路循環
為進一步強化節能減排,實現廢水資源化利用,××集團對原有廢水處理設施進行了再提高改擴建,建設廢水深度處理零排放工程。整個項目二期深度處理及中水回用建成後,廢水回用率將達到95%以上,年可實現廢水回用130萬噸,節約各類費用200餘萬元。
無獨有偶,××公司早在2001年就上馬了「治理糠醛廢水、回收醋酸鈉」項目,將廢水加鹼進行回收利用,生成醋酸鈉產品,然後廢水經過去臘、壓慮、曝氣後和低濃度生產冷卻水混合後達標排放。目前,該項目已被「廢水深度治理及零排放項目」所取代,主要建設內容為糠醛廢水全部蒸發回用、冷卻水循環利用兩部分,每天產生的180噸糠醛廢水全部實現了閉路循環使用,達到了廢水零排放。
環保治理,回收再生資源
一提到造紙業,人們的腦海中便會浮現出臭氣熏天、污水橫流的骯臟畫面。然而,在××集團各廠區走訪,卻聞不到半點異味,呈現在人們面前的是一幅魚在水中游、人在景中處的美麗畫卷,處處洋溢著濃濃的綠色氣息。
黑液、中段水和固體廢棄物通常是造紙行業的三大污染源,也是制約企業發展的關鍵因素。為改變這一現狀,十多年來泉林集團堅持「發展與治理同步」,將污染治理視作企業的「生命工程」,累計投入5億多元,致力於現代造紙工業生態科技的研究與實踐,以環保技術創新為突破,以新型制漿造紙技術為保證,實施可持續發展戰略,走出了一條獨具特色的循環經濟生態紙業之路。
依託構建起的科學環保的循環經濟系統,生產過程中產生的工業垃圾全部變成了再生資源,廢棄物全部找到了下游「分解者」。制漿造紙產生的廢液提取木質素,生產綠色有機肥料;環保處理過的水用於農作物的灌溉和回用生產;綠色有機肥料用作生態林、蘆竹、農作物的基肥,成型林木及蘆竹用於制漿造紙,形成了「資源—產品—再生資源—產品」的循環流動過程,實現了零污染,總排口的出水COD已穩定在120毫克/升以下。
污水「洗澡」,回歸自然懷抱
水是生命之源,是人類文明發生和發展的基礎。目前,水資源短缺和水污染嚴重已成為制約城市可持續發展的重要因素。為營造舒適宜居的城市環境,推進生態縣建設,××在完成日處理能力8萬噸的污水處理工程的同時,於2008年又開工建設了日處理能力4萬噸的中水回用工程,污水集中處理率達到了100%。
為確保城區污水全部進入城市污水處理廠,××縣高度重視配套管網建設,把城區道路與污水管網同規劃、同建設,每新建、擴建一條道路或一個小區、一個企業,都同時建設污水管網,確保與主管網接通配套,目前全縣排污管網總長度已達到200公里。
城市污水進入污水處理廠後,採用德國百樂克污水生化處理工藝進行集中「洗澡」,出水水質達到了《城鎮污水處理廠污染物排放標准》,處理後的外排水再經過20公里長的官道溝自然降解排入馬頰河,確保了達標排放。
㈩ 污水處理問題
聲明:詞條人人可編輯,創建、修改和認證均免費
詳情
科普中國·科學網路:廢水處理1.1萬 45"
廢水處理
科普中國
本詞條由「科普中國」科學網路詞條編寫與應用工作項目審核
貢獻者林國慶
詳情
廢水處理(wastewater treatment methods)就是利用物理、化學和生物的方法對廢水進行處理,使廢水凈化,減少污染,以至達到廢水回收、復用,充分利用水資源。
中文名
廢水處理
外文名
wastewater treatment methods
解釋
對廢水進行處理
方法
物理法、化學法、生物法
特點
環保、節能
廢水類型
生活廢水
生活污水是指人們在日常生活活動中所排出的廢水,這種廢水主要被生活廢料和人的排泄物所污染,污染物的數量、成分和濃度與人們的生活習慣、用水量有關。 生活污水一般並不含有有毒物質,但是,它具有適於微生物繁殖的條件,含有大量細菌和病原體,從衛生角度來看,具有一定的危害性。[1]
由於城市人口的不斷增多,城市生活廢水處理問題日益凸顯。又因為技術落後、資金短缺、治理難度較大,一直影響著城市環境及其建設。如果不盡快解決這些問題,那麼隨著城市化的推進,用水量的不斷增加,污染將會更加的嚴重,影響也會更加的惡劣。[2]
城市生活污水不同於工業廢水,可以進行制止或者工業企業的搬遷,解決源頭。城市生活污水主要來源於家庭、學校、商業等一系列城市公共場所、公用設施。其來源的廣泛性和必然性也使得在污水處理上面臨著區域性傾向。而城市生活污水的污染物更是五花八門,但綜合其主要含量,多是以有機物為主,其中澱粉、蛋白質、糖類、礦物油等生活垃圾居多,其中,BOD2(生物需氧量)、CODc2(化學需氧量)、TkN(凱氏氮)、TP(總磷)、TN(總氮)等也較高,排入水體後很容易造成水體的富營養化,使得藻類大量生長繁殖,我們平時看到的赤潮和水華就與此有關。而當季節溫度原因,藻類代寫死亡後,就會使得水域水體腐敗發臭水質惡化,也就使得城市生活污水的表現特徵和具體成分的含量,也使得我們在處理城市生活污水時,對各個環節有了更加清醒的認知。[3]
我們都知道水是生命之源,而我國本身也是淡水資源相對貧瘠的國家,拯救城市生活用水就像拯救我們的生命一樣,時不我待![3]
工業廢水
工業生產中會產生很多種類的污染物,不同行業產生的污染物的種類與濃度均有明顯的差