不飽和聚酯樹脂反應過程中加熱介質的溫度
1. 不飽和聚酯樹脂的固化機理
常用的復不飽和聚酯樹脂主要制由線型不飽和樹脂和活性單體(一般是苯乙烯)兩部分組成。兩者都含有不飽和鍵,在一定的條件下(例如加入過氧化物引發劑、加熱、受紫外線照射等),就能進行自由基共聚和反應。這種反應實在按照鏈引發、鍵增長和鏈終止的歷程進行的。
在這一過程中伴隨著熱量的放出,液體樹脂的粘度迅速增大,硬度提高,最終變成了既不溶解也不熔融的固體。
根據需要在成型過程中可以加入增強材料如玻璃纖維,也可以不加增強材料,只加(或不加)不同的填料,前者即得到我們通常所說的玻璃鋼,後者可以製成人造大理石,人造瑪瑙等製品或作為表面塗層使用。
(1)不飽和聚酯樹脂反應過程中加熱介質的溫度擴展閱讀
使用配比:100份樹脂,加固化劑2~3份,促進劑1~2.5份。當溫度低需用加速劑時,加量為0.2~0.5%份。添加順序為:加速劑®促進劑®固化劑,並且每加一種時,都必須充分與樹脂混合均勻後,才可加入第二種。
注意事項:過氧化甲乙酮是潛在性爆炸物必須遠離火源、碰撞及避免陽光直射。儲藏在陰涼、通風處。但決不可與促進劑放在一起,二者相互混合會引起燃燒及爆炸。
2. 不飽和樹脂的放峰溫度
不飽和樹脂的放峰溫度
不飽和聚酯樹脂的相對密度在1.11~1.20左右,固化時體積收縮率較大,固化樹脂的一些物理性質如下:⑴耐熱性.絕大多數不飽和聚酯樹脂的熱變形溫度都在50~60℃,一些耐熱性好的樹脂則可達120℃.紅熱膨脹系數α1為(130~150)×10-6℃.⑵力學性能.不飽和聚酯樹脂具有較高的拉伸、彎曲、壓縮等強度.⑶耐化學腐蝕性能.不飽和聚酯樹脂耐水、稀酸、稀鹼的性能較好,耐有機溶劑的性能差,同時,樹脂的耐化學腐蝕性能隨其化學結構和幾何開關的不同,可以有很大的差異.
3. 不飽和聚酯樹脂在低溫下的……
任何液體或流體,其流動性都受溫度的影響。
以柴油為例,夏天用得好好的,到了深秋,到了冬季,車子就難以啟動,不好好運轉了。每年冬季最冷的那些天,高速公路上因天冷拋錨的柴油車經常有。路警只好將它們拖走。
柴油的標號也是根據對應溫度的流動性來確定的。例如夏天用10號或20號,秋天用0號或-10號,冬季用-20號。這個號前面的數字就是柴油失去流動性的氣溫數。
同樣,樹脂受溫度的影響更大更敏感。你問你施工的樹脂太粘稠的原因,當然就是溫度低的原因啦。
以上兩位的回答不無道理,任何一種施工都有一定的指標規范。樹脂在北方冬季室外施工都會遇到這個問題。
鑒於你實際的施工條件和要求,介紹一下我的經驗供你參考。
1)我在指導工人製作水晶膠滴塑胸牌時,曾因溫度低出現過許多廢品,盡管在室內,但從烤箱里取出使用時,又是置身於較冷的環境里 。樹脂太稠,攪拌時會包進許多氣泡而且抽真空也難以消失。太稠的樹脂也不好滴注。
經過多次試驗調整最後得出一個有效的經驗:外加10%-15%的二甲苯。(加其他稀料如丙酮也可)這種做法似乎不太合理,水晶膠廠家也不贊成。可是直到現在我們還用著。
2)我加工水晶凍標牌時,為了減少氣泡,總是在不飽和水晶樹脂里加入7%-13%的苯乙烯,按說比例有點大,但我是這樣用的。
以上兩則實例,都證明在溫度低的環境里施工,往樹脂里添加適量的稀釋劑,應該是實用有效的方法。
應該指出的是,以上兩例,樹脂高檔,價格也貴,其產品都是要求質量和效果極高的。非同你的工程施工,大概是191之類的普通樹脂,比較來說,是粗活,我想用加稀料的方法一定可以解決你當前的問題!到底應加多大的比例,你要從5%開始往上實驗,應該不超過20%,加入稀料,攪拌均勻後再加入紅白料,繼續攪拌。加入稀料後,樹脂的量也相應增加了,但計算促進劑固化劑比例時,仍按原來的樹脂量計算。不過,在同樣的溫度下,稀釋過的樹脂比原來沒稀釋的樹脂,其凝膠時間相對要稍長一些。
這里提供給你一個經驗,你可以照辦試一試,但更重要的是給你開拓一個解決問題的思路:通過實驗,自己解決。因為還會有許多細節問題,指望不上別人啊。
我對樹脂外行,可能還會有更好的解決之道。在此只是把自己的一點實際經驗提供給您,不知對您有沒有實際價值。
4. 196不飽和樹脂固化時製品放熱溫度最高時多少度
你說的是抄使不飽和聚酯樹脂固化的環境溫度還是樹脂固化時的放熱峰的溫度?如果是想降低固化時的環境溫度,可適當多添加促進劑,在冬季還可以添加特種促進劑來達到。如果是想降低固化放熱峰的溫度以減少製品開裂的危險,少添加一些引發劑和促進劑,並適當降低環境溫度,這樣就可以降低不飽和聚酯樹脂的固化速度,其放熱峰就會適當地下降。
5. 不飽和樹脂的特性
不飽和聚酯樹脂,常用於物體表面加厚、固化,使用時如同刷油漆一般,層層加疊,固化過程釋放苯乙烯等有害氣體,一般是由不飽和二元酸二元醇或者飽和二元酸不飽和二元醇縮聚而成的具有酯鍵和不飽和雙鍵的線型高分子化合物。具體分物理性質和化學性質。
物理性質:
⑴耐熱性。絕大多數不飽和聚酯樹脂的熱變形溫度都在50~60℃,一些耐熱性好的樹脂則可達120℃。紅熱膨脹系數α1為(130~150)×10-6℃。
⑵力學性能。不飽和聚酯樹脂具有較高的拉伸、彎曲、壓縮等強度。
⑶耐化學腐蝕性能。不飽和聚酯樹脂耐水、稀酸、稀鹼的性能較好,耐有機溶劑的性能差,同時,樹脂的耐化學腐蝕性能隨其化學結構和幾何開關的不同,可以有很大的差異。
⑷介電性能。不飽和聚酸樹脂的介電性能良好。[2]
化學性質
不飽和聚酯是具有多功能團的線型高分子化合物,在其骨架主鏈上具有聚酯鏈鍵和不飽和雙鍵,而在大分子鏈兩端各帶有羧基和羥基。
主鏈上的雙鍵可以和乙烯基單體發生共聚交聯反應,使不飽和聚酯樹脂從可溶、可熔狀態轉變成不溶、不熔狀態。
主鏈上的酯鍵可以發生水解反應,酸或鹼可以加速該反應。若與苯乙烯共聚交聯後,則可以大大地降低水解反應的發生。
在酸性介質中,水解是可逆的,不完全的,所以,聚酯能耐酸性介質的侵蝕;在鹼性介質中,由於形成了共振穩定的羧酸根陰離子,水解成為不可逆的,所以聚酯耐鹼性較差。
聚酯鏈末端上的羧基可以和鹼土金屬氧化物或氫氧化物[例如MgO,CaO,Ca(OH)2等]反應,使不飽和聚酯分子鏈擴展,最終有可能形成絡合物。分子鏈擴展可使起始粘度為0.1~1.0Pa·s粘性液體狀樹脂,在短時間內粘度劇增至103Pa·s以上,直至成為不能流動的、不粘手的類似凝膠狀物。樹脂處於這一狀態時並未交聯,在合適的溶劑中仍可溶解,加熱時有良好的流動性。
——來自科寶建材回答,希望能夠幫助到您!
6. 不飽和聚酯樹脂120攝氏度熱穩定性
3小時內和60度24小時接近
7. 不飽和聚酯樹脂的基本配方是什麼各起什麼作用
不飽和聚酯樹脂是熱固性樹脂中最常用的一種,它是由飽和二元酸、不飽和二元酸和二元醇縮聚而成的線形聚合物,經過交聯單體或活性溶劑稀釋形成的具有一定黏度的樹脂溶液,簡稱UPR。
工藝性能優良
這是不飽和聚酯樹脂最大的優點。可以在室溫下固化,常壓下成型,工藝性能靈活,特別適合大型和現場製造玻璃鋼製品。固化後樹脂綜合性能好。
力學性能指標略低於環氧樹脂,但優於酚醛樹脂。耐腐蝕性,電性能和阻燃性可以通過選擇適當牌號的樹脂來滿足要求,樹脂顏色淺,可以製成透明製品。
品種多
品種多,適應廣泛,價格較低。缺點是,貯存期限短。
(7)不飽和聚酯樹脂反應過程中加熱介質的溫度擴展閱讀:
鄰苯型不飽和聚酯和間苯型不飽和聚酯
鄰苯二甲酸和間苯二甲酸互為異構體,由它們合成的不飽和聚酯分子鏈分別為鄰苯型和間苯型,雖然它們的分子鏈化學結構相似,但間苯型不飽和聚酯和鄰苯型不飽和聚酯相比,具有下述一些特性:
①用間苯型二甲酸可以製得較高分子量的間苯二甲酸不飽和聚酯,使固化製品有較好的力學性能、堅韌性、耐熱性和耐腐蝕性能;
②間苯二甲酸聚酯的純度高,樹脂中不殘留有間苯二甲酸和低分子量間苯二甲酸酯雜質;
③間苯二甲酸聚酯分子鏈上的酯鍵受到間苯二甲酸立體位阻效應的保護,鄰苯二甲酸聚酯分子鏈上的酯鍵更易受到水和其它各種腐蝕介質的侵襲,用間苯二甲酸聚酯樹脂製得的玻璃纖維增強塑料在71℃飽和氯化鈉溶液中浸泡一年後仍具有相當高的性能。
雙酚A型不飽和聚酯
雙酚A型不飽和聚酯與鄰苯型不飽和聚酸及間苯型不飽和聚酯大分子鏈的化學結構相比,分子鏈中易被水解遭受破壞的酯鍵間的間距增大,從而降低了酯鍵密度;雙酚A不飽和聚酯與苯乙烯等交聯劑共聚固化後的空間效應大,對酯基起屏蔽保護作用,阻礙了酯鍵的水解。
而在分子結構中的新戊基,連接著兩個苯環,保持了化學瓜的穩定性,所以這類樹脂有較好的耐酸、耐鹼及耐水解性能。
乙烯基樹脂
乙烯基樹脂又稱為環氧丙烯酸樹脂,是60年代發展起來的一類新型樹脂,其特點是聚合物中具有端基不飽和雙鍵。
乙烯基樹脂具有較好的綜合性能:
①由於不飽和雙鍵位於聚合物分子鏈的端部,雙鍵非常活潑,固化時不受空間障礙的影響,可在有機過氧化物引發下,通過相鄰分子鏈間進行交聯固化,也可與單體苯乙烯其聚固化;
②樹脂鏈中的R基團可以屏蔽酯鍵,提高酯鍵的耐化學性能和耐水解穩定性;
③乙烯基樹脂中,每單位相對分子質量中的酯鍵比普通不飽和聚酯中少35%~50%左右,這樣就提高了該樹脂在酸、鹼溶液中的水解穩定性;
④樹脂鏈上的仲羥基與玻璃纖維或其它纖維的浸潤性和粘結性從而提高復合材料的強度;
⑤環氧樹脂主鏈,它可以賦與乙烯基樹脂韌性,分子主鏈中的醚鍵可使樹脂具有優異的耐酸性。
乙烯基樹脂的品種和性能,隨著所用原料的不同而有廣泛的變化,可按復合材料對樹脂性能的要求設計分子結構。
鹵代不飽和聚酯
鹵代不飽和聚酯是指由氯茵酸酐(HET酸酐)作為飽和二元酸(酐)合成得到的一種氯代不飽和聚酯。
氯代不飽和聚酯樹脂一直是當作具有優良自熄性能的樹脂來使用的。但90年代以來研究表明氯代不飽和聚酯樹脂亦具有相當好的耐腐蝕性能。
它在某些介質中耐腐蝕性能與雙酚A不飽和聚酯樹脂和乙烯基樹脂基本相當,而在某些例如濕氯中的耐腐蝕性能則優於乙烯基樹脂和雙酚A不飽和聚酯樹脂。
熱濕氯在不飽和聚酯樹脂接觸後會發生反應而產生氯代的不飽和聚酯樹脂或稱"氯奶油"。由雙酚A不飽和聚酯 樹脂和乙烯基酯樹脂產生"氯奶油"性狀柔軟。
濕氯可以通過該"氯奶油"層進一步(腐蝕)滲透,但由氯代不飽和聚酯產生"氯奶油"性狀堅硬,可以阻止濕氯的進一步(腐蝕)滲透。
不飽和聚酯樹脂用途:建築領域:制樹脂冷卻塔,8米3/小時-3000米3/小時的橫流、逆流、噴射式塔及風筒、風機葉片、收水器等輔件。玻璃鋼樹脂管、罐、槽等防腐產品及工程:包括大、中、小口徑管道。
管件、閥門、貯罐、貯槽、格柵、填倉板、塔器、煙囪、防腐地面及建築防腐等。玻璃鋼樹脂船艇:包括遊艇、救生艇、交通艇、漁船、快艇、舢舨、養殖船、沖鋒舟等。玻璃鋼樹脂食品容器:高位水箱、食品運輸罐、飲料罐。
8. 不飽和聚酯樹脂的固化原理
具有粘性的可流動的不飽和聚酯樹脂,在引發劑存在下發生自由基共聚合反應,而生成性能穩定的體型結構的過程稱為不飽和聚酯的固化。
發生在線型聚酯樹脂分子和交聯劑分子之間的自由基共聚合反應,其反應機理同前述自由基共聚反應的機理基本相同,所不同的它是在具有多個雙鍵的聚酯大分子(即具有多個官能團)和交聯劑苯乙烯的雙鍵之間發生的共聚,其最終結果,必然形成體型結構。
固化的階段性
不飽和聚酯樹脂的整個固化過程包括三個階段:
凝膠——從粘流態樹脂到失去流動性生成半固體狀有彈性的凝膠;
定型——從凝膠到具有一定硬度和固定形狀,可以從模具上將固化物取下而不發生變形;
熟化——具有穩定的化學、物理性能,達到較高的固化度。
一切具有活性的線型低聚物的固化過程,都可分為三個階段,但由於反應的機理和條件不同,其三個階段所表現的特點也不同。不飽和聚酯樹脂的固化是自由基共聚反應,因此具有鏈鎖反應的性質,表現在三個階段上,其時間間隔具有較短的特點,一般凝膠到定型有時數個小時就可完成,再加上不飽和聚酯在固化時系統內無多餘的小分子逸出,結構較為緊密,因此不飽和聚酯樹脂和其他熱固性樹脂相比具有最佳的室溫接觸成型的工藝性能。
引發劑
用於不飽和聚酯樹脂固化的引發劑與自由基聚合用引發劑一樣,一般為有機過氧化合物。各類有機過氧化合物的特性,通常用活性氧含量,臨界溫度和半衰期等表示。
活性氧含量
活性氧含量又稱為有效氧含量。對於純粹的過氧化物,活性氧含量是代表有機過氧化物純度的指標。實際上,由於純粹有機過氧化物貯存的不安定性,通常與惰性稀釋劑如鄰苯二甲酸二丁酯等混合配製,以利於貯存和運輸。
臨界溫度
過氧化物受熱分解形成自由基時所需的最低溫度稱為臨界溫度。一般在臨界溫度以上才發生引發反應,這可從固化放熱效應反映出來。臨界溫度是不飽和聚酯樹脂固化時應用的工藝指標。
半衰期
半衰期是指在給定溫度條件下,有機過氧化物分解一半所需要的時間。實際應用上,可用下面兩種方法表示半衰期,一種是給定溫度下的時間,另一種是給定時間下的溫度,它們都是引發劑活性的標志。顯然,有機過氧化物的半衰期愈短,其活性也就愈大。
引發劑的種類雖然很多,但不飽和聚酯樹脂固化最常用的主要是兩種,即國產1 號引發劑和2號引發劑。
1號引發劑是50%過氧化環已酮糊。過氧化環已酮是幾種化合物的混合物,外觀是白色粉沫或硬塊,易溶於苯乙烯中得到透明的溶液。由1:1的過氧化環已酮和鄰苯二甲酸二丁酯組成的1號引發劑,呈糊狀,久置後分層,上層為透明溶液,下層是白色沉澱物,使用時必須攪拌均勻成糊狀。
過氧化甲乙酮具有與過氧化環已酮類似的特性,一般配成鄰苯二甲酸二甲酯的50%溶液使用,該溶液無色透明,不含懸浮物,使用時不需要攪拌。
9. 不飽和聚酯樹脂的理化性質
不飽和聚酯樹脂的相對密度在1.11~1.20左右,固化時體積收縮率較大,固化樹脂的一些物理性質如下:
⑴耐熱性。絕大多數不飽和聚酯樹脂的熱變形溫度都在50~60℃,一些耐熱性好的樹脂則可達120℃。紅熱膨脹系數α1為(130~150)×10-6℃。
⑵力學性能。不飽和聚酯樹脂具有較高的拉伸、彎曲、壓縮等強度。
⑶耐化學腐蝕性能。不飽和聚酯樹脂耐水、稀酸、稀鹼的性能較好,耐有機溶劑的性能差,同時,樹脂的耐化學腐蝕性能隨其化學結構和幾何開關的不同,可以有很大的差異。
⑷介電性能。不飽和聚酸樹脂的介電性能良好。 不飽和聚酯是具有多功能團的線型高分子化合物,在其骨架主鏈上具有聚酯鏈鍵和不飽和雙鍵,而在大分子鏈兩端各帶有羧基和羥基。
主鏈上的雙鍵可以和乙烯基單體發生共聚交聯反應,使不飽和聚酯樹脂從可溶、可熔狀態轉變成不溶、不熔狀態。
主鏈上的酯鍵可以發生水解反應,酸或鹼可以加速該反應。若與苯乙烯共聚交聯後,則可以大大地降低水解反應的發生。
在酸性介質中,水解是可逆的,不完全的,所以,聚酯能耐酸性介質的侵蝕;在鹼性介質中,由於形成了共振穩定的羧酸根陰離子,水解成為不可逆的,所以聚酯耐鹼性較差。
聚酯鏈末端上的羧基可以和鹼土金屬氧化物或氫氧化物[例如MgO,CaO,Ca(OH)2等]反應,使不飽和聚酯分子鏈擴展,最終有可能形成絡合物。分子鏈擴展可使起始粘度為0.1~1.0Pa·s粘性液體狀樹脂,在短時間內粘度劇增至103Pa·s以上,直至成為不能流動的、不粘手的類似凝膠狀物。樹脂處於這一狀態時並未交聯,在合適的溶劑中仍可溶解,加熱時有良好的流動性。
10. 不飽和聚酯樹脂
一般是由不飽和二元酸二元醇或者飽和二元酸不飽和二元醇縮聚而成的具有酯鍵和不飽和雙鍵的線型高分子化合物。通常,聚酯化縮聚反應是在190~220℃進行,直至達到預期的酸值(或粘度),在聚酯化縮反應結束後,趁熱加入一定量的乙烯基單體,配成粘稠的液體,這樣的聚合物溶液稱之為不飽和聚酯樹脂。
化工原料的一種,常用於物體表面加厚、固化,使用時如同刷油漆一般,層層加疊,固化過程釋放苯乙烯等有害氣體。
不飽和聚酯樹脂是熱固性樹脂中最常用的一種,它是由飽和二元酸、不飽和二元酸和二元醇縮聚而成的線形聚合物,經過交聯單體或活性溶劑稀釋形成的具有一定黏度的樹脂溶液,簡稱UP。
不飽和聚酯樹脂性能特點:
1.工藝性能優良。這是不飽和聚酯樹脂最大的優點。可以在室溫下固化,常壓下成型,工藝性能靈活,特別適合大型和現場製造玻璃鋼製品。
2.固化後樹脂綜合性能好。力學性能指標略低於環氧樹脂,但優於酚醛樹脂。耐腐蝕性,電性能和阻燃性可以通過選擇適當牌號的樹脂來滿足要求,樹脂顏色淺,可以製成透明製品。
3.品種多,適應廣泛,價格較低。
4.缺點是固化時收縮率較大,貯存期限短,含苯乙烯,有刺激性氣體,長期接觸對身體健康不利。
[編輯本段]不飽各聚酯樹脂的物理和化學性質
1、物理性質 不飽和聚酯樹脂的相對密度在1.11~1.20左右,固化時體積收縮率較大,固化樹脂的一些物理性質如下:
⑴耐熱性。絕大多數不飽和聚酯樹脂的熱變形溫度都在50~60℃,一些耐熱性好的樹脂則可達120℃。紅熱膨脹系數α1為(130~150)×10-6℃。
⑵力學性能。不飽和聚酯樹脂具有較高的拉伸、彎曲、壓縮等強度。
⑶耐化學腐蝕性能。不飽和聚酯樹脂耐水、稀酸、稀鹼的性能較好,耐有機溶劑的性能差,同時,樹脂的耐化學腐蝕性能隨其化學結構和幾何開關的不同,可以有很大的差異。
⑷介電性能。不飽和聚酸樹脂的介電性能良好。
2、化學性質 不飽和聚酯是具有多功能團的線型高分子化合物,在其骨架主鏈上具有聚酯鏈鍵和不飽和雙鍵,而在大分子鏈兩端各帶有羧基和羥基。
主鏈上的雙鍵可以和乙烯基單體發生共聚交聯反應,使不飽和聚酯樹脂從可溶、可熔狀態轉變成不溶、不熔狀態。
主鏈上的酯鍵可以發生水解反應,酸或鹼可以加速該反應。若與苯乙烯共聚交聯後,則可以大大地降低水解反應的發生。
在酸性介質中,水解是可逆的,不完全的,所以,聚酯能耐酸性介質的侵蝕;在鹼性介質中,由於形成了共振穩定的羧酸根陰離子,水解成為不可逆的,所以聚酯耐鹼性較差。
聚酯鏈末端上的羧基可以和鹼土金屬氧化物或氫氧化物[例如MgO,CaO,Ca(OH)2等]反應,使不飽和聚酯分子鏈擴展,最終有可能形成絡合物。分子鏈擴展可使起始粘度為0.1~1.0Pa·s粘性液體狀樹脂,在短時間內粘度劇增至103Pa·s以上,直至成為不能流動的、不粘手的類似凝膠狀物。樹脂處於這一狀態時並未交聯,在合適的溶劑中仍可溶解,加熱時有良好的流動性
[編輯本段]不飽和聚酯樹脂結構與性能的關系
迄今,國內外用作復合材料基體的不飽和聚酯(樹脂)基體基本上是鄰苯二甲酸型(簡稱鄰苯型)、間苯二甲酸型(簡稱間苯型)、雙酚A型和乙烯基酯型、鹵代不飽和聚酯樹脂等。
1、 鄰苯型不飽和聚酯和間苯型不飽和聚酯
鄰苯二甲酸和間苯二甲酸互為異構體,由它們合成的不飽和聚酯分子鏈分別為鄰苯型和間苯型,雖然它們的分子鏈化學結構相似,但間苯型不飽和聚酯和鄰苯型不飽和聚酯相比,具有下述一些特性:①用間苯型二甲酸可以製得較高分子量的間苯二甲酸不飽和致辭酯,使固化製品有較好的力學性能、堅韌性、耐熱性和耐腐蝕性能;②間苯二甲酸聚酯的純度度,樹脂中不殘留有間苯二甲酸和低分子量間苯二甲酸酯雜質;③間苯二甲酸聚酯分子鏈上的酯鍵受到間苯二甲酸立體位阻效應的保護,鄰苯二甲酸聚酯分子鏈上的酯鍵更易受到水和其它各種腐蝕介質的侵襲,用間苯二甲酸聚酯樹脂製得的玻璃纖維增強塑料在71℃飽和氯化鈉溶液中浸泡一年後仍具有相當高的性能。
2、 雙酚A型不飽和聚酯
雙酚A型不飽和聚酯與鄰苯型不飽和聚酸及間苯型不飽和聚酯大分子鏈的化學結構相比,分子鏈中易被水解遭受破壞的酯鍵間的間距增大,從而降低了酯鍵密度;雙酚A不飽和聚酯與苯乙烯等交聯劑共聚固化後的空間效應大,對酯基起屏蔽保護作用,阻礙了酯鍵的水解;而在分子結構中的新戊基,連接著兩個苯環,保持了化學瓜的穩定性,所以這類樹脂有較好的耐酸、耐鹼及耐水解性能。
3、 乙烯基樹脂
乙烯基樹脂又稱為環氧丙烯酸樹脂,是60年代發展起來的一類新型樹脂,其特點是聚合物中具有端基不飽和雙鍵。
乙烯基樹脂具有較好的綜合性能:①由於不飽和雙鍵位於聚合物分子鏈的端部,雙鍵非常活潑,固化時不受空間障礙的影響,可在有機過氧化物引發下,通過相鄰分子鏈間進行交聯固化,也可與單體苯乙烯其聚固化;②樹脂鏈中的R基團可以屏蔽酯鍵,提高酯鍵的耐化學性能和耐水解穩定性;③乙烯基樹脂中,每單位相對分子質量中的酯鍵比普通不飽和聚酯中少35%~50%左右,這樣就提高了該樹脂在酸、鹼溶液中的水解穩定性;④樹脂鏈上的仲羥基與玻璃纖維或其它纖維的浸潤性和粘結性從而提高復合材料的強度;⑤環氧樹脂主鏈,它可以賦與乙烯基樹脂韌性,分子主鏈中的醚鍵可使樹脂具有優異的耐酸性。
乙烯基樹脂的品種和性能,隨著所用原料的不同而有廣泛的變化,可按復合材料對樹脂性能的要求設計分子結構。
4、 鹵代不飽和聚酯
鹵代不飽和聚酯是指由氯茵酸酐(HET酸酐)作為飽和二元酸(酐)合成得到的一種氯代不飽和聚酯。
氯代不飽和聚酯樹脂一直是當作具有優良自熄性能的樹脂來使用的。但近年來研究表明氯代不飽和聚酯樹脂亦具有相當好的耐腐蝕性能,它在上些介質中耐腐蝕性能與雙酚A不飽和聚酯樹脂和乙烯基樹脂基本相當,而在某些例(例如濕氯)中的耐腐蝕性能則優於乙烯基樹脂和雙酚A不飽和聚酯樹脂。
熱濕氯在不飽和聚酯樹脂接觸後會發生反應而產生氯代的不飽和聚酯樹脂或稱"氯奶油"。由雙酚A不飽和聚酯 樹脂和乙烯基酯樹脂產生"氯奶油"性狀柔軟,濕氯可以通過該"氯奶油"層進一步(腐蝕)滲透,但由氯代不飽和聚酯產生"氯奶油"性狀堅硬,可以阻止濕氯的進一步(腐蝕)滲透。
[編輯本段]不飽和聚酯樹脂的固化機理
不飽和聚酯樹脂的固化機理
1.1 從游離基聚合的化學動力學角度分析
UPR的固化屬於自由基共聚合反應。固化反應具有鏈引發、鏈增長、鏈終止、鏈轉移四個游離基反應的特點。
鏈引發——從過氧化物引發劑分解形成游離基到這種游離基加到不飽和基團上的過程。
鏈增長——單體不斷地加合到新產生的游離基上的過程。與鏈引發相比,鏈增長所需的活化能要低得多。
鏈終止——兩個游離基結合,終止了增長著的聚合鏈。
鏈轉移——一個增長著的大的游離基能與其他分子,如溶劑分子或抑制劑發生作用,使原來的活性鏈消失成為穩定的大分子,同時原來不活潑的分子變為游離基。
1.2 不飽和聚酯樹脂固化過程中分子結構的變化
UPR的固化過程是UPR分子鏈中的不飽和雙鍵與交聯單體(通常為苯乙烯)的雙鍵發生交聯聚合反應,由線型長鏈分子形成三維立體網路結構的過程。在這一固化過程中,存在三種可能發生的化學反應,即
1、苯乙烯與聚酯分子之間的反應;
2、苯乙烯與苯乙烯之間的反應;
3、聚酯分子與聚酯分子之間的反應。
對於這三種反應的發生,已為各種實驗所證實。
值得注意的是,在聚酯分子結構中有反式雙鍵存在時,易發生第三種反應,也就是聚酯分子與聚酯分子之間的反應,這種反應可以使分子之間結合的更緊密,因而可以提高樹脂的各項性能。
1.3 不飽和樹脂固化過程的表觀特徵變化
不飽和聚酯樹脂的固化過程可分為三個階段,分別是:
1、凝膠階段(A階段):從加入固化劑、促進劑以後算起,直到樹脂凝結成膠凍狀而失去流動性的階段。該結段中,樹脂能熔融,並可溶於某些溶劑(如乙醇、丙酮等)中。這一階段大約需要幾分鍾至幾十分鍾。
2、硬化階段(B階段):從樹脂凝膠以後算起,直到變成具有足夠硬度,達到基本不粘手狀態的階段。該階段中,樹脂與某些溶劑(如乙醇、丙酮等)接觸時能溶脹但不能溶解,加熱時可以軟化但不能完全熔化。這一階段大約需要幾十分鍾至幾小時。
3、熟化階段(C階段):在室溫下放置,從硬化以後算起,達到製品要求硬度,具有穩定的物理與化學性能可供使用的階段。該階段中,樹脂既不溶解也不熔融。我們通常所指的後期固化就是指這個階段。這個結段通常是一個很漫長的過程。通常需要幾天或幾星期甚至更長的時間。
1.4影響樹脂固化程度的因素
不飽和聚酯樹脂的固化是線性大分子通過交聯劑的作用,形成體型立體網路過程,但是固化過程並不能消耗樹脂中全部活性雙鍵而達到100%的固化度。也就是說樹脂的固化度很難達到完全。其原因在於固化反應的後期,體系粘度急劇增加而使分了擴散受到阻礙的緣故。一般只能根據材料性能趨於穩定時,便認為是固化完全了。樹脂的固化程度對玻璃鋼性能影響很大。固化程度越高,玻璃鋼製品的力學性能和物理、化學性能得到充分發揮。(有人做過實驗,對UPR樹脂固化後的不同階段進行物理性能測試,結果表明,其彎曲強度隨著時間的增長而不段增長,一直到一年後才趨於穩定。而實際上,對於已經投入使用的玻璃鋼製品,一年以後,由於熱、光等老化以及介質的腐蝕等作用,機械性能又開始逐漸下降了。)
影響固化度的因素有很多,樹脂本身的組分,引發劑、促進劑的量,固化溫度、後固化溫度和固化時間等都可以影響聚酯樹脂的固化度。
[編輯本段]不飽和聚酯樹脂粘度測定方法
本標准適用於旋轉粘度計測定液體不飽和聚酯樹脂的絕對粘度。
1 試樣
1.1 均勻、無氣泡、無雜質。
1.2 數量能滿足粘度計測定需要。
2 儀器和設備
2.1 旋轉粘度計:轉筒型或轉子型。
2.2 恆溫水浴:控制溫度精度為±0