污水處理廠設計總說明
㈠ 污水處理工藝說明
污水處理按照處理程度劃分,可分為一級、二級和三級處理。
一級處理,屬於物理處理,主要去除污水中呈懸浮狀態的固體污染物質,物理處理法大部分只能完成一級處理的要求。經過一級處理的污水,BOD一般可去除30%左右,達不到排放標准。一級處理屬於二級處理的預處理。
二級處理,主要去除污水中呈膠體和溶解狀態的有機污染物質(BOD,COD物質),去除率可達90%以上,使有機污染物達到排放標准。
三級處理,進一步處理難降解的有機物、氮和磷等能夠導致水體富營養化的可溶性無機物等。主要方法有生物脫氮除磷法,混凝沉澱法,砂濾法,活性炭吸附法,離子交換法和電滲分析法等。
整個過程為通過粗格柵的原污水通過污水提升泵提升後,流經格柵或者砂濾器,之後進入沉砂池,經過砂水分離的污水進入初次沉澱池,以上為一級處理,初沉池的出水進入生物處理設備,有活性污泥法和生物膜法,(其中活性污泥法的反應器有曝氣池,氧化溝等,生物膜法包括生物濾池、生物轉盤、生物接觸氧化法和生物流化床),生物處理設備的出水進入二次沉澱池,二沉池的出水經過消毒排放或者進入三級處理,一級處理結束到此為二級處理,三級處理包括生物脫氮除磷法,混凝沉澱法,砂濾法,活性炭吸附法,離子交換法和電滲析法。二沉池的污泥一部分迴流至初次沉澱池或者生物處理設備,一部分進入污泥濃縮池,之後進入污泥消化池,經過脫水和乾燥設備後,污泥被最後利用。
典型的五種工藝
(1)間歇活性污泥法(SBR)
間歇活性污泥法也稱序批式活性污泥法(SequencingBatchreactor-SBR),它由個或多個SBR池組成,運行時,廢水分批進入池中,依次經歷5個獨立階段,即進水、反應、沉澱、排水和閑置。進水及排水用水位控制,反應及沉澱用時間控制,一個運行周期的時間依負荷及出水要求而異,一般為4~12h,其中反應佔40%,有效池容積為周期內進水量與所需污泥體積之和。比連續流法反應速度快,處理效率高,耐負荷沖擊的能力強;由於底物濃度高,濃度梯度也大,交替出現缺氧、好氧狀態,能抑制專性好氧菌的過量繁殖,有利於生物脫氮除磷,又由於泥齡較短,絲狀菌不可能成為優勢,因此,污泥不易膨脹;與連續流方法相比,SBR法流程短、裝置結構簡單,當水量較小時,只需一個間歇反應器,不需要設專門沉澱池和調節池,不需要污泥迴流,運行費用低。
(2)吸附再生(接觸穩定)法
這種方式充分利用活性污泥的初期去除能力,在較短的時間里(10~40min),通過吸附去除廢水中懸浮的和膠態的有機物,再通過液固分離,廢水即獲得凈化,BOD5可去除85%~90%左右。吸附飽和的活性污泥中,一部分需要迴流的,引入再生池進一步氧化分解,恢復其活性;另一部分剩餘污泥不經氧化分解即排入污泥處理系統。分別在兩池(吸附池和再生他)或在同一池的兩段進行。它適應負荷沖擊的能力強,還可省去初次沉澱池。主要優點是可以大大節省基建投資,最適於處理含懸浮和膠體物質較多的廢水,如製革廢水、焦化廢水等,工藝靈活。但由於吸附時間較短,處理效率不及傳統法的高。
(3)氧化溝氧化溝是延時曝氣法的一種特殊型式。
氧化溝氧化溝是延時曝氣法的一種特殊型式。它的平面象跑道,溝槽中設置兩個曝氣轉刷(盤),也有用表面曝氣機、射流器或提升管式曝氣裝置的。曝氣設備工作時,推動溝液迅速流動,實現供氧和攪拌作用。與普通曝氣法相比,氧化溝具有基建投資省,維護管理容易,處理效果穩定,出水水質好,污泥產量少,還有較好的脫N、P作用,適應負荷沖擊能力強等優點。
(4)連續進水周期循環延時曝氣活性污泥法(ICEAS)
ICEAS反應器前部設有預反應區(占池容積的10%)。反應池由預反應區和主反應區組成,並實現連續進水,間歇排水。預反應區一般處在厭氧和缺氧狀態,有機物在此被活性污泥吸附,該區還具有生物選擇作用,抑制絲狀菌生長,防止污泥膨脹。被吸附的有機物在主反應區內被活性污泥氧化分解。反應連續進水,解決了來水與間歇進水不匹配的矛盾。但該工藝沉澱效果較差、凈化效果變差,易發生污泥膨脹,污泥負荷較低,反應時間長,設備容積增大,投資較大。
(5)生物脫氮除磷工藝(A/A/O)
污水首先進入厭氧池與迴流污泥混合,在兼性厭氧發酵菌的作用下,廢水中易生物降解的大分子有機物轉化為聚磷菌可以吸收小分子有機物(如VFA),並以PHB的形式貯存在體內,其所需的能量來自聚磷鏈的分解。隨後,廢水進入缺氧區,反硝化細菌利用廢水中的有機基質對隨迴流混合液帶入的NO3-進行反硝化。廢水進入好氧池時,廢水中有機物的濃度較低,聚磷菌主要是通過分解體內的PHB而獲得能量,供細菌增殖,同時將周圍環境中的溶解性磷吸收到體內,並以聚磷鏈的形式貯存起來,隨後以剩餘污泥的形式排出系統。系統中好氧區的有機物濃度較低,正有利於該區中自養硝化菌的生長。厭氧、缺氧、好氧三種不同的環境條件和不同種類的微生物菌群的有機配合,能同時具有去除有機物、脫氮除磷的功能;工藝簡單,水力停留時間較短;SVI一般小於100,不會發生污泥膨脹;污泥中磷含量高,一般為2.5%以上;厭氧-缺氧池只需輕緩攪拌,使之混合,而以不增加溶解氧為度;沉澱池要避免發生厭氧-缺氧狀態,以避免聚磷菌釋放磷而降低出水水質和反硝化產生N2而干擾沉澱;脫氮效果受混合液迴流比大小的影響,除磷效果則受迴流污泥中挾帶DO和硝酸態氧的影響,因而脫氮除磷效果不可能提高。具體聯系污水寶或參見http://www.dowater.com更多相關技術文檔。
污水處理項目建設過程
污水處理工程是城市市政建設、工業企業建設或排污達標治理的一個重要部分,其建設須按國家基本建設程序進行,現行的基本建設程序一般分編制項目建議書、項目可行性研究、項目工程設計、工程和設備招投標、工程施工、竣工驗收、運行調試和達標驗收幾個步驟。這些建設步驟基本包括了項目建設的全過程,它們也可劃分為三個階段。
第一階段項目立項階段。該階段需根據城市市政規劃或環境保護部門要求,分析項目建設的必要性和可行性。本階段以確定項目為中心,一般由建設單位或其委託的設計研究單位編制項目建議書和項目可行性研究報告,通過國家計劃部門、投資銀行或企業計劃部門論證便可獲得立項,對於某些小規模項目,只編制污水處理工程方案設計,並通過投資部門的論證便可立項。第二階段工程建設階段。包括工程設計、工程和設備招投標、工程施工、竣工驗收等過程。
設計的前期工作
設計的前期工作主要是可行性研究,以可行性研究報告(大型、重要的項目)或工程方案設計(小型、簡單的項目)的文件形式表達,主要是論證水處理「title=」污水處理新聞專題「>污水處理項目的必要性、工藝技術的先進性與可靠性、工程的經濟合理性,為項目的建設提供科學依據。可行性研究報告是國家投資決策的重要依據,主要內容如下。
①總論項目編制依據、自然環境條件(地理、氣象、水文地質)、城市社會經濟概況或企業生產經營概況;城市或企業的排水系統現狀、污染源構成、污水排放量現狀、污水水質現狀、項目的建設原則與建設范圍、污水處理廠建設規模、污水處理要求目標(設計進水、出水水質)。
②工程方案污水處理廠廠址選擇及用地;污水處理工藝方案比較(比較方案工藝技術與總體設計、工藝構築物及設備分析、技術經濟比較),處理水的出路(回用水深度處理工藝選擇);工程近、遠期結合問題;節能、安全生產與環境保護,推薦方案設計(污水污泥及回用水處理工藝系統平面及高程設計、主要工藝設備及電氣自控、土建工程、公用工程及輔助設施);生產組織及勞動定員。
③工程投資估算及資金籌措工程投資估算原則與依據;工程投資估算表;資金籌措與使用計劃。
④工程進度安排。
⑤經濟評價總論(工程范圍及處理能力、總投資、資金來源及使用計劃);年經營成本估算;財務評價。⑥研究結論、存在問題及建議。
初步設計
初步設計的主要目的如下:①提供審批依據,進一步論證工程方案的技術先進性、可靠性和經濟合理性;②投資控制,提供工程概算表,其總概算值是控制投資的主要依據,預算和決算都不能超過此概算值;③技術設計,包括工藝、建築、變配電系統、儀表及自控等方面的總體設計及部分主要單元設計,各專業所採用的新技術論證及設計;④提供施工准備工作,如拆遷、征地三通(水、電、路)一平(牆)並與有關部門簽訂合同;⑤提供主要設備材料訂貨要求,即設備與主材招標合同的技術規格書的依據,包括污水、污泥、電氣與自控、化驗等方面設備與主材的工藝要求、性能、技術規格、數量。初步設計的任務包括確定工程規模、建設目的、投資效益,設計原則和標准、各專業個體設計及主要工藝構築物設計、工程概算、拆遷征地范圍和數量、施工圖設計中可能涉及的問題及建議。初步設計的文件應包括設計(計算)說明書、工程量、主要設備與材料、初步設計圖紙、工程總概算表。初步設計文件應能滿足審批、投資控制、施工圖設計、施工准備、設備訂購等方面工作依據的要求。
1.初步設計
(1)設計依據①可行性研究報告的批准文件;②建設單位(甲方)的設計委託書;③其他有關部門的協議和批件;④建設單位(甲方)提供的設計資料清單(名稱、來源、單位、日期)。
(2)城市或企業概況及自然條件①城市現狀與總體規劃,或企業生產經營現狀及發展。②自然條件方面資料a.氣象,包括氣溫、濕度、雨量、蒸發量、冰凍期及凍土深度冰溫、風向等;b.水文,包括地表水體的功能、地理位置、方向、水位、流速、流量等,地下水的分布埋深、利用等。工程地質,包括水處理」title=「污水處理新聞專題」>污水處理廠建址地區的地質鑽孔柱狀圖、地基承載能力、地震等級等。③有關地形資料,包括污水處理廠及相關地區的地形圖。·④城市污水排放現狀及環境污染問題。
(3)處理要求污水排放應達到國家的排放標准或環境保護部門要求。
(4)工程設計①設計污水處理水質水量在分析排水系統污水的平均流量、高峰流量、現狀流量、預期流量等水量資料基礎上,確定污水處理廠設計規模(包括2012年處理能力和總處理能力);根據城市或企業排污狀況,在分析主要污染源(必要時作一定時間污染源監測)和混合污水現狀監測資料的基礎上,確定污水廠設計進水水質指標。②廠址選擇說明結合城市現狀和總體規劃,具體說明廠址選擇的原則和理由,並說明已選廠址的地形、地質、用地面積及外圍條件(即三通一平)③工藝流程的選擇說明主要說明所選工藝方案的技術先進性、合理性,尤其要說明所採用新技術的優越性(技術經濟方面)和可靠性(技術方面)o④工藝設計說明說明所選工藝方案初步設計的總體設計(平面和高程布置)原則,並說明主要工藝構築物的設計(技術特徵、設計數據、結構形式、尺寸)⑤主要處理設備說明說明主要設備的性能構造、材料及主要尺寸,尤其是新技術設備的技術特徵、構造形式、原理、施工及維護使用注意事項等。
(5)處理廠內輔助建築(辦公、化驗、控制、變配電、葯庫、機修等)和公用工程(供水、排水、采膠、道路、綠化)的設計說明
(6)處理廠自動控制和監測設計說明
(7)處理廠污水和污泥的出路
(8)存在的問題及對策建議
2.工程量列出本工程各項構(建)築物及廠區總圖所涉及的混凝土量、鋼筋混凝土土量、建築面積等。
3.設備和主要材料量、挖土方量、回填土方量列出本工程的設備和主要材料清單(名稱、規格、材料、數量)。
4.工程概算書說明概算編制依據、設備和主要建築材料市場供應價格、其他間接費情況等。列出總概算表和各單元概算表。說明工程總概算投資及其構成。
5.設計圖紙各專業(工藝、建築、電氣與自控)總體設計圖(總平面布置圖、系統圖),比例尺(1:200)~(1:1000),主要工藝構築物設計圖(平面、豎向),比例尺(1:100)~(1:200)。
施工圖
施工圖設計在初步設計或方案設計批准之後進行,其任務是以初步設計的說明書和圖紙為依據,根據土建施工、設備安裝、組(構)件加工及管道(線)安裝所需要的程度,將初步設計精確具體化,除水處理「title=」污水處理新聞專題「>污水處理廠總平面布置與高程布置、各處理構築物的平面和豎向設計之外,所有構築物的各個節點構造、尺寸都用圖紙表達出來,每張圖均應按一定比例與標准圖例精確繪制。施工圖設計的深度,應滿足土建施工、設備與管道安裝、構件加工,施工預算編制的要求。施工圖設計文件以圖紙為主,還包括說明書、主要設備材料表。
1.施工圖設計說明書
①設計依據初步設計或方案設計批准文件,設計進出水水質。②設計方案扼要說明污水處理、污泥處理及氣體利用的設計方案,與原初步設計比較有何變更,並說明理由,設計處理效果。③圖紙目錄、引用標准圖目錄。④主要設備材料表。⑤施工安裝注意事項及質量、驗收要求。必要時另外編制主要工程施工方法設計
2.設計圖紙
(1)總體設計①污水處理廠總平面圖比例尺(1:100)~(1:500),包括風玫瑰圖、坐標軸線、構築物與建築物、圍牆、道路、連接綠地等的平面位置,註明廠界四角坐標及構(建)築物對角坐標或相對距離,並附構(建)築物一覽表、總平面設計用地指標表、圖例。②工藝流程圖又稱污水污泥處理系統高程布置圖,反映出工藝處理過程及構(建)築物間的高程關系,應反映出各處理單元的構造及各種管線方向,應反映出各構(建)築物的水面、池底或地面標高、池頂或屋面標高,應較准確地表達構(建)築物進出管渠的連接形式及標高。繪制高程圖應有準確的橫向比例,豎向比例可不統一。高程圖應反映原地形、設計地坪、設計路面、建築物室內地面之間的關系③污水處理廠綜合管線平面布置圖應標示出管線的平面布置和高程布置,即各種管線的平面位置、長度及相互關系尺寸、管線埋深及管徑(斷面)、坡度、管材、節點布置(必要時做詳圖)、管件及附屬構築物(閘門井、檢查井)。必要時可分別繪制管線平面布置和縱斷面圖。圖中應附管道(渠)、管件及附屬構築物一覽表。
(2)單體構(建)築物設計圖各專業(工藝、建築、電氣)總體設計之外,單體構(建)築物設計圖也應由工藝、建築、結構(土建與鋼)、電氣與自控、非標准機械設備、公用工程(供水、排水、採暖)等施工詳圖組成。①工藝圖比例尺(1:50)~(1:100),表示出工藝構造與尺寸、設備與管道安裝位置與尺寸、高程。通過平面圖、剖面圖、局部詳圖或節點構造詳圖、構件大樣圖等表達,應附設備、管道及附件一覽表,必要時對主要技術參數、尺寸標准、施工要求、標准圖引用等做說明。②建築圖比例尺(1:50)~(1:100),表示出水平面、立面、剖面的尺寸、相對高程,表明內、外裝修材料,並有各部分構造詳圖、節點大樣、門窗表及必要的設計說明。③結構圖比例尺(1:50)~(1:100),表達構(建)築物整體及構件的結構構造、地基處理、基礎尺寸及節點構造等,結構單元和匯總工程量表,主要材料表,鋼筋表及必要的設計說明,要有綜合埋件及預留洞詳圖。鋼結構設計圖應有整體裝配、構件構造與尺寸、節點詳圖,應表達設備性能,加工及安裝技術要求,應有設備及材料表。④主要建築物給水排水、採暖通風、照明及配電安裝圖。
(3)電氣與白控設計圖①廠(站)區高、低壓變配電系統圖和一、二次迴路接線原理圖包括變電、配電、用電、啟動和保護等設備型號、規格和編號。附材料設備表,說明工作原理,主要技術數據和要求。②各種控制和保護原理圖與接線圖包括系統布置原理圖。引出或列入的接線端子板編號、符號和設備一覽表以及運行原理說明。③各構築物平、剖面圖包括變電所、配電間、操作控制間電氣設備位置、供電控制線路鋪設、接地裝置、設備材料明細表和施工說明及注意事項。④電氣設備安裝圖包括材料明細表、製作或安裝說明。⑤廠(站)區室外線路照明平面圖包括各構築物的布置、架空和電纜配電線路、控制線路和照明布置。⑥儀表自動化控制安裝圖料明細表,以及安裝調試說明⑦非標准配件加工詳圖
(4)輔助設施設計圖輔助與附屬建築物建築、結構、設備安裝及公用工程,如辦公、倉庫、機修、食堂、宿舍、車庫等施工設計圖。
(5)非標准設備設計圖某些簡單金屬構件的設計詳圖可附於工藝設計圖中。但由幾種不同形式的零配件、構件組成的成套設備,又沒有現成的設備可使用,其功能較獨立,構造較復雜,加工不簡單的設備或大型鋼結構處理裝置,應視為非標准設備,專門進行施工(製作、安裝)圖設計。①總裝圖表明構件零配件相互之間組裝位置、製作加工與安裝的技術要求、設備性能、使用須知及其他注意事項,必要時應有節點詳圖,附構件、零配件一覽表。②部件圖表明構件加工製作詳圖、組裝圖、製作和裝配精度要求。③零件圖零件的加工製作詳圖,須說明加工精度、技術指標、材料、數量等。
①工程設計項目立項後,設計單位根據審批的可行性研究報告進行施工圖設計,其任務是將可行性研究報告確定的設計方案的具體化,要將水處理」title=「污水處理新聞專題」>污水處理廠(站)區、各處理構(建)築物、輔助構(建)築物等的平面和豎向布置,精確地表達在圖紙上,其設計深度應能滿足施工、安裝、加工及施工預算編制要求。在施工圖設計之前,可能還需進行擴大初步設計,進一步論證技術的可靠性、經濟合理性和投資的准確性。
②工程設備招投標是經過比較投標方的能力、技術水平、工程經驗、報價等,來選定工程施工單位和設備供應單位的過程,該過程是保證工程質量和節省工程投資的基礎
③工程施工是項目建設的實現階段,包括土建施工、設備加工製造及安裝的全過程。本階段設計人員應向施工單位和設備供應單位進行技術交底,施工單位要按設計圖紙施工,施工人員發現問題或提出合理化建議,應經過一定手續才能變動,施工時,為了總結設計經驗,應及時解決施工中出現的技術問題,或根據具體情況對設計作必要的修改和調整,設計人員要有計劃地配合參加施工。對一般設計項目,指派主要設計人員到施工現場,解釋設計圖紙,說明工程目的、設計原則、設計標准和依據,提出新技術的特殊要求和施工注意事項;對重大或新技術項目,必要時應派現場設計代表,隨時解決施工中存在的設計問題。
④竣工驗收是全面檢查設計和施工質量的過程,其核心是質量,不合格工程必須返工或加固。第三階段項目驗收階段,包括聯動試車、運行調試、達標驗收等過程。聯動試車由施工單位、設備供應單位、建設單位共同完成,檢查設備及其安裝的質量,以確保能正常投入使用。試運行的目的是要確保處理系統達到設計的處理規模和處理效果,並確定最佳的運行條件,對於生物處理系統,往往要用較長時間來完成「培菌」任務。達標驗收是由環境保護部門檢驗處理系統出水是否達到排放標准。污水處理工程的設計內容設計工作按建設項目所處理的對象不同可劃分為城市污水處理廠工程設計和工業企業廢水處理站工程設計,由於污水來源、性質、水量及處理工藝方面差別較大,使其設計工作亦有所不同。設計工作按建設項目技術的復雜程度可劃分為兩個階段(初步設計和施工圖設計)或一個階段(施工圖設計);同樣可按污水處理規模大小或重要性劃分為兩階段設計或一階段設計。技術復雜、處理規模大、重要的項目一般按兩階段設計,技術復雜程度、處理規模、重要性均小的按
㈡ 城市污水處理廠設計說明
找一本污水處理的書參考一下就可以的了啊
㈢ 誰有污水處理廠的設計說明書,越詳細越好
第一章 設計資料
一、自然條件
1、 氣候:該城鎮氣候為亞熱帶海洋季風性季風氣候,常年主導風向為東南風。
2、 水文:最高潮水位 6.48m(羅零高程,下同)
高潮常水位 5.28m
低潮常水位 2.72m
二、城市污水排放現狀
1、污水水量
(1)生活污水按人均生活污水排放量300L/人.d;
(2)生產廢水量按近期1.5萬m3/d,遠期2.4萬m3/d;
(3)公用建築廢水量排放系數按近期0.15,遠期0.20考慮;
(4)處理廠處理系數按近期0.80,遠期0.90考慮。
2、污水水質
(1) 生活污水水質指標為
CODcr 60g/人.d
BOD5 30g/人.d
(2) 工業污染源參照沿海開發區指標,擬定為:
CODcr 300mg/L;
BOD5 170mg/L
(3) 氨氮根據經驗確定為30md/L。
三、污水處理廠建設規模與處理目標
1、 建設規模
該污水處理廠服務面積為10.09km2, 近期(2000年)規劃人口為6.0萬人,遠期(2020年)規劃人口為10.0萬人。處理水量近期3.0萬m3/d,遠期6.0萬m3/d。
2、 處理目標
根據該城鎮環保規劃,污水處理廠出水進入的水體水質按國家3類水體標准控制,同時執行國家關於污水排放的規范和標准,擬定出水水質指標為
CODcr≤100mg/L; BOD5≤30mg/L; SS≤30mg/L ; NH3-N≤10mg/L
四、建設原則
污水處理工程建設過程中應遵從下列原則:污水處理工藝技術方案,在達到治理要求的前提下應優先選擇基建投資和運行費用少、運行管理簡便的先進的工藝;所用污水、污泥處理技術和其他技術不僅要求先進,更要求成熟可靠;和污水處理廠配套的廠外工程應同時建設,以使污水處理廠盡快完全發揮效益;污水處理廠出水應盡可能回用,以緩解城市嚴重缺水問題;污泥及浮渣處理應盡量完善,消除二次污染;盡量減少工程佔地。
第二章 污水處理工藝方案選擇
一、工藝方案分析
本項目污水以有機污染為主,BOD/COD=0.54 可生化性較好,重金屬及其他難以生物降解的有毒有害污染物一般不超標,針對這些特點,以及出水要求,現有城市污水處理技術的特點,以採用生化處理最為經濟。由於將來可能要求出水回用,處理工藝尚應硝化。
根據國內外已運行的大、中型污水處理廠的調查,要達到確定的治理目標,可採用「普通活性污泥法」或「氧化溝」法。
普通活性污泥法,也稱傳統活性污泥法,推廣年限長,具有成熟的設計運行經驗,處理效果可靠,如設計合理,運行得當,出水BOD5可達10-20mg/L,它的缺點是工藝路線長,工藝構築物及設備多而復雜,運行管理困難,運行費用高。
氧化溝處理技術是20世紀50年代有荷蘭人首創。60年代以來,這項技術在國外已被廣泛採用,工藝及構築物有了很大的發展和進步。隨著對該技術缺點(佔地面積大)的克服和對其優點的逐步深入認識,目前已成為普遍採用的一項污水處理技術。
氧化溝工藝一般可不設初沉池,在不增加構築物及設備的情況下,氧化溝內不僅可完成碳源的氧化,還可實行脫氮,成為A/O工藝,由於氧化溝內活性污泥已經好氧穩定,可直接濃縮脫水,不必厭氧消化。
氧化溝污水處理技術已被公認為一種成功的革新的活性污泥法工藝,與傳統活性污泥系統相比較,它在技術、經濟等方面具有一系列獨特的優點。
1、 工藝流程簡單、構築物少,運行管理方便。一般情況下,氧化溝工藝可比傳統活性污泥法少建初沉池和污泥厭氧消化系統,基建投資少。另外,由於不採用鼓風曝氣和空氣擴散器,不建厭氧硝化系統,運行管理方便。
2、 處理效果穩定,出水水質好。
3、 基建投資省,運行費用低。
4、 污泥量少,污泥性質穩定。
5、 具有一定承受水量、水質沖擊負荷的能力。
6、 佔地面積少。
污水處理廠的基建投資和運行費用與各廠的污水濃度和建設條件有關,但在同等條件下的中、小型污水廠,氧化溝比其他方法低,據國內眾多已建成的氧化溝污水處理廠的資料分析,當進水BOD5在120-180mg/L時,單方基建投資約為700-900元/(m3.d),運行成本為0.15-0.30元/m3污水。
由以上資料,經過簡單的分析比較,氧化溝工藝具有明顯優勢,故採用氧化溝工藝。
二、工藝流程確定:(如圖所示)
說明:由於不採用池底空氣擴散器形成曝氣,故格柵的截污主要對水泵起保護作用,擬採用中格柵,而提升水泵房選用螺旋泵,為敞開式提升泵。為減少柵渣量,格柵柵條間隙已擬定為25.00mm。
曝氣沉砂池可以克服普通平流沉砂池的缺點:在其截流的沉砂中夾雜著一些有機物,對被有機物包裹的沙粒,截流效果也不高,沉砂易於腐化發臭,難於處置。故採用曝氣沉砂池。
本設計不採用初沉池,原則上應根據進水的水質情況來確定是否採用初沉池。但考慮到後面的二級處理採用生物處理,即氧化溝工藝。初沉池會除去部分有機物,會影響到後面生物處理的營養成分,即造成C/N比不足。因此不予考慮。
擬用卡羅塞爾氧化溝,去除COD與BOD之外,還應具備硝化和一定的脫氮作用,以使出水NH3低於排放標准,故污泥負荷和污泥泥齡分別低於0.15kgBOD/kgss*d和高於20.0d。
氧化溝採用垂直曝氣機進行攪拌,推進,充氧,部分曝氣機配置變頻調速器,相應於每組氧化溝內安裝在線DO測定儀,溶解氧訊號傳至中控室微機,給微機處理後再反饋至變頻調速器,實現曝氣根據DO自動控制
為了使沉澱池內水流更穩定(如避免橫向錯流、異重流對沉澱的影響、出水束流等)、進出水更均勻、存泥更方便,常採用圓形輻流式二沉池。向心式輻流沉澱池採用中心進水,周邊出水,多年來的實際和理論分析,認為此種形式的輻流沉澱池,容積利用率高,出水水質好。設計流量 Q=2.85萬m3/d=1208.3 m3/h,迴流比 R=0.7。
第三章 污水處理工藝設計計算
一、水質水量的確定
1. 水量的確定
近期水量:生活廢水Q生活=6.0×104×300L/人•天=1.8×104m3/d
工業廢水Q工業=1.5×104m3/d
公用建築廢水Q公用=1.8×104×0.15=0.27×104m3/d
所以近期產生的廢水量為Q
Q=Q生活+Q工業+Q公用=(1.8+1.5+0.27)×104 =3.57×104m3/d
近期的處理系數為0.8,故近期污水處理廠的處理量
Qp=3.57×104×0.8=2.856×104m3/d
遠期水量:生活廢水Q生活=10.0×104×300L/人•天=3.0×104m3/d
工業廢水Q工業=2.4×104m3/d
公用建築廢水Q公用=3.0×104×0.2=0.6×104m3/d
所以遠期產生的廢水量為Q
Q=Q生活+Q工業+Q公用=(3.0+2.4+0.6)×104 =6.0×104m3/d
遠期的處理系數為0.9,故遠期污水處理廠的處理量
Qp=6.0×104×0.9=5.4×104m3/d
通常設計污水處理廠時遠期的設計處理量為近期的兩倍,綜合考慮近期和遠期的處理水量,取近期的設計處理水量Qp=3.0×104m3/d,遠期的設計處理水量Qp=6.0×104m3/d。
2. 水質的確定
近期COD:
COD = =242mg/L
近期BOD5:
BOD5= =129mg/L
遠期COD:
COD= =240 mg/L
遠期BOD5:
BOD5= =128mg/L
NH3-N按規定取為30 mg/L
所以處理廠的處理水質確定為COD=242mg/L,BOD5=129mg/L,NH3-N=30 mg/L
二、曝氣沉砂池設計計算說明書
沉砂池的作用是從污水中去除砂子、煤渣等比重比較大的無機顆粒,以免這些雜質影響後續構築物的正常運行。常用的沉砂池有平流式沉砂池、曝氣沉砂池、豎流沉砂池和多爾沉砂池等。平流式沉砂池構造簡單,處理效果較好,工作穩定,但沉砂中夾雜一些有機物,易於腐化散發臭味,難以處置,並且對有機物包裹的砂粒去除效果不好。曝氣沉砂池在曝氣的作用下顆粒之間產生摩擦,將包裹在顆粒表面的有機物除掉,產生潔凈的沉砂,通常在沉砂中的有機物含量低於5%,同時提高顆粒的去除效率。多爾沉砂池設置了一個洗砂槽,可產生潔凈的沉砂。渦流式沉砂池依靠電動機機械轉盤和斜坡式葉片,利用離心力將砂粒甩向池壁去除,並將有機物脫除。後3種沉砂池在一定程度上克服了平流式沉砂池的缺點,但構造比平流式沉砂池復雜。
和其它形式的沉砂池相比,曝氣沉砂池的特點是:一、可通過曝氣來實現對水流的調節,而其它沉砂池池內流速是通過結構尺寸確定的,在實際運行中幾乎不能進行調解;二、通過曝氣可以有助於有機物和砂子的分離。如果沉砂的最終處置是填埋或者再利用(製作建築材料),則要求得到較干凈的沉砂,此時採用曝氣沉砂池較好,而且最好在曝氣沉砂池後同時設置沉砂分選設備。通過分選一方面可減少有機物產生的氣味,另一方面有助於沉砂的脫水。同時,污水中的油脂類物質在空氣的氣浮作用下能形成浮渣從而得以被去除,還可起到預曝氣的作用。只要旋流速度保持在0.25~0.35m/s范圍內,即可獲得良好的除砂效果。盡管水平流速因進水流量的波動差別很大,但只要上升流速保持不變,其旋流速度可維持在合適的范圍之內。曝氣沉砂池的這一特點,使得其具有良好的耐沖擊性,對於流量波動較大的污水廠較為適用,其對0.2mm顆粒的截流效率為85%。
由於此次設計所處理的主要是生活污水水中的有機物含量較高,因此採用曝氣沉砂池較為合適。
曝氣沉砂池的設計參數:
(1)旋流速度應保持0.25—0.3m/s;
(2)水平流速為0.08—0.12 m/s;
(3)最大流量時停留時間為1—3min;
(4)有效水深為2—3m,寬深比一般採用1~1.5;
(5)長寬比可達5,當池長比池寬大得多時,應考慮設置橫向擋板;
(6)1 污水的曝氣量為0.2 空氣;
(7)空氣擴散裝置設在池的一側,距池底約0.6~0.9m,送氣管應設置調節氣量的閥門;
(8)池子的形狀應盡可能不產生偏流或死角,在集砂槽附近可安裝縱向擋板;
(9)池子的進口和出口布置,應防止發生短路,進水方向應與池中旋流方向一致,出水方向應與進水方向垂直,並考慮設置擋板;
(10)池內應考慮設置消泡裝置。
一、 曝氣沉砂池的設計與計算
1. 最大設計流量Qmax
Qmax=Kz×Qp
式中的Kz為變化系數,Kz=1.42
Qmax=1.42×0.347=0.493 m3/s
2. 池子的有效容積
V=60Qmaxt
式中 V——沉砂池有效容積,m3;
Qmax——最大設計流量,m3/s;
t——最大設計流量時的流動時間,min,設計時取1~3min。
所以 V=60×0.493×1.5=44.37m3
3. 水流斷面面積
A=
式中 A——水流斷面面積,m2
Qmax——最大設計流量,m3/s;
V——水流水平流速,m/s。
所以 A=4.11m2
取 A=4.2m2
4.池寬B
B=
h——沉砂池的有效水深,m。
取h=2m。所以B= =2.1m
B/h=1.05,滿足要求。
5. 池長
L= = m,取L=10.5m
此時L/B=5滿足要求
6.流速校核
Vmin= m/s,在0.8~1.2m/s之間,滿足要求
7.曝氣沉砂池所需空氣量的確定
設每立方米污水所需空氣量 d=0.2m3空氣/m3污水
8.沉砂槽的設計
若設吸砂機工作周期為t=1d=24h,沉砂槽所需容積
式中Qp的單位為m3/h
設沉砂槽底寬0.5m,上口寬為0.7,沉砂槽斜壁與水平面夾角60°,
沉砂槽高度為 h1=
沉砂槽容積為
9.沉沙池總高
設池底坡度為0.3,坡向沉砂槽,池底斜坡部分的高度為
h2=0.3×0.7=0.21m
設超高 ,沉沙池水面離池底的高
m
10.曝氣系統的設計
採用鼓風曝氣系統,羅茨鼓風機供風,穿孔管曝氣
(1)干管直徑d1:由於設置兩座曝氣沉砂池,可將空氣管供應兩座的氣量,即主管最大氣量為q1=0.0694×2=0.1388m3/s,取干管氣速v=12m/s,
干管截面積A= = =0.0116m2
d1= = m=120mm,
因為沒有120mm的管徑,所以採用接近的管徑100mm。
回算氣速v=17.7m/s 雖然超過15 m/s,但若取150的管氣速又過小,所以還是選擇管徑100mm。
(2)支管直徑d2:由於閘板閥控制的間距要在5m以內,而曝氣的池長為10.5米,所以每個池子設置三根豎管,設支管氣速為v=5m/s,
支管面積 A= m2
d2= = mm,
取整管徑d2=80mm
校核氣速v=4.6m/s (滿足3—5m/s)
(3)穿孔管:採用管徑為6mm的穿孔管,孔出口氣速為設5m/s,孔口直徑取為5mm(在2~6mm之間)
一個孔的平均出氣量 q= =9.81×10-5m3/s
孔數:n= 個
孔間隔 為 ,在10~15mm之間,符合要求。
穿孔管布置:在每格曝氣沉砂池池長一側設置1根穿孔管曝氣管,共兩根。
二、細格柵的選型和計算
選用XG1000型細格柵,參數如下
設備寬B:1000mm 有效柵寬B1:850㎜ 有效柵隙:5㎜ 耙線速度:2 m/min 電機功率:1.1kw 安裝角度:60° 渠寬B3:1050㎜ 柵前水深h2:1.0m/s 流體流速:0.5~1.0m/s
柵條寬度s=0.01m
1. 柵前後的水頭損失
水流斷面面積 m2
柵前流速
在0.4~0.9m/s范圍內,復合要求
設過柵流速為v=0.6m/s
設柵條斷面為銳邊矩形斷面,取k=3 ,則通過格柵的水頭損失為:
。
3. 柵槽總長度
柵前的渠道超高設為0.45m,所以渠道高度為1.45m
因為安裝高度是取60°,所以格柵所佔的渠道長為1.45×ctg =1.45×ctg60°=0.84m
柵後長1米。
所以渠道的總長度
L=0.5+0.84+1=2.34m
三、水面標高
根據經驗值污水每經過一個障礙物水面標高下降3~5cm,根據曝氣沉砂池的有效水深以及砂斗的高度可推算出各個構築物的水面標高,本次設計以經過一個障礙物水位下降5cm來計算,以曝氣沉砂池的砂槽底為0米進行計算。
曝氣沉砂池的水面標高:2.38m
細格柵與曝氣沉砂池之間的配水井的水面標高: 2.43m
細格柵柵後水面標高: 2.48m
細格柵柵前水面標高:2.48+0.29=2.77m
配水井外套桶水面標高: 2.82m
配水井內套桶水面標高: 2.88
設配水井超高為0.35m
則整個曝氣沉砂池系統的最高標高為3.23m
則曝氣沉砂池的超高為h1=3.23-2.38=0.85m
四、配水井的計算
設配水井的平均停留時間為T=1.5min,Qp=0.347 m3/s,假設配水井水柱高為5.03米。
配水井面積為
配水井直徑為
因為進水管徑為1000,管離底為200mm。所以覆土厚度為1.28m。
五、砂水分離器和吸砂機的選擇
(1)選用直徑LSSF型螺旋式砂水分離器
(2)根據池寬選用LF-W-CS型沉砂池吸砂機,其主要參數為:
潛污泵型號:AV14-4(潛水無堵塞泵)
潛水泵特性 揚程:2m,流量:54m3/h,功率:1.4kw
行車速度為2-5m/min,提耙裝置功率 0.55kw
驅動裝置功率: 0.37×2kw
鋼軌型號 15kg/mGB11264-89
軌道預埋件斷面尺寸(mm) (b1-20) 60 10(b1:沉砂池牆體壁厚)
軌道預埋件間距 1000mm
四、氧化溝
1、設計說明
擬用卡羅塞爾氧化溝,去除COD與BOD之外,還應具備硝化和一定的脫氮作用,以使出水NH3低於排放標准。採用卡式氧化溝的優點:立式表曝機單機功率大,調節性能好,節能效果顯著;有極強的混合攪拌與耐沖擊負荷能力;曝氣功率密度大,平均傳氧效率達到至少2.1kg/(kW*h);氧化溝溝深加大,可達到5.0以上,是氧化溝佔地面積減小,土建費用降低。
氧化溝採用垂直曝氣機進行攪拌,推進,充氧,部分曝氣機配置變頻調速器,相應於每組氧化溝內安裝在線DO測定儀,溶解氧訊號傳至中控室微機,給微機處理後再反饋至變頻調速器,實現曝氣根據DO自動控制
2、設計計算
(1).設計參數:
qv=30000m3/d(設計採用雙池,則單池流量=15000 m3/d),
設計溫度15℃,最高溫度25℃,
進水水質:近期:CODCr=242mg/L,BOD5=129.4mg/L, NH3-N=30mg/L,
遠期:CODCr=240mg/L,BOD5=128mg/L, NH3-N=30mg/L,
出水水質:CODCr=100mg/L,BOD5=30mg/L,SS=30mg/L,NH3-N=10mg/L
(2).確定採用的有關參數:
取MLSS=3500mg/L,假定其70%是揮發性的,DO=3.0mg/L,k=0.05,Cs(20)=9.07mg/L
y=0.6mgVSS/mgBOD5,Kd=0.05d-1,qD,20=0.05kgNH3-N/kgMLVSS•d,CS(20)=9.07mg/L,
α=0.90,β=0.94,
剩餘鹼度:100mg/L(以CaCO3),所需鹼度7.14mg鹼度/mgNH3-N氧化;產生鹼度3.0mg鹼度/mgNO3-N還原,硝化安全系數:3。
(3).設計泥齡:
確定硝化速率μN
μN=0.47e0.098(T-15)*N/KN+N*DO/ Ko+DO=0.47*e0.098*(15-15)*30/(100.051*15-1.158+30)*2/(1.3+2)
=0.22d-1
θcm=1/=1/0.22=4.5d,設計泥齡θc=3*4.5=13.5d
為了保證污泥穩定,應選擇泥齡為30d
(4).設計池體體積:
①確定出水中溶解性BOD5的量:
出水中懸浮固體BOD5=1.4*0.68*30*70%=20mg/L
出水中溶解性BOD5的量=30-20=10mg/L
②好氧區容積計算:
V1=y*qv*(So-Se)*θc/MLVSS*(1+Kd*θc)=0.6*30000*(129.4-10)*30/(0.7*3500*(1+0.05*30))=9278m3
水力停留時間t1= V1/ qv =9278/30000=0.31d=7.4h
③脫氮計算:
產生污泥量=y*qv*(So-Se)/(1+Kd*θc)=0.6*30000*(129.4-10)/(1000*(1+0.05*30))=860kg/d
假設污泥中大約含12.4%的氮,這些氮用於細胞合成,
用於合成的氮=0.124*860=106.6kg/d,轉化為:106.6*1000/30000=3.55mg/L
故脫氮量=30-10-3.55=16.45mg/L。
④鹼度計算:
剩餘鹼度=300-7.14*20+3.0*16.45+0.1(129.4-10)=218.5mg/L(以CaCO3)
大於100mg/L,可以滿足pH>7.2
⑤缺氧區容積計算:
qD=qD,20*1.08T-20=0.05*1.0815-20=0.032 kgNH3-N/kgMLVSS•d
V2=qv*△N/qD/MLVSS=30000*16.45/0.032/0.7/3500=6295m3
水力停留時間t2=V2/qv=6295/30000=0.21d=5h
⑥總池容積計算
V=V1+V2=9278+6295=15573m3,t=t1+t2=7.4+5=12.4h
(5).曝氣量計算
①計算需氧氣量
R=(So-Se)qv*/(1-e-kt)-1.42Px+4.6*qv*△N-2.6*qv*NO3-0.56Px
=30000*(129.4-10)/(1-e-kt)/1000-1.42*856.8+4.6*30000*20/1000
-2.6*30000*16.45/1000-0.56*856.8=5049kg/d=211 kg/h
②實際需氧量
Ro』=1.2*R=1.2*211=253.2kg/d
校核:Ro=R*Cs(20)/α/(β*Cs(T)-C)/1.024T-20=253.2*9.07/0.9/(0.94*8.24-3)/1.024 25-20
=477.6kg/h (在400-500之間 符合)
6.溝型尺寸設計及曝氣設備選型
採用卡式氧化溝(兩座並聯):
取有效水深H=3.5m,單溝的寬度b=7.8m,進水量15000 m3/d,
則單溝長=[V/2-0.5π(2b)2 h-2*0.5πb2 h]/4Hb=53m,
單溝好氧區總長度=單溝長*4* V1 /V=126m
單溝厭氧區總長度=單溝長*4* V2 /V=76m
採用四溝道,兩台55kW的立式表曝氣機(單池)
曝氣設備:PSB3250:D=3.25m,P=132kW,n=30r/min,清水充氧量:252kg/h,
7.配水井設計
污水在配水井的停留時間最少不低於3min(不計迴流污泥的量),
設截面中半圓的半徑為r,矩形的寬度為r,長度為2r,設計的有效水深為4.0m
(2*r*r+0.5πr2)*4=30000*3/24/60
r=2.7m
8.其它附屬構築物的設計
工程設計中牆的厚度為250mm;氧化溝體表面設置走道板的寬度為800mm;;倒流牆的設計半徑為3.9m;配水井的進水管道採用的規格為DN900,污泥迴流管道採用的規格為DN500;出水井的設計尺寸為3000mm*1000mm*1000mm,出水堰高為100mm,堰孔直徑為40mm,出水管採用的規格為DN700。
五、輻流式二沉池
1.設計說明
1.1二沉池的類型
二沉池的類型有:平流式二沉池、豎流式二沉池、輻流式二沉池、斜流式二沉池。其中,輻流式二沉池又分為:中進周出式、周進周出式、中進中出式。
1.2選擇輻流式(中進周出)二沉池的原因
由於平流式二沉池佔地面積大;豎流式二沉池多用於小型廢水中絮凝性懸浮固體的分離;斜流式二沉池較多時候,在曝氣池出口污泥濃度高,而且沒有設置專門的排泥設備,容易造成阻塞。因此選擇輻流式二沉池。從出水水質和排泥的方面考慮,理論上是周進周出效果最好。但是,實際上,考慮異重流,是中進周出的效果最好。因此,選擇了選擇輻流式(中進周出)二沉池。
2.設計計算
2.1污泥迴流比:
2.2沉澱部分水面面積:
流量: ;
最大流量(設計流量):
單個池子的設計流量:
污泥負荷q取1.1m3/(m2.h), 池子數n為2 。
沉澱部分水面面積:
2.3校核固體負荷:
因為142<150,符合要求。
2.4池子直徑
池子直徑: 根據選型取池子直徑為35.0m。
2.5沉澱部分的有效水深
沉澱時間t為2.5s 有效水深:
2.6沉澱池總高
2.7校核徑深比:
徑深比為 符合要求。
2.8進水管的設計
單體設計污水流量:
進水管設計流量:
取管徑D=700mm ,流速為
因為,0.697>0.6符合要求,所以進水管直徑為D=700mm。
2.9穩流筒
進水井的流速為0.8m/s ,則過水面積為
過水面積和泥管面積的總和:
由過水面積和泥管面積的總和求出直徑為
筒壁厚為250mm, 取管徑為900mm。
進行校核:過水面積為
流速為 。
筒上有8個小孔 ,孔面積為S2= ,所以 。
二沉池採用的是ZBX型周邊傳動吸泥機,穩流筒的直徑為3880mm。
取穩流筒出流速度為0.1m/s, 則過水面積為
穩流筒下部與池底距離為
所以穩流筒下部與池底距離大於0.2m,即符合要求。
2.10配水井
配水井設計為馬蹄形,在外圍加寬700mm為污泥井。
時間取3分鍾 流量為
取配水井直徑為D=3000mm 則配水井高度
其中,設計水深為7.0m,超高為0.6m。
2.11出水部分單池設計流量:
出水溢流堰設計
(1) 堰上水頭 H=0.05mH2O
(2) 每個三角堰的流量0.783L/s
(3) 三角堰個數 因此取n=223(個)
2.12排泥部分
迴流污泥量為
剩餘污泥量為
因為剩餘污泥量小,所以忽略不計,即總污泥量為0.188m3/s。
取流速為0.8(m/s) 直徑為 取直徑為D=400mm
校核:流速為 0.6<0.75<0.9 因此符合要求。
綜上, 二沉池採用的是ZBX型周邊傳動吸泥機 池徑為35000mm.
希望能夠幫助你,污水凈化團隊竭誠為你服務!
㈣ 污水管道設計說明
一、工程概述
城市污水處理廠的設計工作一般分為兩個階段,即初步設計和施工圖設計。
城市污水處理廠的設計工作內容包括確定廠址、選擇合理的工藝流程、確定污水處理廠平面與高程的布置、計算建(構)築物等。
1、設計資料的收集與調查
(1)建設單位的設計任務書
包括設計規模(處理水量)、處理程度要求、佔地要求、投資情況等。
(2)收集相關資料
包括原水水質資料、當地氣象資料(溫度、風向、日照情況等)、水文地質資料(地下水位、土壤承載力、受納水體流量、最高水位等)、地形資料、城市規劃情況等。
(3)必要的現場調查
當缺乏某些重要的設計資料時,則現場的調查是必需的。
2、廠址選擇
城市污水處理廠廠址選擇是城市污水處理廠設計的前提,應根據選址條件和要求綜合考慮,選出適用的、系統優化、工程造價低、施工及管理方便的廠址。
二、處理流程選擇:
污水處理廠的工藝流程是指在達到所要求的處理程度的前提下,污水處理各單元的有機組合,以滿足污水處理的要求。
1、污水處理流程的選擇原則:
經濟節省性原則;
運行可靠性原則;
技術先進性原則。
2、應考慮的其他一些重要因素:
充分考慮業主的需求;
考慮實際操作管理人員的水平。
本次設計採用生物好氧處理法。好氧生物處理BOD5去除率高,可達90%~95%,穩定性較強,系統啟動時間短,一般為2~4周,很少產生臭氣,不產生沼氣,對污水的鹼度要求低。
污水處理工藝流程圖如下:
平面圖:
三、污水處理工程設計計算:
(一)、設計水量,水質及處理程度:
平均流量:5萬噸/天,變化系數1.4;
進水:COD:400 mg/L,BOD:300 mg/L,SS:350 mg/L;
出水:COD: 60 mg/L,BOD: 20 mg/L,SS: 20 mg/L;
處理程度計算:COD:(400-60)/400=85% ;
BOD:(300-20)/300=93.3% ;
SS:(350-20)/350=94.3% 。
(二)、格柵及其設計:
格柵是由一組平行的金屬柵條製成,斜置在污水流經的渠道上或水泵前集水井處,用以截留污水中的大塊懸浮雜質,以免後續處理單元的水泵或構築物造成損害。
設計中取二組格柵,N=2組,安裝角度α=60°
Q 設計水量=平均流量×變化系數=0.810 m3/s
2、格柵槽寬度:
B=S(n-1)+bn
式中: B——格柵槽寬度(m);
S——每根格柵條的寬度(m)。
設計中取S=0.015m,則計算得B=0.93m。
3、進水渠道漸寬部分的長度:
4、出水渠道漸窄部分的長度:
5、通過格柵的水頭損失:
6、柵後明渠的總高度:
H=h+h1+h2
式中: H——柵後明渠的總高度(m);
h2——明渠超高(m),一般採用0.3-0.5m
設計中取h2 =0.30m,得到H=1.28m。
7、柵槽總長度:
8、每日柵渣量計算:
採用機械除渣及皮帶輸送機或無軸輸送機輸送柵渣,採用機械柵渣打包機將柵渣打包,汽車運走。
9、進水與出水渠道:
城市污水通過DN1200mm的管道送入進水渠道,設計中取進水渠道寬度B1 =0.9m,進水水深h1=h=0.8m,出水渠道B2=B1=0.9m,出水水深h2=h1=0.8m。
(三)、沉砂池及其設計:
沉砂池是藉助於污水中的顆粒與水的比重不同,使大顆粒的沙粒、石子、煤渣等無機顆粒沉降,減少大顆粒物質在輸水管內沉積和消化池內沉積。
沉砂池按照運行方式不同可分為平流式沉砂池,豎流式沉砂池,曝氣式沉砂池,渦流式沉砂池。
設計中採用曝氣沉砂池,沉砂池設2組,N=2組,每組設計流量0.4051m3/s
1、沉砂池有效容積:
式中: V——沉砂池有效容積(m3);
Q——設計流量(m3/s);
t——停留時間(min),一般採用1-3min。
設計中取t=2min,Q=0.4051m3/s,得到V=48.61m3。
出水堰後自由跌落0.15m,出水流入出水槽,出水槽寬度B2=0.8m,出水槽水深h2=0.35m,水流流速v2=0.89m/s。採用出水管道在出水槽中部與出水槽連接,出水管道採用鋼管。管徑DN2=800mm,管內流速v2=0.99m/s,水力坡度i=1.46‰。
12、排砂裝置:
採用吸砂泵排砂,吸砂泵設置在沉砂斗內,藉助空氣提升將沉砂排出沉砂池,吸砂泵管徑DN=200mm。
(四)、初沉池及其設計:
初次沉澱池是藉助於污水中的懸浮物質在重力的作用下可以下沉,從而與污水分離,初次沉澱池去除懸浮物40%~60%,去除BOD20%~30%。
初次沉澱池按照運行方式不同可分為平流沉澱池、豎流沉澱池、輻流沉澱池、斜板沉澱池。
設計中採用平流沉澱池,平流沉澱池是利用污水從沉澱池一端流入,按水平方向沿沉澱池長度從另一端流出,污水在沉澱池內水平流動時,污水中的懸浮物在重力作用下沉澱,與污水分離。平流沉澱池由進水裝置、出水裝置、沉澱區、緩沖層、污泥區及排泥裝置組成。
沉澱池設2組,N=2組,每組設計流量Q=0.4051m3/s。
10、沉澱池總高度:
H=h1+h2+h3+h4
式中:h1——沉澱池超高(m),一般採用0.3-0.5;
h3——緩沖層高度(m),一般採用0.3m;
h4——污泥部分高度(m),一般採用污泥斗高度與池底坡底i=1‰的高度之和。
設計中取h1=0.3m,h3=0.3m,得h4=3.94m,得到H=7.54m。
15、出水渠道:
沉澱池出水端設出水渠道,出水管與出水渠道連接,將污水送至集水井。
式中: v3——出水渠道水流流速(m/s),一般採用v3≥0.4m/s;
B3——出水渠道寬度(m);
H3——出水渠道水深(m),一般採用0.5-2.0。
設計中取B3=1.0M,H3=0.8m,得到v3=0.51m/s>0.4m/s。
出水管道採用鋼管,管徑DN=1000mm,管內流速為v=0.51m/s,水力坡降i=0.479‰。
16、進水擋板、出水擋板:
沉澱池設進水擋板和出水擋板,進水擋板距進水穿孔花牆0.5m,擋板高出水面0.3m, 伸入水下0.8m。出水擋板距出水堰0.5m,擋板高出水面0.3m,伸入水下0.5m。在出水擋板處設一個浮渣收集裝置,用來收集攔截的浮渣。
17、排泥管:
沉澱池採用重力排泥,排泥管直徑DN300mm,排泥時間t4=20min,排泥管流速v4=0.82m/s,排泥管伸入污泥斗底部。排泥管上端高出水面0.3m,便於清通和排氣。排泥靜水壓頭採用1.2m。
18、刮泥裝置:
沉澱池採用行車式刮泥機,刮泥機設於池頂,刮板伸入池底,刮泥機行走時將污泥推入污泥斗內。
(五)、曝氣池及其設計:
設計中採用傳統活性污泥法。傳統活性污泥法,又稱普通活性污泥法,污水從池子首端進入池內,二沉池迴流的污泥也同步進入,廢水在池內呈推流形式流至池子末端,其池型為多廊道式,污水流出池外進入二次沉澱池,進行泥水分離。污水在推流過程中,有機物在微生物的作用下得到降解,濃度逐漸降低。傳統活性污泥法對污水處理效率高,BOD去除率可達到90%以上,是較早開始使用並沿用至今的一種運行方式
7、曝氣池總高度:
H總=H+h
式中: H總——曝氣池總高度(m);
h——曝氣池超高(m),一般取0.3—0.5m。
設計中取 h=0.5m,則 H=4.7m。
10、管道設計:
①中位管:
曝氣池中部設中位管,在活性污泥培養馴化時排放上清液。中位管管徑為600mm。
②放空管:
曝氣池在檢修時,需要將水放空,因此應在曝氣池底部設放空管,放空管管徑為500mm。
④消泡管
在曝氣池隔牆上設置消泡水管,管徑為DN25mm,管上設閥門。消泡管是用來消除曝氣池在運行初期和運行過程中產生的泡沫。
⑤空氣管
曝氣池內需設置空氣管路,並設置空氣擴散設備,起到充氧和攪拌混合的作用。
11、曝氣池需氧量計算:
依照氣水比5:1進行計算,Q=14580m3/h。
12、鼓風機選擇:
空氣擴散裝置安裝在距離池底0.2m處,曝氣池有效水深為4.2m,空氣管路內的水頭損失按1.0m計,則空壓機所需壓力為:
P=(4.2-0.2+1.0)×9.8=49kPa
鼓風機供氣量:
Gsmax=14580m3/h=243m3/min。
根據所需壓力及空氣量,選擇RE-250型羅茨鼓風機,共5台,該鼓風機風壓49kPa,風量75.8m3/min。正常條件下,3台工作,2台備用;高負荷時,4台工作,1台備用
(六)、二沉池及其設計:
二沉池一般可分為平流式、輻流式、豎流式和斜板(管)等幾類。
平流式沉澱池可用於大、中、小型污水處理廠,但一般多用於初沉池,作為二沉池比較少見。平流式沉澱池配水不易均勻,排泥設施復雜,不易管理。
輻流式沉澱池一般採用對稱布置,配水採用集配水井,這樣各池之間配水均勻,結構緊湊。輻流式沉澱池排泥機械已定型化,運行效果好,管理方便。輻流式沉澱池適用於大、中型污水處理廠。
豎流式沉澱池一般用於小型污水處理廠以及中小型污水廠的污泥濃縮池。該池型的佔地面積小、運行管理簡單,但埋深較大,施工困難,耐沖擊負荷差。
斜管(板)沉澱池具有沉澱效率高、停留時間短、佔地少等優點。一般常用於小型污水處理廠或工業企業內的小型污水處理站。斜管(板)沉澱池處理效果不穩定,容易形成污泥堵塞,維護管理不便。
設計中選用輻流沉澱池,沉澱池設2組,N=2組,每組設計流量0.405m3/s。
3、沉澱池有效水深:
h2=q′×t
式中: h2——沉澱池有效水深(m);
t——沉澱時間(h),一般採用1—3h。
設計中取 t=2.5h,得到 h2=3.5m。
4、徑深比:
D/h2=10.4,滿足6-12之間的要求。
5、污泥部分所需容積:
式中: Q0——平均流量(m3/s);
R——污泥迴流比(%);
X——污泥濃度(mg/L);
Xr——二沉池排泥濃度(mg/L)。
設計中取Q0=0.579 m3/s,R=50%,
,
SVI——污泥容積指數,一般採用70-150;
r——系數,一般採用1.2。
設計中取SVI=100,r=1.2,得到Xr=1.2×104mg/L,X=4000mg/L。
經計算得到 V1=1563.3m3。應採用連續排泥方式。
6、沉澱池的進、出水管道設計:
進水管:流量應為設計流量+迴流量,管徑計算為900mm
出水管:管徑計算為800mm
排泥管:管徑為500mm
7、出水堰計算:
堰上負荷的校核。規定堰上負荷范圍1.5-2.9L/m.s之間。
8、沉澱池總高度:
H=h1+h2+h3+h4+h5
式中:H——沉澱池總高度(m);
h1——沉澱池超高(m),一般採用0.3-0.5m;
h2——沉澱池有效水深(m);
h3——沉澱池緩沖層高度(m),一般採用0.3m;
h4——沉澱池底部圓錐體高度(m);
h5——沉澱池污泥區高度(m)。
設計中取h1=0.3m,h3=0.3m,h2=3.5m.
根據污泥部分容積過大及二沉池污泥的特點,採用機械刮吸泥機連續排泥,池底坡度為0.05。
h4=(r-r1)×i
式中:r——沉澱池半徑(m);
r1——沉澱池進水豎井半徑(m),一般採用1.0m;
i——沉澱池池底坡度。
設計中取r1=1.0m,i=0.05,得到h4=0.86m。
式中:V1——污泥部分所需容積(m3);
V2——沉澱池底部圓錐體容積(m3);
F——沉澱池表面積(m2)。
計算可得 =315.4m3,則h5=1.20m。
得到H=6.16m。
(七)、消毒接觸池及其設計:
污水經過以上構築物處理後,雖然水質得到了改善,細菌數量也大幅減少,但是細菌的絕對值依然十分客觀,並有存在病原菌的可能,因此,污水在排放水體前,應進行消毒處理。
設計中採用平流式消毒接觸池,消毒接觸池設2組,每組3廊道。
1、消毒接觸池容積:
V=Qt
式中: Q——單池污水設計流量(m3/s);
t——消毒接觸時間(min),一般採用30min。
設計中取t=30min,得每組消毒接觸池的容積為729m3。
2、消毒接觸池表面積:
F=V/h2
式中:h2——消毒池有效水深,設計中取為2.5m。
設計中取h2=2.5m,得到F=291.6m2。
3、消毒接觸池池長:
L′=F/B
式中:B——消毒池寬度(m),設計中取為5m。
設計中取B=5m,計算得 L=58.32m。每廊道長為19.44m,設計中取為20m。
校核長寬比:L′/B=11.7>10,合乎要求。
4、消毒接觸池池高:
H=h1+h2
式中:h1——消毒池超高(m),一般採用0.3m;
設計中取h1=0.3m,計算得 H=2.8m。
5、進水部分:
每個消毒接觸池的進水管管徑D=800mm,v=1.0m/s。
6、混合:
採用管道混合的方式,加氯管線直接接入消毒接觸池進水管,為增強混合效果,加氯點後接D=800mm的靜態混合器。
(八)、污泥濃縮池及其設計:
污泥濃縮的對象是顆粒間的空隙水,濃縮的目的是在於縮小污泥的體積,便於後續污泥處理,常用污泥濃縮池分為豎流濃縮池和輻流濃縮池2種。二沉池排出的剩餘污泥含水率高,污泥數量較大,需要進行濃縮處理;初沉污泥含水量較低,可以不採用濃縮處理。設計中一般採用濃縮池處理剩餘活性污泥。濃縮前污泥含水率99%,濃縮後污泥含水率97%。
13、溢流堰:
濃縮池溢流出水經過溢流堰進入出水槽,然後匯入出水管排出。出水槽流量q=0.0015m3/s,設出水槽寬b=0.15m,水深0.05m,則水流速為0.2m/s,溢流堰周長:
c=π(D-2b)
計算得到c=15.86m。
溢流堰採用單側90°三角形出水堰,三角堰頂寬0.16m,深0.08m,每格沉澱池有110個三角堰,三角堰流量q0為:
Q1=0.0015/110=0.0000136m3/s
h′=0.7q02/5
式中: q0——每個三角堰流量(m3/s);
h′——三角堰堰水深(m)。
計算得到h′=0.0079m。
三角堰後自由跌落0.10m,則出水堰水頭損失為0.1079m