當前位置:首頁 » 污水廢水 » 模擬氨氮廢水

模擬氨氮廢水

發布時間: 2021-03-21 16:45:50

『壹』 實驗室配置模擬廢水

配製污水要考慮碳氮磷的比例,碳源一般可用葡萄糖或醋酸鈉等,氮源用氯化銨或硫酸氨,用碳銨化肥也行,磷源就用磷酸二氫鉀,配成的水COD在500以下,氨氮30以下,總磷4左右,差不多跟生活污水接近了,還可又添加其它的營養成份,或者取直實的生活污水.

『貳』 aspen模擬廢水脫氨是加氫氧化鈉怎麼處理

反硝化跟降低氨氮有啥關系?你究竟是要降低氨氮呢還是要降低TN?反硝化是脫氮的,用於降低TN 氨氮600到120,效果還是可以的,可能你們以前效果更好吧 SV30 230?還是拿1000ml量筒做的SV30?如果這樣,那就是23% 鹼度是出水的還是進水的?這個只要。

『叄』 怎樣人工配製氨氮廢水,主要是用於實驗室的生物處理用。最好能給出配方,各種葯品的名稱、用量

人工模擬廢水的組成
組分 質量(g/5L) 組分 質量(g/5L)
葡萄糖 360 酵母膏 80
KH2PO4 14 CaCl2 18
MgSO4•7H2O 24 NaHCO3 24
NH4Cl 60 MnSO4•H2O 6
FeSO4 0.3
COD為180000mg/L,NH3-N為9000mg/L(按需求稀釋專)
如果屬需要提高NH3,可以按需要補充NH4CL或者蛋白腖

『肆』 工業廢水如何有效去除氨氮超標

1 高濃度氨氮廢水處理技術

高濃度氨氮廢水是指氨氮質量濃度大於500mg/L
的廢水。伴隨石油、化工、冶金、食品和制葯等工業的發展,以及人民生活水平的不斷提高,工業廢水和城市生活污水中氨氮的含量急劇上升,呈現氨氮污染源多、排放量大,並且排放的濃度增大的特點〔2〕。目前針對高氨氮廢水的處理技術主要使用吹脫法、化學沉澱法等。

1.1 吹脫法

將空氣通入廢水中,使廢水中溶解性氣體和易揮發性溶質由液相轉入氣相,使廢水得到處理的過程稱為吹脫,常見的工藝流程見圖 1。


圖 2 生物脫氮的途徑

用生物法處理含氨氮廢水時,有機碳的相對濃度是考慮的主要因素,維持最佳碳氮比也是生物法成功的關鍵之一。

生物法具有操作簡單、效果穩定、不產生二次污染且經濟的優點,其缺點為佔地面積大,處理效率易受溫度和有毒物質等的影響且對運行管理要求較高。同時,在工業運用中應考慮某些物質對微生物活動和繁殖的抑製作用。此外,高濃度的氨氮對生物法硝化過程具有抑製作用,因此當處理氨氮廢水的初始質量濃度<300
mg/L 時,採用生物法效果較好。

J. Kim 等〔24〕採用小球藻處理美國俄亥俄州辛辛那提磨溪污水處理廠廢水中的氨氮,實驗結果表明,小球藻在經歷24 h 的遲緩期後,在48 h 內氨氮去除率可達50%。

2.3.1 傳統生物硝化反硝化技術

傳統生物硝化反硝化脫氮處理過程包括硝化和反硝化兩個階段。硝化過程是指在好氧條件下,在硝酸鹽和亞硝酸鹽菌的作用下,氨氮可被氧化成硝酸鹽氮和亞硝酸鹽氮;再通過缺氧條件,反硝化菌將硝酸鹽氮和亞硝酸鹽氮還原成氮氣,從而達到脫氮的目的。

傳統生物硝化反硝化法中,較成熟的方法有A/O 法、A2/O 法、SBR
序批式處理法、接觸氧化法等。它們具有效果穩定、操作簡單、不產生二次污染、成本較低等優點。但該法也存在一些弊端,如必須補充相應的碳源來配合實現氨氮的脫除,使運行費用增加;碳氮比較小時,需要進行消化液迴流,增加了反應池容積和動力消耗;硝化細菌濃度低,系統投鹼量大等。

楊小俊等〔25〕通過A/O 膜生物反應器處理某煉油廠氣浮池出水中的氨氮,實驗結果表明,當氨氮和COD 容積負荷分別在0.04~0.08、0.30~0.84 kg/(m3·d)時,處理後水中氨氮質量濃度小於5 mg/L。

2.3.2 新型生物脫氮技術

(1)短程硝化反硝化技術。短程硝化反硝化是在同一個反應器中,先在有氧的條件下,利用氨氧化細菌將氨氧化成亞硝酸鹽,阻止亞硝酸鹽進一步氧化,然後直接在缺氧的條件下,以有機物或外加碳源作為電子供體,將亞硝酸鹽進行反硝化生成氮氣。

短程硝化反硝化與傳統生物脫氮相比具有以下優點:對於活性污泥法,可節省25%的供氧量,降低能耗;節省碳源,一定情況下可提高總氮的去除率;提高了反應速率,縮短了反應時間,減少反應器容積。但由於亞硝化細菌和硝化細菌之間關系緊密,每個影響因素的變化都同時影響到兩類細菌,而且各個因素之間也存在著相互影響的關系,這使得短程硝化反硝化的條件難以控制。目前短程硝化反硝化技術仍處在人工配水實驗階段,對此現象的理論解釋還不充分。

(2)同時硝化反硝化技術。當硝化與反硝化在同一個反應器中同時進行時,即為同時硝化反硝化(SND)。廢水中溶解氧受擴散速度限制,在微生物絮體或者生物膜的表面,溶解氧濃度較高,利於好氧硝化菌和氨化菌的生長繁殖,越深入絮體或膜內部,溶解氧濃度越低,形成缺氧區,反硝化細菌占優勢,從而形成同時硝化反硝化過程。

鄒聯沛等〔26〕對膜生物反應器系統中的同時硝化反硝化現象進行了研究,實驗結果表明,當DO 為1mg/L,C/N=30,pH=7.2
時,COD、NH4+-N、TN 去除率分別為96%、95%、92%,並發現在一定的范圍內,升高或降低反應器內DO 濃度後,TN 去除率都會下降。

同時硝化反硝化法節省反應器,縮短了反應時間,且能耗低、投資省。但目前對於同步硝化反硝化的研究尚處於實驗室階段,其作用機理及動力學模型需做進一步的研究,其工業化運用尚難實現。

(3)厭氧氨氧化技術。厭氧氨氧化是指在缺氧或厭氧條件下,微生物以NH4+ 為電子受體,以NO2- 或NO3- 為電子供體進行的NH4+、NO2- 或NO3- 轉化成N2的過程〔27〕。

何岩等〔28〕研究了SHARON
工藝與厭氧氨氧化工藝聯用技術處理「中老齡」垃圾滲濾液的效果,實驗結果表明,厭氧氨氧化反應器可在具有硝化活性的污泥中實現啟動;
在進水氨氮和亞硝酸氮質量濃度不超過250 mg/L 的條件下,氨氮和亞硝酸氮的去除率分別可達到80%和90%。目前,SHARON
與厭氧氨氧化聯合工藝的研究仍處於實驗室階段,還需要進一步調整和優化工藝條件,以提高聯合工藝去除實際高氨氮廢水中的總氮的效能。

厭氧氨氧化技術可以大幅度地降低硝化反應的充氧能耗,免去反硝化反應的外源電子供體,可節省傳統硝化反硝化過程中所需的中和試劑,產生的污泥量少。但目前為止,其反應機理、參與菌種和各項操作參數均不明確。

2.4 膜技術

2.4.1 反滲透技術

反滲透技術是在高於溶液滲透壓的壓力作用下,藉助於半透膜對溶質的選擇截留作用,將溶質與溶劑分離的技術,具有能耗低、無污染、工藝先進、操作維護簡便等優點。

利用反滲透技術處理氨氮廢水的過程中,設備給予足夠的壓力,水通過選擇性膜析出,可用作工業純水,而膜另一側氨氮溶液的濃度則相應增高,成為可以被再次處理和利用的濃縮液。在實際操作中,施加的反滲透壓力與溶液的濃度成正比,隨著氨氮濃度的升高,反滲透裝置所需的能耗就越高,而效率卻是在下降〔29〕。

徐永平等〔30〕以兗礦魯南化肥廠碳酸鉀生產車間含NH4Cl 的廢水為研究對象,利用反滲透法對NH4Cl
廢水的處理過程進行了研究,實驗裝置採用反滲透膜(NTR-70SWCS4)過濾機。結果表明,在用反滲透膜技術處理氨氮廢水的過程中,氯化銨質量濃度適宜在60
g/L 以下,在該濃度條件下,設備脫氨氮效率較高,一般大於97%,各項技術指標合格,可以用於實際生產操作。

2.4.2 電滲析法

電滲析是在外加直流電場的作用下,利用離子交換膜的選擇透過性,使離子從電解質溶液中分離出來的過程。電滲析法可高效地分離廢水中的氨氮,並且該方法前期投入小,能量和葯劑消耗低,操作簡單,水的利用率高,無二次污染副產物。

唐艷等〔31〕採用自製電滲析設備對進水電導率為2 920 μS/cm,氨氮質量濃度為534.59 mg/L
的氨氮廢水進行處理,通過實驗得到在電滲析電壓為55 V,進水流量為24 L/h
這一最佳工藝參數條件下,可對實驗用水有效脫氮的結論,出水氨氮質量濃度為13 mg/L。

3 不同濃度工業含氨氮廢水的處理方法比較

不同氨氮廢水處理方法優缺點比較見表 4。

通過對以上幾種不同方法的論述,可以看出目前針對工業廢水中高濃度氨氮的處理方法主要使用物理化學方法做預處理,再選擇其他方法進行後續處理,雖能取得較好的處理效果,但仍存在結垢、二次污染的問題。對低濃度的氨氮廢水較常用的方法為化學法和傳統生物法,其中化學法的一些處理技術還不成熟,未在實際生產中應用,因此還無法滿足工業對低濃度氨氮廢水深度處理的要求;
生物法能較好地解決二次污染問題,且能達到工業對低濃度氨氮廢水深度處理的要求,但目前對微生物的選種和馴化還不完全成熟。

『伍』 如何模擬配置生活污水中的常規指標含量

總氮等於氨氮加硝氮加其他氮,你這里氨氮加硝氮就已經超過總氮了。。根本配不出來。
配水的話,COD可以用葡萄糖澱粉啤酒,磷用各種磷酸鈣,氨氮用氯化銨,硝氮用硝酸鹽,計算用初中的化學知識就可以了。

『陸』 某同學模擬工業「折點加氯法」處理氨氮廢水的原理,進行如下研究. 裝置(氣密性良好,試劑已添加

(1)A中是濃氨水滴入固體氫氧化鈉中,氫氧化鈉溶解過程中放熱,溫度升高一水合氨分解生成氨氣和水,反應的化學方程式NH3?H2O═NH3↑+H2O,
故答案為:NH3?H2O═NH3↑+H2O;氨水分解過程吸熱,NaOH固體溶於水放熱,使環境溫度升高,氨水分解反應平衡正向移動,促進了氨水分解.(或NaOH固體有吸水性,能吸收氨水分解生成的水,促進氨水分解平衡正向移動);
(2)①氨氣是共價化合物,氮原子和三個氫原子形成三個共價鍵,氮原子有一對孤對電子,氨氣的電子式為:
②焓變=反應物鍵能總和-生成物鍵能總和,6×(H-N)+3Cl-Cl-[6(H-Cl)+N≡N]=-456kJ?mol-1;得到6×(H-N)+3×243KJ/mol-[6(H-Cl)+945KJ/mol]=-456kJ?mol-1;得到6×(H-N)-6(H-Cl)=-456kJ?mol-1-3×243KJ/mol+945KJ/mol;(H-N)-(H-Cl)=-40KJ/mol,斷開1mol H-N鍵與斷開1mol H-Cl鍵所需能量相差約為40KJ;
故答案為:40KJ;
(3)氨氣被氯氣氧化生成氮氣和氯化氫,3Cl2+2NH3=N2+6HCl,氨氣過量和生成的氯化氫反應生成固體氯化銨白色固體顆粒,NH3+HCl=NH4Cl;
故答案為:HCl+NH3=NH4Cl;
(4)①裝置為原電池反應,鈉離子移向可知a為負極,氨氣失電子生成氮氣,b為正極,氯氣得到電子生成氯離子,發生還原反應,故答案為:還原;
②石墨a電極為負極,氨氣失電子生成氮氣,鹼溶液中電極反應式為2NH3+6OH--6e-=N2+6H2O,故答案為:2NH3+6OH--6e-=N2+6H2O.

『柒』 氨氮廢水處理的處理方法

高氨氮廢水如何處理,我們著重介紹一下其處理方法: 1. 吹脫法
在鹼性條件下,利用氨氮的氣相濃度和液相濃度之間的氣液平衡關系進行分離的一種方法,一般認為吹脫與溫度、PH、氣液比有關。
2. 沸石脫氨法
利用沸石中的陽離子與廢水中的NH4+進行交換以達到脫氮的目的。應用沸石脫氨法必須考慮沸石的再生問題,通常有再生液法和焚燒法。採用焚燒法時,產生的氨氣必須進行處理。
3.膜分離技術
利用膜的選擇透過性進行氨氮脫除的一種方法。這種方法操作方便,氨氮回收率高,無二次污染。例如:氣水分離膜脫除氨氮。氨氮在水中存在著離解平衡,隨著PH升高,氨在水中NH3形態比例升高,在一定溫度和壓力下,NH3的氣態和液態兩項達到平衡。根據化學平衡移動的原理即呂.查德里(A.L.LE Chatelier)原理。在自然界中一切平衡都是相對的和暫時的。化學平衡只是在一定條件下才能保持「假若改變平衡系統的條件之一,如濃度、壓力或溫度,平衡就向能減弱這個改變的方向移動。」遵從這一原理進行了如下設計理念在膜的一側是高濃度氨氮廢水,另一側是酸性水溶液或水。當左側溫度T1>20℃,PH1>9,P1>P2保持一定的壓力差,那麼廢水中的游離氨NH4+,就變為氨分子NH3,並經原料液側介面擴散至膜表面,在膜表面分壓差的作用下,穿越膜孔,進入吸收液,迅速與酸性溶液中的H+反應生成銨鹽。
4.MAP沉澱法
主要是利用以下化學反應:Mg2++NH4++PO43-=MgNH4PO4
理論上講以一定比例向含有高濃度氨氮的廢水中投加磷鹽和鎂鹽,當[Mg2 + ][NH4+][PO43 -]>2.5×10–13時可生成磷酸銨鎂(MAP),除去廢水中的氨氮。
5.化學氧化法
利用強氧化劑將氨氮直接氧化成氮氣進行脫除的一種方法。折點加氯是利用在水中的氨與氯反應生成氨氣脫氨,這種方法還可以起到殺菌作用,但是產生的余氯會對魚類有影響,故必須附設除余氯設施。 傳統和新開發的脫氮工藝有A/O,兩段活性污泥法、強氧化好氧生物處理、短程硝化反硝化、超聲吹脫處理氨氮法方法等。
1.A/O工藝將前段缺氧段和後段好氧段串聯在一起,A段DO不大於0.2mg/L,O段DO=2~4mg/L。在缺氧段異養菌將污水中的澱粉、纖維、碳水化合物等懸浮污染物和可溶性有機物水解為有機酸,使大分子有機物分解為小分子有機物,不溶性的有機物轉化成可溶性有機物,當這些經缺氧水解的產物進入好氧池進行好氧處理時,提高污水的可生化性,提高氧的效率;在缺氧段異養菌將蛋白質、脂肪等污染物進行氨化(有機鏈上的N或氨基酸中的氨基)游離出氨(NH3、NH4+),在充足供氧條件下,自養菌的硝化作用將NH3-N(NH4+)氧化為NO3-,通過迴流控制返回至A池,在缺氧條件下,異氧菌的反硝化作用將NO3-還原為分子態氮(N2)完成C、N、O在生態中的循環,實現污水無害化處理。其特點是缺氧池在前,污水中的有機碳被反硝化菌所利用,可減輕其後好氧池的有機負荷,反硝化反應產生的鹼度可以補償好氧池中進行硝化反應對鹼度的需求。好氧在缺氧池之後,可以使反硝化殘留的有機污染物得到進一步去除,提高出水水質。BOD5的去除率較高可達90~95%以上,但脫氮除磷效果稍差,脫氮效率70~80%,除磷只有20~30%。盡管如此,由於A/O工藝比較簡單,也有其突出的特點,目前仍是比較普遍採用的工藝。
2.兩段活性污泥法能有效的去除有機物和氨氮,其中第二級處於延時曝氣階段,停留時間在36小時左右,污水濃度在2g/l以下,可以不排泥或少排泥從而降低污泥處理費用。
3.強氧化好氧生物處理其典型代表有粉末活性炭法(PACT工藝)
粉末活性碳法的主要特點是向曝氣池中投加粉末活性炭(PAC)利用粉末活性炭極為發達的微孔結構和更大的吸附能力,使溶解氧和營養物質在其表面富集,為吸附在PAC 上的微生物提供良好的生活環境從而提高有機物的降解速率。
近年來國內外出現了一些全新的脫氮工藝,為高濃度氨氮廢水的脫氮處理提供了新的途徑。主要有短程硝化反硝化、好氧反硝化和厭氧氨氧化等。
4. 短程硝化反硝化
生物硝化反硝化是應用最廣泛的脫氮方式,是去除水中氨氮的一種較為經濟的方法,其原理就是模擬自然生態環境中氮的循環,利用硝化菌和反硝化菌的聯合作用,將水中氨氮轉化為氮氣以達到脫氮目的。由於氨氮氧化過程中需要大量的氧氣,曝氣費用成為這種脫氮方式的主要開支。短程硝化反硝化是將氨氮氧化控制在亞硝化階段,然後進行反硝化,省去了傳統生物脫氮中由亞硝酸鹽氧化成硝酸鹽,再還原成亞硝酸鹽兩個環節(即將氨氮氧化至亞硝酸鹽氮即進行反硝化)。該技術具有很大的優勢:①節省25%氧供應量,降低能耗;②減少40%的碳源,在C/N較低的情況下實現反硝化脫氮;③縮短反應歷程,節省50%的反硝化池容積;④降低污泥產量,硝化過程可少產污泥33%~35%左右,反硝化階段少產污泥55%左右。實現短程硝化反硝化生物脫氮技術的關鍵就是將硝化控制在亞硝酸階段,阻止亞硝酸鹽的進一步氧化。
5. 厭氧氨氧化(ANAMMOX)和全程自養脫氮(CANON)
厭氧氨氧化是指在厭氧條件下氨氮以亞硝酸鹽為電子受體直接被氧化成氮氣的過程。
厭氧氨氧化(Anaerobicammoniaoxidation,簡稱ANAMMOX)是指在厭氧條件下,以Planctomycetalessp為代表的微生物直接以NH4+為電子供體,以NO2-或NO3-為電子受體,將NH4+、NO2-或NO3-轉變成N2的生物氧化過程。該過程利用獨特的生物機體以硝酸鹽作為電子供體把氨氮轉化為N2,最大限度的實現了N的循環厭氧硝化,這種耦合的過程對於從厭氧硝化的廢水中脫氮具有很好的前景,對於高氨氮低COD的污水由於硝酸鹽的部分氧化,大大節省了能源。目前推測厭氧氨氧化有多種途徑。其中一種是羥氨和亞硝酸鹽生成N2O的反應,而N2O可以進一步轉化為氮氣,氨被氧化為羥氨。另一種是氨和羥氨反應生成聯氨,聯氨被轉化成氮氣並生成4個還原性[H],還原性[H]被傳遞到亞硝酸還原系統形成羥氨。第三種是:一方面亞硝酸被還原為NO,NO被還原為N2O,N2O再被還原成N2;另一方面,NH4+被氧化為NH2OH,NH2OH經N2H4,N2H2被轉化為N2。厭氧氨氧化工藝的優點:可以大幅度地降低硝化反應的充氧能耗;免去反硝化反應的外源電子供體;可節省傳統硝化反硝化反應過程中所需的中和試劑;產生的污泥量極少。厭氧氨氧化的不足之處是:到目前為止,厭氧氨氧化的反應機理、參與菌種和各項操作參數不明確。
全程自養脫氮的全過程實在一個反應器中完成,其機理尚不清楚。Hippen等人發現在限制溶解氧(DO濃度為0.8·1.0mg/l)和不加有機碳源的情況下,有超過60%的氨氮轉化成N2而得以去除。同時Helmer等通過實驗證明在低DO濃度下,細菌以亞硝酸根離子為電子受體,以銨根離子為電子供體,最終產物為氮氣。有實驗用熒光原位雜交技術監測全程自養脫氮反應器中的微生物,發現在反應器處於穩定階段時即使在限制曝氣的情況下,反應器中任然存在有活性的厭氧氨氧化菌,不存在硝化菌。有85%的氨氮轉化為氮氣。鑒於以上理論,全程自養脫氮可能包括兩步第一是將部分氨氮氧化為煙硝酸鹽,第二是厭氧氨氧化。
6. 好氧反硝化
傳統脫氮理論認為,反硝化菌為兼性厭氧菌,其呼吸鏈在有氧條件下以氧氣為終末電子受體在缺氧條件下以硝酸根為終末電子受體。所以若進行反硝化反應,必須在缺氧環境下。近年來,好氧反硝化現象不斷被發現和報道,逐漸受到人們的關注。一些好氧反硝化菌已經被分離出來,有些可以同時進行好氧反硝化和異養硝化(如Robertson等分離、篩選出的Tpantotropha.LMD82.5)。這樣就可以在同一個反應器中實現真正意義上的同步硝化反硝化,簡化了工藝流程,節省了能量。
7.超聲吹脫處理氨氮
超聲吹脫法去除氨氮是一種新型、高效的高濃度氨氮廢水處理技術,它是在傳統的吹脫方法的基礎上,引入超聲波輻射廢水處理技術,將超聲波和吹脫技術聯用而衍生出來的一種處理氨氮的方法。將這兩種方法聯用不僅改進了超聲波處理廢水成本較高的問題,也彌補了傳統吹脫技術去除氨氮不佳的缺陷,超生吹脫法在保證處理氨氮的效果的同時還能對廢水中有機物的降解起到一定的提高作用。技術特點(1)高濃度氨氮廢水採用90年代高新技術——超聲波脫氮技術,其總脫氮效率在70~90%,不需要投加化學葯劑,不需要加溫,處理費用低,處理效果穩定。(2)生化處理採用周期性活性污泥法(CASS)工藝,建設費用低,具有獨特的生物脫氮功能,處理費用低,處理效果穩定,耐負荷沖擊能力強,不產生污泥膨脹現象,脫氮效率大於90%,確保氨氮達標。

『捌』 模擬污水配氨氮濃度為20mg/L用什麼試劑配好

你說的是對的,如果離子是氫氧化鈉,然後在以後 -

鐵離子有白色沉澱析出反應變暗格林先生過去的磚紅色與銅

離子與藍色沉澱

白色沉澱鎂離子與氫氧化鈉先生的鋁離子

白色沉澱反應的反應降水增加逐漸溶解

『玖』 配模擬廢水

COD可以用葡萄糖、甲醇、澱粉等配置,雖然有理論COD,但還是自己測定一下為好
氨氮用氯版化銨即可,可權以按照氮的含量來計算
至於鉀、鈣、鐵、磷等元素,可參照如下濃度
模擬氨氮(NH4+-N)廢水:每1L自來水中加入以下葯品,然後根據所需不同濃度稀釋而成。具體配比如下:

NH4Cl: 54g NaHCO3: 100g

KH2PO4: 10g FeCl3·6H2O: 2g

CaCl2: 4g KCl : 4g

NaCl: 4g MgSO4: 4g

該廢水的上清液NH4+−N=11000mg/L。

『拾』 廢水氨氮含量一般是多少

還是看什麼水,一般生活污水差不多10-30mg/L。
水力停留時間對曝氣生物濾池處理效能及運內行特性的影響容
邱立平,馬軍,張立昕
通過實驗室模型試驗研究了曝氣生物濾池處理模擬生活污水的效能 ,分析了水力停留時間 ( HRT)變化對曝氣生物濾池處理效果及運行特性的影響規律。研究發現 ,當 HRT大於 0 .6h時 ,曝氣生物濾池具有良好的有機物和濁度的去除效果 ,而當HRT為 0 .4h時 ,處理效果則顯著下降 ;反應器的硝化反硝化脫氮能力受 HRT的影響比較明顯 ,縮短 HRT將使氨氮和總氮去除率迅速下降 ,當 HRT為 1.2 5 h時 ,氨氮和總氮去除率分別達到 70 %和 40 %以上 ;縮短 HRT會在一定程度上促進亞硝酸鹽積累現象的發生 ,而反應器的過濾周期則與 HRT呈明顯的線性關系。

熱點內容
丁度巴拉斯情人電影推薦 發布:2024-08-19 09:13:07 瀏覽:886
類似深水的露點電影 發布:2024-08-19 09:10:12 瀏覽:80
《消失的眼角膜》2電影 發布:2024-08-19 08:34:43 瀏覽:878
私人影院什麼電影好看 發布:2024-08-19 08:33:32 瀏覽:593
干 B 發布:2024-08-19 08:30:21 瀏覽:910
夜晚看片網站 發布:2024-08-19 08:20:59 瀏覽:440
台灣男同電影《越界》 發布:2024-08-19 08:04:35 瀏覽:290
看電影選座位追女孩 發布:2024-08-19 07:54:42 瀏覽:975
日本a級愛情 發布:2024-08-19 07:30:38 瀏覽:832
生活中的瑪麗類似電影 發布:2024-08-19 07:26:46 瀏覽:239