當前位置:首頁 » 凈水耗材 » 鈾吸附樹脂

鈾吸附樹脂

發布時間: 2021-04-05 11:44:31

A. 海中漂帶為什麼能吸附鈾

在蔚藍色的海水中漂浮著一條長長的環狀帶子,帶子以每小時幾米的速度緩慢地移動著。許多人對此迷惑不解,捕魚顯然不對,惡作劇,又何必勞師動眾,那麼海中漂帶究竟為的是什麼呢?這是科學家在進行海中吸附貴重金屬鈾的實驗。這條長長的帶子,不是一般的普通的纖維帶子,而是把一種螯合型離子交換樹脂編織到條狀離子交換纖維帶。這種特殊性帶子在海上漂浮為的是吸附海水的鈾。據科學統計,鈾在海洋中的儲量是陸地的1500倍,總蘊藏量約40億噸。這40億噸的鈾在海水中的濃度只有十億分之三。如何將鈾從海水中撈出,的確十分困難。海水中提取鈾,從目前科學水平來看,最佳的選擇莫過於是離子交換法,亦稱吸附法。這種方法首先採用吸附鈾的材料從海水中把鈾吸附住;然後用酸溶液或含有碳酸鹽離子的溶液浸洗下吸附材料的鈾,得到鈾的濃縮液;最後採用化學方法將鈾的濃縮液提煉成氧化鈾。顯而易見,從海水中「撈」鈾,吸附劑是關鍵。現在已有的吸附劑,性能都不夠理想。如有機樹脂吸附劑選擇性和強度都不好,在吸附鈾的同時也吸附了大量的鈉,並會在浸洗液中分解,而無機吸附劑中的最佳水合二氧化鈦又不耐酸腐蝕。經過科學家的努力,研製出一種螯合型離子交換樹脂的吸附劑,它有較好的選擇性、耐腐蝕性和強度並且成本低。實驗表明,這種吸附劑和海水接觸2秒鍾,就會吸附住海水中的14%的鈾,持續10分鍾就能附90%以上鈾,可見吸附的速度是較快的,而且可以反復使用。科學家把這種吸附劑編織到條狀離子交換纖維中,組成一個環狀的運行裝置,這個系統的2/3的帶子浸泡在海水中,出水後的帶子通過滑輪進入浸洗槽,洗下鈾後又回到海水裡再去吸鈾。帶子移動的速度只需要每小時幾米,浸洗槽內鈾的濃度就能達到0.5克/升。一條長400米,寬10米,厚1厘米的吸附帶在流速為每小時4海里的海水中,一年產鈾可達6噸。

B. 各類離子交換樹脂的再生方法

再生劑的種類應根據樹脂的離子類型來選用,並適當地選擇價格較低的酸、鹼或鹽:

1、大孔吸附樹脂簡單再生的方法是用不同濃度的溶劑按極性從大到小剃度洗脫,再用2~3BV的稀酸、稀鹼溶液浸泡洗脫,水洗至PH值中性即可使用。

2、鈉型強酸性陽樹脂可用10%NaCl 溶液再生,用葯量為其交換容量的2倍 (用NaCl量為117g/ l 樹脂);氫型強酸性樹脂用強酸再生,用硫酸時要防止被樹脂吸附的鈣與硫酸反應生成硫酸鈣沉澱物。為此,宜先通入1~2%的稀硫酸再生。

3、氯型強鹼性樹脂,主要以NaCl 溶液來再生,但加入少量鹼有助於將樹脂吸附的色素和有機物溶解洗出,故通常使用含10%NaCl + 0.2%NaOH 的鹼鹽液再生,常規用量為每升樹脂用150~200g NaCl ,及3~4g NaOH。OH型強鹼陰樹脂則用4%NaOH溶液再生。

4、一些脫色樹脂 (特別是弱鹼性樹脂) 宜在微酸性下工作。此時可通入稀鹽酸,使樹脂 pH值下降至6左右,再用水正洗,反洗各一次。

5、陽樹脂再生:

通鹽酸:在環境溫度下,將4%的樹脂床體積4倍的HCL通過樹脂床,通過時間約2小時。
慢洗:以相同流速和;流向,通2倍樹脂體積的除鹽水。
快洗:以運行流速和流向,通除鹽水至PH=5-6.樹脂床備用。

6、陰樹脂再生:
通氫氧化鈉:在環境溫度下,將濃度為4%的樹脂體積4倍量的NaOH通過樹脂床,通過時間約為2小時。
慢洗:以相同流速和;流向,通2倍樹脂體積的除鹽水。
快洗:以運行流速和流向,通除鹽水至PH=8,樹脂床備用
具體操作可根據樹脂使用情況酌情增加酸鹼的濃度和再生時間。

(2)鈾吸附樹脂擴展閱讀

應用領域:

1)水處理

水處理領域離子交換樹脂的需求量很大,約占離子交換樹脂產量的90%,用於水中的各種陰陽離子的去除。目前,離子交換樹脂的最大消耗量是用在火力發電廠的純水處理上,其次是原子能、半導體、電子工業等。

2)食品工業

離子交換樹脂可用於製糖、味精、酒的精製、生物製品等工業裝置上。例如:高果糖漿的製造是由玉米中萃出澱粉後,再經水解反應,產生葡萄糖與果糖,而後經離子交換處理,可以生成高果糖漿。離子交換樹脂在食品工業中的消耗量僅次於水處理。

3)制葯行業

制葯工業離子交換樹脂對發展新一代的抗菌素及對原有抗菌素的質量改良具有重要作用。鏈黴素的開發成功即是突出的例子。近年還在中葯提成等方面有所研究。

4)合成化學和石油化學工業

在有機合成中常用酸和鹼作催化劑進行酯化、水解、酯交換、水合等反應。用離子交換樹脂代替無機酸、鹼,同樣可進行上述反應,且優點更多。如樹脂可反復使用,產品容易分離,反應器不會被腐蝕,不污染環境,反應容易控制等。

甲基叔丁基醚(MTBE)的制備,就是用大孔型離子交換樹脂作催化劑,由異丁烯與甲醇反應而成,代替了原有的可對環境造成嚴重污染的四乙基鉛。

5)環境保護

離子交換樹脂已應用在許多非常受關注的環境保護問題上。目前,許多水溶液或非水溶液中含有有毒離子或非離子物質,這些可用樹脂進行回收使用。如去除電鍍廢液中的金屬離子,回收電影製片廢液里的有用物質等。

6)濕法冶金及其他

離子交換樹脂可以從貧鈾礦里分離、濃縮、提純鈾及提取稀土元素和貴金屬。

C. 樹脂對 重金屬的去除作用是離子交換和吸附作用兩者的區別是什麼

離子交換樹脂都是用有機合成方法製成。常用的原料為苯乙烯或丙烯酸(酯),通過聚合反應生成具有三維空間立體網路結構的骨架,再在骨架上導應用
1)水處理
水處理領域離子交換樹脂的需求量很大,約占離子交換樹脂產量的90%,用於水中的各種陰陽離子的去除。目前,離子交換樹脂的最大消耗量是用在火力發電廠的純水處理上,其次是原子能、半導體、電子工業等。

2)食品工業
離子交換樹脂可用於製糖、味精、酒的精製、生物製品等工業裝置上。例如:高果糖漿的製造是由玉米中萃出澱粉後,再經水解反應,產生葡萄糖與果糖,而後經離子交換處理,可以生成高果糖漿。離子交換樹脂在食品工業中的消耗量僅次於水處理。

3)制葯行業
制葯工業離子交換樹脂對發展新一代的抗菌素及對原有抗菌素的質量改良具有重要作用。鏈黴素的開發成功即是突出的例子。近年還在中葯提成等方面有所研究。

4)合成化學和石油化學工業
在有機合成中常用酸和鹼作催化劑進行酯化、水解、酯交換、水合等反應。用離子交換樹脂代替無機酸、鹼,同樣可進行上述反應,且優點更多。如樹脂可反復使用,產品容易分離,反應器不會被腐蝕,不污染環境,反應容易控制等。
甲基叔丁基醚(MTBE)的制備,就是用大孔型離子交換樹脂作催化劑,由異丁烯與甲醇反應而成,代替了原有的可對環境造成嚴重污染的四乙基鉛。

5)環境保護
離子交換樹脂已應用在許多非常受關注的環境保護問題上。目前,許多水溶液或非水溶液中含有有毒離子或非離子物質,這些可用樹脂進行回收使用。如去除電鍍廢液中的金屬離子,回收電影製片廢液里的有用物質等。

6)濕法冶金及其他
離子交換樹脂可以從貧鈾礦里分離、濃縮、提純鈾及提取稀土元素和貴金屬。

其他補充:
離子交換技術有相當長的歷史,某些天然物質如泡沸石和用煤經過磺化製得的磺化煤都可用作離子交換劑。但是,隨著現代有機合成工業技術的迅速發展,研究製成了許多種性能優良的離子交換樹脂,並開發了多種新的應用方法,離子交換技術迅速發展,在許多行業特別是高新科技產業和科研領域中廣泛應用。近年國內外生產的樹脂品種達數百種,年產量數十萬噸。
在工業應用中,離子交換樹脂的優點主要是處理能力大,脫色范圍廣,脫色容量高,能除去各種不同的離子,可以反復再生使用,工作壽命長,運行費用較低(雖然一次投入費用較大)。以離子交換樹脂為基礎的多種新技術,如色譜分離法、離子排斥法、電滲析法等,各具獨特的功能,可以進行各種特殊的工作,是其他方法難以做到的。離子交換技術的開發和應用還在迅速發展之中。
離子交換樹脂的應用,是近年國內外製糖工業的一個重點研究課題,是糖業現代化的重要標志。膜分離技術在糖業的應用也受到廣泛的研究。

離子交換樹脂都是用有機合成方法製成。常用的原料為苯乙烯或丙烯酸(酯),通過聚合反應生成具有三維空間立體網路結構的骨架,再在骨架上導入不同類型的化學活性基團(通常為酸性或鹼性基團)而製成。
離子交換樹脂不溶於水和一般溶劑。大多數製成顆粒狀,也有一些製成纖維狀或粉狀。樹脂顆粒的尺寸一般在0.3~1.2mm 范圍內,大部分在0.4~0.6mm之間。它們有較高的機械強度(堅牢性),化學性質也很穩定,在正常情況下有較長的使用壽命。
離子交換樹脂中含有一種(或幾種)化學活性基團,它即是交換官能團,在水溶液中能離解出某些陽離子(如H+或Na+)或陰離子(如OH-或Cl-),同時吸附溶液中原來存有的其他陽離子或陰離子。即樹脂中的離子與溶液中的離子互相交換,從而將溶液中的離子分離出來。
廣泛的應用於水處理領域。

D. 離子交換樹脂吸附分離

在0.25mol/LH2SO4並含有少量過氧化氫的介質中釩不被陽離子交換樹脂吸附,可與鈧、釔、版鈾分離。

將含釩與鉻的權0.08mol/LHCl-6(6+94)%H2O2通過氯型樹脂,鉻通過交換柱而釩吸附於柱上,從而得到分離。

用硫酸根型樹脂採用選擇性洗脫可將鉻(Ⅲ)、釩(Ⅴ)、鉬(Ⅵ)、鎢(Ⅵ)分離,先用0.05mol/LH2SO4-0.1%H2O2洗脫鉻(Ⅲ),再用0.5mol/LH2SO4-0.1%H2O2或1mol/L(NH4)2SO4-0.025mol/LH2SO4洗脫釩(Ⅴ),而鉬(Ⅵ)和鎢(Ⅵ)仍留在吸附柱上。

E. 如何提純濃縮鈾-235

提純濃縮鈾-235含量的技術比較復雜, 現時用來提純鈾-235的主要方法有氣體擴散法離子交換法、氣體離心法、蒸餾法、電解法、電磁法、電流法等,其中以氣體擴散法最成熟。 氣體擴散法——這是商業開發的第一個濃縮方法。該工藝依靠不同質量的鈾同位素在轉化為氣態時運動速率的差異。在每一個氣體擴散級,當高壓六氟化鈾氣體透過在級聯中順序安裝的多孔鎳膜時,其鈾-235輕分子氣體比鈾-238分子的氣體更快地通過多孔膜壁。這種泵送過程耗電量很大。已通過膜管的氣體隨後被泵送到下一級,而留在膜管中的氣體則返回到較低級進行再循環。在每一級中,鈾-235/鈾-238濃度比僅略有增加。濃縮到反應堆級的鈾-235豐度需要1000級以上。 氣體離心法——在這類工藝中,六氟化鈾氣體被壓縮通過一系列高速旋轉的圓筒,或離心機。鈾-238同位素重分子氣體比鈾-235輕分子氣體更容易在圓筒的近壁處得到富集。在近軸處富集的氣體被導出,並輸送到另一台離心機進一步分離。隨著氣體穿過一系列離心機,其鈾-235同位素分子被逐漸富集。與氣體擴散法相比,氣體離心法所需的電能要小很多,因此該法已被大多數新濃縮廠所採用。 氣體動力學分離法——所謂貝克爾技術是將六氟化鈾氣體與氫或氦的混合氣體經過壓縮高速通過一個噴嘴,然後穿過一個曲面,這樣便形成了可以從鈾-238中分離鈾-235同位素的離心力。氣體動力學分離法為實現濃縮比度所需的級聯雖然比氣體擴散法要少,但該法仍需要大量電能,因此一般被認為在經濟上不具競爭力。在一個與貝克爾法明顯不同的氣體動力學工藝中,六氟化鈾與氫的混合氣體在一個固定壁離心機中的渦流板上進行離心旋轉。濃縮流和貧化流分別從布置上有些類似於轉筒式離心機的管式離心機的兩端流出。南非一個能力為25萬分離功單位的鈾-235最高豐度為5%的工業規模的氣體動力學分離廠已運行了近10年,但也由於耗電過大,而在1995年關閉。 激光濃縮法——激光濃縮技術包括3級工藝:激發、電離和分離。有2種技術能夠實現這種濃縮,即「原子激光法」和「分子激光法」。原子激光法是將金屬鈾蒸發,然後以一定的波長應用激光束將鈾-235原子激發到一個特定的激發態或電離態,但不能激發或電離鈾-238原子。然後,電場對通向收集板的鈾-235原子進行掃描。分子激光法也是依靠鈾同位素在吸收光譜上存在的差異,並首先用紅外線激光照射六氟化鈾氣體分子。鈾-235原子吸收這種光譜,從而導致原子能態的提高。然後再利用紫外線激光器分解這些分子,並分離出鈾-235。該法似乎有可能生產出非常純的鈾-235和鈾-238,但總體生產率和復合率仍有待證明。在此應當指出的是,分子激光法只能用於濃縮六氟化鈾,但不適於「凈化」高燃耗金屬鈈,而既能濃縮金屬鈾也能濃縮金屬鈈的原子激光法原則上也能「凈化」高燃耗金屬鈈。因此,分子激光法比原子激光法在防擴散方面會更有利一些。 同位素電磁分離法——同位素電磁分離濃縮工藝是基於帶電原子在磁場作圓周運動時其質量不同的離子由於旋轉半徑不同而被分離的方法。通過形成低能離子的強電流束並使這些低能離子在穿過巨大的電磁體時所產生的磁場來實現同位素電磁分離。輕同位素由於其圓周運動的半徑與重同位素不同而被分離出來。這是在20世紀40年代初期使用的一項老技術。正如伊拉克在20世紀80年代曾嘗試的那樣,該技術與當代電子學結合能夠用於生產武器級材料。 化學分離法——這種濃縮形式開拓了這樣的工藝,即這些同位素離子由於其質量不同,它們將以不同的速率穿過化學「膜」。有2種方法可以實現這種分離:一是由法國開發的溶劑萃取法,二是日本採用的離子交換法。法國的工藝是將萃取塔中2種不互溶的液體混和,由此產生類似於搖晃1瓶油水混合液的結果。日本的離子交換工藝則需要使用一種水溶液和一種精細粉狀樹脂來實現樹脂對溶液的緩慢過濾。 等離子體分離法——在該法中,利用離子迴旋共振原理有選擇性地激發鈾-235和鈾-238離子中等離子體鈾-235同位素的能量。當等離子體通過一個由密式分隔的平行板組成的收集器時,具有大軌道的鈾-235離子會更多地沉積在平行板上,而其餘的鈾-235等離子體貧化離子則積聚在收集器的端板上。已知擁有實際的等離子體實驗計劃的國家只有美國和法國。美國已於1982年放棄了這項開發計劃。法國雖然在1990年前後停止了有關項目,但它目前仍將該項目用於穩定同位素分離

F. 材料吸附鈾後 離心對吸附量有影響嗎

COD就是化學需氧量,用重鉻酸鉀來衡量。活性炭吸附作用比較強,可以去除水中的大量顆粒,會降低COD的值。

G. 如何在海中尋鈾

鈾作為一種放射性化學元素在國防、工業、科研中,有著極其重要的地位。由於其核裂解時能釋放巨大的能量,從而成為核武器的主要原料。隨著人們對於鈾的認識由過去的單一性向多元化轉變,從而更加重視起了對鈾的開發和利用。

目前,全世界擁有核武器的國家很少,而核工業國家卻不斷地發展,核能也由單純的軍事型轉變為民用型,核電站就是這種轉化的典型代表。目前世界上各國的核電站原料能源大都採用鈾。因而人們從以往的淘金熱,變成了淘鈾熱。

據科學家分析,全球陸地上的鈾礦總和約可產鈾250萬噸,也就是說,如果全世界都採用鈾為原料製造核武器、核電站以及航天、航海中應用核燃料的話,那麼用不了多長時間,大陸上的鈾礦就會被開采一空,而為之所建立的一切設施將變成一堆廢鋼鐵。當然,這種想法確實有點悲觀。

專家又宣稱:鈾在海水中的總量超過陸地總量的1500多倍。這無疑為有核武器、核工業的國家注人了一針強心劑,於是人們便開始了海中尋鈾的艱難工作。

在人們頭腦一陣發熱之後才慢慢地發現,這是一場多麼艱難的工作呀!鈾在海水中的濃度僅為十億分之三,也就是說,1000噸海水中僅含有3克鈾,鈾存在於海水中的三碳酸鹽復合物中。人們在處理了大量海水之後才發現,從海水中提取的鈾所能釋放的能量,僅僅相當於或略高於將其從海水提取過程中所消耗的能量,這未免有些得不償失了。於是科學家們又開始探討新的方法,以減少耗能而獲取更多的鈾。

美國科學家們用有機樹脂分離海水中的鈾與幾其他金屬,在實驗室研究中獲得了成功,但是由於有機樹脂的吸附率較低而大量生產成本較高,很難在實際工業中應用。後來,又經過長期的探索,終於發現了一種較為理想的新的鈾吸附劑——水合二氧化鈦,並且就此而研製出了一套以二氧化鈦為基礎的海水采鈾的技術。

在這眾多的研究大軍中,我國科學家們為此做出了重大貢獻。他們研究發現,氧化鋁、氫、氫氧化鐵和氧化鋅的吸鈾能力最強,並且已在實驗中得到證實,如果在實際工業中能夠得以應用的話,那麼提取鈾的成本將大大下降,這無疑為海水提鈾工業做出了巨大的貢獻。

另外,國外一些研究機構,也發現了較為經濟方便的抽鈾方法,他們研製開發了一種負離子交換劑,其吸附鈾的效果也十分顯著,在實驗室中的表現上乘,但是在利用潮流的海水實驗中,卻令人失望。如想突破這個大關,尚需要另外研製一個與之完全不同的抽鈾工藝流程。

總之,海水提鈾的設想是偉大的,而完成這個設想是極為困難的。目前世界上有數以千計的科學家和研究小組,仍在不懈地努力。我們深信會有一天,海水提鈾不再是一個神話,但現在我們只能將其列為一個尚未解開的謎。

H. 海水提鈾技術是怎樣提取的

海水提鈾是從海水中提取原子能工業鈾原料的技術。海水中鈾的蘊藏量約45億噸,是陸地上已探明的鈾礦儲量的2000倍,但是濃度極低。所以海水提鈾成本比陸地貧鈾礦提煉成本高6倍。從20世紀60年代開始,日本、美國、法國等國家從事海水提鈾的研究和試驗,一般採用三種方法:

(1)吸附法:使用水合氧化鈦、鹼式碳酸鋅、方鉛礦石和離子交換樹脂等吸附劑吸附海水中微量的鈾;

(2)生物富集法:使用專門培養的海藻富集海水中微量的鈾。據試驗,某些海藻鈾的富集能力很大,其鈾含量甚至超過低品位鈾礦的含鈾量;

(3)起泡分離法:在海水中加入一定量的鈾捕集劑?如氫氧化鐵等,然後通氣鼓泡,分離海水中的鈾)。

日本是世界上第一個開發海水鈾源的國家。日本是一個貧鈾國,鈾埋藏量僅有8 000噸,因此日本把目光瞄向海洋。從1960年起,日本加快研究從海水中提取鈾的方法。1971年,日本試驗成功了一種新的吸附劑。除了氫氧化鈦之外,這種吸附劑還包括有活性碳。日本已於1986年4月在香川縣建成了年產10千克鈾的海水提取廠。日本還制定了進一步建造工業規模的海水提鈾工廠的計劃,到2000年前年產鈾達1 000噸。

I. 海水提鈾的提取工藝法

將吸附劑裝入有網眼的尼龍袋中,用船拖著在海水中飄游,或將吸附劑裝入吸附柱中,把海水泵入吸附柱,通過吸附劑和海水接觸而吸附鈾。如用水合氧化鈦吸附劑,每克吸附鈾量為幾十至200μg。用鹼性溶液(碳酸銨或碳酸鈉溶液)淋洗吸附有鈾的水合氧化鈦,得到含鈾約9mgU/L(註:U/L是:單位/公升)的淋洗液。
經過一次吸附和淋洗,鈾濃度由海水中的3.3產μgU/L(註:U/L是:單位/公升)提高至淋洗液中的9mgU/L(註:U/L是:單位/公升),提高了近3000倍。但此時的鈾濃度還很低,需作進一步富集。可用陰離子交換樹脂進行第二次吸附,再用中性鹽溶液將離子交換樹脂上的鈾淋洗出來。第二次淋洗液的鈾濃度達3.5gU/L(註:U/L是:單位/公升)左右,可用常規方法從這種淋洗液中沉澱鈾製取鈾鹽產品。 1、吸附法,使用水合氧化鈦、鹼式碳酸鋅、方鉛礦石和離子交換樹脂等吸附劑吸附海水中微量的鈾;
2、生物富集法,使用專門培養的海藻富集海水中微量的鈾。據試驗,某些海藻鈾的富集能力很大,其鈾含量甚至超過低品位鈾礦的含鈾量;
3、起泡分離法,在海水中加入一定量的鈾捕集劑,如氫氧化鐵等,然後通氣鼓泡,分離海水中的鈾。 要具有吸附容量大、吸附速度快、選擇性好、化學穩定、機械強度好、易於淋洗再生、不污染海洋等性質,且價格低廉。
最初主要研究無機吸附劑如水合氧化鈦等。為獲得具有一定機械強度的水合氧化鈦,曾研製出鈦膠一聚丙烯醯胺凝膠吸附劑、用聚乙烯醇粘合鈦一碳的復合劑等。後來發現水合氧化鈦吸附劑系列的機械強度都不理想,故轉到主要研究有機吸附劑。研究結果表明,合成纖維工業生產中一種產品聚丙烯腈的直接衍生物——聚丙烯醯胺喔星(polyacrylamidoxine)在鈾的吸附容量、吸附選擇性和機械強度等性質都優於水合氧化鈦。 吸附裝置應能與大量海水相接觸且節能價廉。世界各國根據各自的海岸條件,研究利用天然洋流、潮汐流、波動能及泵驅動等方式,使吸附裝置與大量海水接觸。日本試驗用機械泵把海水輸送到吸附柱中,貧化海水排入大海並被洋流帶走。由於這種方法需要輸送大量海水,因而耗能大。德國因海岸沒有暖洋流,主要研究開發在海水中移動操作的如系在船上的浮動吸附裝置,以達到與洋流驅動相類似的結果。瑞典研究一種儲槽利用波浪,使槽中水面比海水面海水面高,再利用水位差使海水通過吸附床。中國、美國、前蘇聯等也都進行著類似的工程研究。

J. 在海水中要怎樣提取鈾

世界上研究和開發海水提鈾技術最早的國家是英國,第二次世界大戰結束後不久,英國就從事這項工作,先後提出了用離子交換樹脂及吸附法從海水中提鈾方案,這些都是在實驗室內進行的研究。日本在1984年建成了年產10kg鈾的海水提鈾模擬廠,這是世界上第1個海水提鈾工廠。目前,美國、德國、法國等20多個國家,都相繼進行海水提鈾研究開發工作,提取方法主要有起泡分離法、生物富集法、吸附法。

起泡分離法是將起泡劑加入海水中,再用動力鼓氣使海水起泡,起泡的物質與鈾發生化學作用,海水中的鈾就聚集在氣泡上,於是把鈾從海水中提取出來了。這種方法鈾的提取率達80%~90%,是近幾年新發展的方法,目前只限於實驗室內使用,而在工程上很難實現。

生物富集法是把經過篩選和專門培養的海藻放在海水中進行富集鈾的方法。在海洋中有些藻類富集鈾的能力很強,集鈾的濃度比海水高1萬倍,其含量達150mg/L,接近或超過陸上低品位鈾礦的含鈾量。日本研究出一種小球藻,其自然繁殖快、富集鈾量大、提取成本低,很有發展前途,在工程上是可以實現的。目前,德國也正在籌建中試生產工廠。

吸附法是最有希望的一種方法,吸鈾量較高。迄今,已研製出百種吸附劑,經常採用的有水合氧化鈦、鹼式碳酸鋅、方鋁礦石、離子交換樹脂等,其中水合氧化鈦復合吸附劑是當前國際上海水提鈾研究開發中最主要的一種,它每克可吸收500~600μg鈾,甚至高達1000μg以上。海水如何通過吸附床,是海水提鈾實現工業化生產的關鍵。

熱點內容
丁度巴拉斯情人電影推薦 發布:2024-08-19 09:13:07 瀏覽:886
類似深水的露點電影 發布:2024-08-19 09:10:12 瀏覽:80
《消失的眼角膜》2電影 發布:2024-08-19 08:34:43 瀏覽:878
私人影院什麼電影好看 發布:2024-08-19 08:33:32 瀏覽:593
干 B 發布:2024-08-19 08:30:21 瀏覽:910
夜晚看片網站 發布:2024-08-19 08:20:59 瀏覽:440
台灣男同電影《越界》 發布:2024-08-19 08:04:35 瀏覽:290
看電影選座位追女孩 發布:2024-08-19 07:54:42 瀏覽:975
日本a級愛情 發布:2024-08-19 07:30:38 瀏覽:832
生活中的瑪麗類似電影 發布:2024-08-19 07:26:46 瀏覽:239