含氨廢水調試手冊
① 怎樣測試污水中的氨氮的含量
水中氨氮的測定—納氏試劑分光光度法
一、實驗試劑
10%硫酸鋅溶液,25%氫氧化鈉溶液,納氏試劑,酒石酸鉀鈉溶液,銨標准使用溶液
0.010mg/ml
二、實驗儀器
UNICO分光光度計,50ml比色管8支,漏斗,實驗室常用儀器
三、實驗步驟
1.
試劑配製
10%硫酸鋅溶液:稱取10g硫酸鋅溶於水,稀釋100ml,貯於玻璃試劑瓶中
25%氫氧化鈉溶液:稱取25g氫氧化鈉溶於水,稀釋至100ml,貯於聚乙烯瓶中
納氏試劑:稱取16g氫氧化鈉,溶於50mL水中,充分冷卻至室溫。另稱取7g碘化鉀和10g碘化汞(HgI2)溶於水,然後將親氧化鈉溶液在攪拌下徐徐注入此溶液中。用水稀釋至100mL,貯於聚乙烯瓶中。
酒石酸鉀鈉溶液:稱取50g酒石酸鉀鈉(KNaC4H4O6·4H2O)溶於100mL水中,加熱煮沸以除去氨,放冷,定容至100mL
銨標准貯備溶液:稱取0.3819g經100℃乾燥過的氯化銨(NH4Cl)溶於水中,移入100mL容量瓶中,稀釋至標線。此溶液每毫升含1.00mg氨氮。
銨標准使用溶液:移取2.50mL銨標准貯備液於250mL容量瓶中,用水稀釋至標線。此溶液每毫升含0.010mg氨氮。
2.
氨氮的測定
2.1標准曲線的繪制
用氯化銨配製的標准使用液,每毫升溶液含有氨氮0.01mg,分別吸取0,0.5、1.0、3.0、5.0、7.0、10.0ml溶液於50ml比色管中,加水至標線,加1.0ml酒石酸鉀鈉溶液,混勻。加1.5ml納氏試劑,混勻。防止10min,在波長420nm,用光程偉20nm的比色皿,以水為參比,測量吸光度。減去空白吸光度,得到校正吸光度,繪制以氨氮含量(mg)對校正吸光度的校準曲線。
2.2預處理水樣
取水樣100ml於燒杯中,加入10%的硫酸鋅溶液1ml,滴加25%的氫氧化鈉溶液0.1-0.2ml(大約2-3滴),調節pH值至10.5左右。然後用中速定量濾紙過濾,棄去初濾液20ml左右。
2.3水樣的測定
取濾液5ml(保證其中氨氮含量不超過0.1mg)於50ml比色管中,用蒸餾水稀釋至刻度線,加1.0ml酒石酸鉀鈉溶液,1.5ml納氏試劑,搖勻,靜置顯色10min,在721分光光度計上,於420nm波長處,以水為參比,用2cm比色皿測定吸光度。
2.4空白實驗
用100ml蒸餾水代替水樣,同步進行實驗,即從預處理開始,直到測定吸光度。
② 處理氨氣產生的廢水怎麼處理
氨氣的一般的收集方案:
設置集氣罩,將收集的氨氣用水吸收氨氣,在集氣裝置中放入水,再在水上放一層植物油,這樣就可以短進長出收集氣體了。
③ 氟化氫氨和氟化銨溶液廢水,一月大概30噸,怎麼可以降低廢水中氟的含量,目前通過添加氫氧化鈣調試!
對於高濃度含氟工業廢水,一般採用鈣鹽沉澱法,即向廢水中投加石灰,使氟離子與鈣離子生成CaF2沉澱而除去。該工藝具有方法簡單、處理方便、費用低等優點,但存在處理後出水很難達標、泥渣沉降緩慢且脫水困難等缺點。
氟化鈣在18℃時於水中的溶解度為16.3mg/L,按氟離子計為7.9mg/L,在此溶解度的氟化鈣會形成沉澱物。氟的殘留量為10~20 mg/L時形成沉澱物的速度會減慢。當水中含有一定數量的鹽類,如氯化鈉、硫酸鈉、氯化銨時,將會增大氟化鈣的溶解度。因此用石灰處理後的廢水中氟含量一般不會低於20~30 mg/L。石灰的價格便宜,但溶解度低,只能以乳狀液投加,由於生產的CaF2沉澱包裹在Ca(OH)2顆粒的表面,使之不能被充分利用,因而用量大。投加石灰乳時,即使其用量使廢水pH達到12,也只能使廢水中氟離子濃度下降到15 mg/L左右,且水中懸浮物含量很高。當水中含有氯化鈣、硫酸鈣等可溶性的鈣鹽時,由於同離子效應而降低氟化鈣的溶解度。含氟廢水中加入石灰與氯化鈣的混合物,經中和澄清和過濾後,pH為7~8時,廢水中的總氟含量可降到10 mg/L左右。
為使生成的沉澱物快速聚凝沉澱,可在廢水中單獨或並用添加常用的無機鹽混凝劑(如三氯化鐵)或高分子混凝劑(如聚丙烯醯胺)。為不破壞這種已形成的絮凝物,攪拌操作宜緩慢進行,生成的沉澱物可用靜止分離法進行固液分離。在任何pH下,氟離子的濃度隨鈣離子濃度的增大而減小。在鈣離子過剩量小於40 mg/L時,氟離子濃度隨鈣離子濃度的增大而迅速降低,而鈣離子濃度大於100 mg/L時氟離子濃度隨鈣離子濃度變化緩慢。因此,在用石灰沉澱法處理含氟廢水時不能用單純提高石灰過剩量的方法來提高除氟效果,而應在除氟效率與經濟性二者之間進行協調考慮,使之既有較好的除氟效果又盡可能少地投加石灰。這也有利於減少處理後排放的污泥量。
④ 怎麼檢測水的含氨氣的量
如果氨飽和了,那就可以聞到刺鼻的氣味了.
現在有專門測量氨的裝置.
也可以通過計算PH近似得到氨的濃度
1.酸和鹼的強度
l 醋酸CH3COOH(簡稱HAc)是典型的一元酸,HAc水溶液體系中存在著如下的離解反應平衡,其電離平衡反應為:
HAc+H2O≈H3O++Ac—,,Ka稱為酸平衡常數。
已經離解的HAc的百分數,稱為弱酸的電離度,常以α表示。如果以[HAc]表示HAc的原始濃度,以[Ac—]表示已離解HAc的濃度,則α定義為:α=×100%。
l 以氨的水溶液作為一元弱鹼的例子進行簡要介紹,氨的水溶液中存在著如下的電離平衡反應,其電離平衡反應為:
NH3+H2O≈NH4++OH—,,Kb稱為鹼平衡常數。
需要說明的是,准確的酸鹼平衡常數要靠活度計算,但是在一般的稀溶液中,基本上可以用濃度來代替。
l 鹼的強弱分別採用酸電離常數Ka和鹼電離常數Kb來表達。用通式表示為:
HA+H2O≈H3O++A—
A—+ H2O≈HA+OH—
為應用方便,一般採用pKa,pKb來表示酸鹼電離常數:pKa=lgKa,pKb=lgKb
Ka數值越大或pKa數值越小,表明HA的酸性越強。Kb數值越大或pKb數值越小表明A—的鹼性越強。一般規定pKa<0.8者為強酸,pKb<1.4者為強鹼。
2.平衡計算
確定了弱酸離解常數,就可以計算已知濃度的弱酸溶液的平衡組成。
l 舉例計算1:在環境溫度為25攝氏度條件下,含氨廢水濃度為0.200mg/L,求該廢水的OH-濃度、pH值和氨水的電離度。(已知氨在25攝氏度的離解常數是1.8×10-5)
解:假定平衡時NH4+的濃度為x mol/L
NH3+H2O≈NH4++OH—,
平衡時濃度:0.200-x x x
所以==1.8×10-5
所以可以求得x=1.90×10-3mol/L即,[OH—]=1.90×10-3mol/L
由於pH值為氫離子活度的負對數度,求得:
pH=14-pOH=14+1g[OH—]=11.28
電離度為α=×100%=0.95%
⑤ 怎麼處理氨氮廢水
具體要看你是什麼類型的廢水,氨氮多少,BOD有多少。高氨氮廢水一般有以下處理方法:生物脫氮工藝、吹脫工藝、鳥糞石沉澱工藝。具體要看你的實際情況。
⑥ 某廠每天產生600m 3 含氨的廢水(NH 3 的濃度為153mg/L,廢氨水的密度為1g/cm 3 ).該廠處理廢水的方法
(1)氨氣的濃度變化為153mg/L-17mg/L=136mg/L=0.136g/L, m(NH 3 )=0.136g/L×600m 3 ×10 3 L/m 3 =81600g, n(NH 3 )=
答:該廠每天通專過加熱蒸發可得到NH 3 的物質的量是屬4800mol. (2)由濃度17mg/L可知1L溶液中溶解17mg氨氣,故1L溶液中氨氣的物質的量=
答:加熱後的廢水中NH 3 的物質的量濃度為0.001mol/L. (3)令生成硝酸的質量為x t,則: NH 3 ~~~~~HNO 3 , 17 63 0.816t×90% x t 所以,17:63=0.816t×90%:x t 解得x=2.72, 答:該廠每天可生產硝酸2.72噸. |
⑦ 工業廢水中氨如何去除
工業廢水去除氨氮的主要方法有:物理法、化學法、生物法。物理法含反滲透、蒸餾、土壤灌溉等處理技術;化學法含離子交換、氨吹脫、折點加氯、焚燒、化學沉澱、催化裂解、電滲析、電化學等處理技術;生物法含藻類養殖、生物硝化、固定化生物技術等處理技術。目前比較實用的方法有:折點加氯法、選擇性離子交換法、氨吹脫法、生物法以及化學沉澱法。具體方法如下:
折點氯化法去除氨氮:折點氯化法是將氯氣或次氯酸鈉通入廢水中將廢水中的NH3-N氧化成N2的化學脫氮工藝。當氯氣通入廢水中達到某一點時水中游離氯含量最低,氨的濃度降為零。當氯氣通入量超過該點時,水中的游離氯就會增多。因此該點稱為折點,該狀態下的氯化稱為折點氯化。處理氨氮廢水所需的實際氯氣量取決於溫度、pH值及氨氮濃度。氧化每克氨氮需要9~10mg氯氣。pH值在6~7時為最佳反應區間,接觸時間為0.5~2小時。折點加氯法處理後的出水在排放前一般需要用活性碳或二氧化硫進行反氯化,以去除水中殘留的氯。氯化法的處理率達90%~100%,處理效果穩定,不受水溫影響,在寒冷地區此法特別有吸引力。投資較少,但運行費用高,副產物氯胺和氯化有機物會造成二次污染,氯化法只適用於處理低濃度氨氮廢水。
選擇性離子交換化去除氨氮:離子交換是指在固體顆粒和液體的界面上發生的離子交換過程。離子交換法選用對NH4+離子有很強選擇性的沸石作為交換樹脂,從而達到去除氨氮的目的。沸石具有對非離子氨的吸附作用和與離子氨的離子交換作用,它是一類硅質的陽離子交換劑,成本低,對NH4+有很強的選擇性。該工藝具有較高的氨氮去除率和穩定性,能成功地去除原水和二級出水中的氨氮。離子交換法具有工藝簡單、投資省去除率高的特點,適用於中低濃度的氨氮廢水(<500mg/L),對於高濃度的氨氮廢水會因樹脂再生頻繁而造成操作困難。但再生液為高濃度氨氮廢水,仍需進一步處理。
空氣吹脫法與汽提法去除氨氮:空氣吹脫法是將廢水與氣體接觸,將氨氮從液相轉移到氣相的方法。該方法適宜用於高濃度氨氮廢水的處理。該方法比較適合處理高濃度氨氮廢水,但吹脫效率影響因子多,不容易控制,特別是溫度影響比較大,在北方寒冷季節效率會大大降低,現在許多吹脫裝置考慮到經濟性,沒有回收氨,直接排放到大氣中,造成大氣污染。汽提法是用蒸汽將廢水中的游離氨轉變為氨氣逸出,處理機理與吹脫法一樣是一個傳質過程,即在高pH值時,使廢水與氣體密切接觸,從而降低廢水中氨濃度的過程。吹脫和汽提法處理廢水後所逸出的氨氣可進行回收:用硫酸吸收作為肥料使用;冷凝為1%的氨溶液。
生物法去除氨氮:生物法去除氨氮是在指廢水中的氨氮在各種微生物的作用下,通過硝化和反硝化等一系列反應,最終形成氮氣,從而達到去除氨氮的目的。生物法脫氮的工藝有很多種,但是機理基本相同。都需要經過硝化和反硝化兩個階段。生物脫氮法可去除多種含氮化合物,總氮去除率可達70%~95%,二次污染小且比較經濟,因此在國內外運用最多。其缺點是佔地面積大,低溫時效率低。常見的生物脫氮流程可以分為3類:多級污泥系統、單級污泥系統、生物膜系統。
化學沉澱法去除氨氮:化學沉澱法是根據廢水中污染物的性質,必要時投加某種化工原料,在一定的工藝條件下(溫度、催化劑、pH值、壓力、攪拌條件、反應時間、配料比例等等)進行化學反應,使廢水中污染物生成溶解度很小的沉澱物或聚合物,或者生成不溶於水的氣體產物,從而使廢水凈化,或者達到一定的去除率。利用化學沉澱法,可使廢水中氨氮作為肥料得以回收。
⑧ 廢水中含氨和有機胺怎麼去除
用化學沉澱法復對厭氧處制理後有機胺廢水中的氨氮進行處理研究,考察pH、n(Mg2+)∶n(NH4+)、n(PO34-)∶n(NH4+)、反應時間等影響因素。結果表明,在pH=10,反應時間10min,n(Mg)∶n(N)∶n(P)=1.2∶1∶1.2時氨氮由659.03mg/L降至58.52mg/L,去除效率達到91.12%。
⑨ 含硫酸銨廢水如何處理
(來1)酸或鹼抑制水電離,含自有弱離子的鹽促進水電離,酸中氫離子或鹼中氫氧根離子濃度越大,其抑制水電離程度越大,①中氫離子濃度最大、②中氫離子濃度小於③中氫氧根離子濃度,④促進水電離,則由水電離出的H+濃度由大到小的順序是④②③①,故答案為:④②③①;(2)相同濃度的④、⑤、⑦、⑧四種溶液中,一水合氨是弱電解質,c(NH4+)最小,氫離子抑制銨根離子水解、醋酸根離子水解銨根離子水解,這四種溶液中c(NH4+)大小順序是⑦④⑤⑧,故答案為:⑦④⑤⑧;(3)混合溶液中的溶質是等物質的量濃度的NaCl、NH3.H2O,溶液呈鹼性, A.根據物料守恆得c(Na+)=c(Cl-),一水合氨電離出銨根離子和氫氧根離子,水電離出氫氧根離子,一水合氨電離程度較小,所以離子濃度大小順序是c(Na+)=c(Cl-)>c(OH-)>c(NH4+),故A正確; B.溶液體積增大一倍,所以鈉離子濃度降為原來的一半,c(Na+)=0.05mol/L,故B錯誤; C.根據電荷守恆得c(Na+)+c(NH4+)+c(H+)=c(Cl-)+c(OH-),故C錯誤; D.溶液呈鹼性,則c(H+)<c(OH-),故D錯誤;
⑩ 含氨廢水如何處理
目前常用的是進吹脫塔里吹脫