nb污水
① 不可生化的cod有哪些
COD是一種常用的評價水體污染程度的綜合性指標。是指利用化學氧化劑(如重鉻酸鉀)將水中的還原性物質(如有機物)氧化分解所消耗的氧量。COD一般以CODcr和COD-Mn高錳酸鹽指數表示,也就是說COD沒有所謂的可生化的COD和不可生化的COD,只能說COD中包含可生化的COD部分,COD—BOD約等於不可生化有機物。
COD=COD(B)+COD(NB)基本可以這樣說,但不確切,因為COD=COD(B)+COD(NB),前者是可生化性部分,後者是不可生化部分。而微生物在20度情況下完成碳化過程約需20天(也即BOD20,約等於CODNB),所以確切說,COD—BOD20大致等於不可生化的有機物(忽略還原性無機物的干擾因素)。
而傳統理論認為 BOD/COD>0.3的污水 視為可生化 0.2-0.3之間為難生化<0.2為不可生化 BOD/COD比值越高越,可生化性越好這些只是理論上,碰上一些較特殊的水,還要綜合考慮其他因素。
② COD與BOD之間如何換算
兩者之間不能相互換算。因為COD與BOD是兩種不同性質的生物量。
化學需氧量COD是以化學方法測量水樣中需要被氧化的還原性物質的量。廢水、廢水處理廠出水和受污染的水中,能被強氧化劑氧化的物質(一般為有機物)的氧當量。在河流污染和工業廢水性質的研究以及廢水處理廠的運行管理中,它是一個重要的而且能較快測定的有機物污染參數,常以符號COD表示。
BOD指的是生化需氧量或生化耗氧量(一般指五日生化需氧量),表示水中有機物等需氧污染物質含量的一個綜合指標。說明水中有機物由於微生物的生化作用進行氧化分解,使之無機化或氣體化時所消耗水中溶解氧的總數量。
(2)nb污水擴展閱讀:
COD的生態影響:
水中的還原性物質有各種有機物、亞硝酸鹽、硫化物、亞鐵鹽等,但主要的是有機物。因此,化學需氧量(COD)又往往作為衡量水中有機物質含量多少的指標。化學需氧量越大,說明水體受有機物的污染越嚴重。
化學需氧量(COD)的測定,隨著測定水樣中還原性物質以及測定方法的不同,其測定值也有不同。目前應用最普遍的是酸性高錳酸鉀氧化法與重鉻酸鉀氧化法。
高錳酸鉀(KMnO4)法,氧化率較低,但比較簡便,在測定水樣中有機物含量的相對比較大時,可以採用重鉻酸鉀(K2Cr2O7)法,氧化率高,再現性好,適用於測定水樣中有機物的總量。有機物對工業水系統的危害很大。
嚴格的來說,化學需氧量也包括了水中存在的無機性還原物質。通常,因廢水中有機物的數量大大多於無機物質的量,因此,一般用化學需氧量來代表廢水中有機物質的總量。
在測定條件下水中不含氮的有機物質易被高錳酸鉀氧化,而含氮的有機物質就比較難分解。因此,耗氧量適用於測定天然水或含容易被氧化的有機物的一般廢水,而成分較復雜的有機工業廢水則常測定化學需氧量。
③ sbr適用於可生化性高的污水嗎
一般考慮廢水的B/C,如果在0.3以上,可認為可生物處理,如果低於0.2,基本可不用考慮生化處理,在0.2~0.3之間嘗試如何提高B/C吧——水解酸化,高級氧化等
廢水的可生化性(Biodegradability),也稱廢水的生物可降解性,即廢水中有機污染物被生物降解的難易程度,是廢水的重要特性之一。
廢水存在可生化性差異的主要原因在於廢水所含的有機物中,除一些易被微生物分解、利用外,還含有一些不易被微生物降解、甚至對微生物的生長產生抑製作用,這些有機物質的生物降解性質以及在廢水中的相對含量決定了該種廢水採用生物法處理(通常指好氧生物處理)的可行性及難易程度。在特定情況下,廢水的可生化性除了體現廢水中有機污染物能否可以被利用以及被利用的程度外,還反映了處理過程中微生物對有機污染物的利用速度:一旦微生物的分解利用速度過慢,導致處理過程所需時間過長,在實際的廢水工程中很難實現,因此,一般也認為該種廢水的可生化性不高[6]。
確定處理對象廢水的可生化性,對於廢水處理方法的選擇、確定生化處理工段進水量、有機負荷等重要工藝參數具有重要的意義。國內外對於可生化性的判定方法根據採用的判定參數大致可以分為好氧呼吸參量法、微生物生理指標法、模擬實驗法以及綜合模型法等。
1好氧呼吸參量法
微生物對有機污染物的好氧降解過程中,除COD(ChemicalOxygenDemand化學需氧量)、BOD(BiologicalOxygenDemand生化需氧量)等水質指標的變化外,同時伴隨著O2的消耗和CO2的生成。
好氧呼吸參量法是就是利用上述事實,通過測定COD、BOD等水質指標的變化以及呼吸代謝過程中的O2或CO2含量(或消耗、生成速率)的變化來確定某種有機污染物(或廢水)可生化性的判定方法。根據所採用的水質指標,主要可以分為:水質指標評價法、微生物呼吸曲線法、CO2生成量測定法。
1.1水質指標評價法
BOD5/CODCr比值法是最經典、也是目前最為常用的一種評價廢水可生化性的水質指標評價法。
BOD是指有氧條件下好氧微生物分解利用廢水中有機污染物進行新陳代謝過程中所消耗的氧量,我們通常是將BOD5(五天生化需氧量)直接代表廢水中可生物降解的那部分有機物。CODCr是指利用化學氧化劑(K2Cr2O7)徹底氧化廢水中有機污染物過程中所消耗氧的量,通常將CODCr代表廢水中有機污染物的總量。
傳統觀點認為BOD5/CODCr,即B/C比值體現了廢水中可生物降解的有機污染物佔有機污染物總量的比例,從而可以用該值來評價廢水在好氧條件下的微生物可降解性。目前普遍認為,BOD/COD<0.3的廢水屬於難生物降解廢水,在進行必要的預處理之前不易採用好氧生物處理;而BOD/COD>0.3的廢水屬於可生物降解廢水。該比值越高,表明廢水採用好氧生物處理所達到的效果越好。
在各種有機污染指標中,總有機碳(TOC)、總需氧量(TOD)等指標與COD相比,能夠更為快速地通過儀器測定,且測定過程更加可靠,可以更加准確地反映出廢水中有機污染物的含量。隨著近幾年來上述指標測定方法的發展、改進,國外多採用BOD/TOD及BOD/TOC的比值作為廢水可生化性判定指標,並給出了一系列的標准。但無論BOD/COD、BOD/TOD或者BOD/TOC,方法的主要原理都是通過測定可生物降解的有機物(BOD)占總有機物(COD、TOD或TOC)的比例來判定廢水可生化性的。
該種判定方法的主要優點在於:BOD、COD等水質指標的意義已被廣泛了解和接受,且測定方法成熟,所需儀器簡單。
但該判定方法也存在明顯不足,導致該種方法在應用過程中有較大的局限性。首先,BOD本身是一個經驗參數,必須在嚴格一致的測試條件下才能比較它們的重現性和可比性。測試條件的任何偏差都將導致極不穩定的測試結果,稀釋過程、分析者的經驗以及接種材料的變化都可以導致BOD測試的較大誤差,同時,我們又很難找到一個標准接種材料來檢驗所接種的微生物究竟帶來多大的誤差,也不知道究竟哪一個測量值更接近於真值。實際上,不同實驗室對同一水樣的BOD測試的結果重現性很差,其原因可能在於稀釋水的制備過程或不同實驗室具體操作差異所帶來的誤差;其次,國內外學者對各類工業廢水和城市污水的BOD與COD數值做了大量的測定工作,並確定了能表徵兩者相關性的關系式:
COD=a+bBOD(1)
式(1)中a=CODnB,b=CODB/BOD
CODnB—不能被生物降解的那部分有機物的COD值;
CODB—能被生物降解的那部分有機物的COD值。
根據公式1可以看出,BOD/COD值不能表示可生物降解的有機物佔全部有機物的比值,只有當a值為零時廢水的BOD/COD比值才是常數;最後,廢水的某些性質也會使採用該種方法判定廢水可生化性產生誤差甚至得到相反的結論,如:BOD無法反映廢水中有害有毒物質對於微生物的抑製作用,當廢水中含有降解緩慢的有機污染物懸浮、膠體污染物時,BOD與COD之間不存在良好的相關性。
1.2微生物呼吸曲線法
微生物呼吸曲線是以時間為橫坐標,以生化反應過程中的耗氧量為縱坐標作圖得到的一條曲線,曲線特徵主要取決於廢水中有機物的性質[14]。測定耗氧速度的儀器有瓦勃氏呼吸儀和電極式溶解氧測定儀[15]。
微生物內源呼吸曲線:當微生物進入內源呼吸期時,耗氧速率恆定,耗氧量與時間呈正比,在微生物呼吸曲線圖上表現為一條過坐標原點的直線,其斜率即表示內源呼吸時耗氧速率。如圖1所示,比較微生物呼吸曲線與微生物內源呼吸曲線,曲線a位於微生物內源呼吸曲線上部,表明廢水中的有機污染物能被微生物降解,耗氧速率大於內源呼吸時的耗氧速率,經一段時間曲線a與內源呼吸線幾乎平行,表明基質的生物降解已基本完成,微生物進入內源呼吸階段;曲線b與微生物內源呼吸曲線重合,表明廢水中的有機污染物不能被微生物降解,但也未對微生物產生抑製作用,微生物維持內源呼吸,曲線c位於微生物內源呼吸曲線下端,耗氧速率小於內源呼吸時的耗氧速率,表明廢水中的有機污染物不能被微生物降解,而且對微生物具有抑制或毒害作用,微生物呼吸曲線一旦與橫坐標重合,則說明微生物的呼吸已停止,死亡。將微生物呼吸曲線圖的橫坐標改為基質濃度,則變為另一種可生化性判定方法—耗氧曲線法,雖然圖的含義不同,但是與微生物呼吸曲線法的原理和實驗方法是一致的。有廢水需要處理的單位,也可以到污水寶項目服務咨詢具備類似污水處理經驗的。
該種判定方法與其他方法相比,操作簡單、實驗周期短,可以滿足大批量數據的測定。但必須指出,用此種方法來評價廢水的可生化性、必須對微生物的來源、濃度、馴化和有機污染物的濃度及反應時間等條件作嚴格的規定,加之測定所需的儀器在國內的普及率不高,因此在國內的應用並不廣泛。
1.3CO2生成量測定法
微生物在降解污染物的過程中,在消耗廢水中O2的同時會生成相應數量的CO2。因此,通過測定生化反應過程CO2的生成量,就可以判斷污染物的可生物降解性。
目前最常用的方法為斯特姆測定法,反應時間為28d,可以比較CO2的實際產量和理論產量來判定廢水的可生化性,也可以利用CO2/DOC值來判定廢水的可生化性。由於該種判定實驗需採用特殊的儀器和方法,操作復雜,僅限於實驗室研究使用,在實際生產中的應用還未見報道。
2微生物生理指標法
微生物與廢水接觸後,利用廢水中的有機物作為碳源和能源進行新陳代謝,微生物生理指標法就是通過觀察微生物新陳代謝過程中重要的生理生化指標的變化來判定該種廢水的可生化性。目前可以作為判定依據的生理生化指標主要有:脫氫酶活性、三磷酸腺苷(ATP)。
2.1脫氫酶活性指標法
微生物對有機物的氧化分解是在各種酶的參與下完成的,其中脫氫酶起著重要的作用:催化氫從被氧化的物質轉移到另一物質。由於脫氫酶對毒物的作用非常敏感,當有毒物存在時,它的活性(單位時間內活化氫的能力)下降。因此,可以利用脫氫酶活性作為評價微生物分解污染物能力的指標:如果在以某種廢水(有機污染物)為基質的培養液中生長的微生物脫氫酶的活性增加,則表明微生物能夠降解該種廢水(有機污染物)。
2.2三磷酸腺苷(ATP)指標法
微生物對污染物的氧化降解過程,實際上是能量代謝過程,微生物產能能力的大小直接反映其活性的高低。三磷酸腺苷(ATP)是微生物細胞中貯存能量的物質,因而可通過測定細胞中ATP的水平來反映微生物的活性程度,並作為評價微生物降解有機污染物能力的指標,如果在以某種廢水(有機污染物)為基質的培養液中生長的微生物ATP的活性增加,則表明微生物能夠降解該種廢水(有機污染物)。
此外,微生物生理指標法還有細菌標准平板計數、DNA測定法、INT測定法、發光細菌光強測定法等[19]。
雖然目前脫氫酶活性、ATP等測定都已有較成熟的方法,但由於這些參數的測定對儀器和品的要求較高,操作也較復雜,因此目前微生物生理指標法主要還是用於單一有機污染物的生物可降解性和生態毒性的判定。
3模擬實驗法
模擬實驗法是指直接通過模擬實際廢水處理過程來判斷廢水生物處理可行性的方法。根據模擬過程與實際過程的近似程度,可以大致分為培養液測定法和模擬生化反應器法。
3.1培養液測定法
培養液測定法又稱搖床試驗法,具體操作方法是:在一系列三角瓶內裝入某種污染物(或廢水)為碳源的培養液,加入適當N、P等營養物質,調節pH值,然後向瓶內接種一種或多種微生物(或經馴化的活性污泥),將三角瓶置於搖床上進行振盪,模擬實際好氧處理過程,在一定階段內連續監測三角瓶內培養液物理外觀(濃度、顏色、嗅味等)上的變化,微生物(菌種、生物量及生物相等)的變化以及培養液各項指標:pH、COD或某污染物濃度的變化。
3.2模擬生化反應器法
模擬生化反應器法是在模型生化反應器(如曝氣池模型)中進行的,通過在生化模型中模擬實際污水處理設施(如曝氣池)的反應條件,如:MLSS濃度、溫度、DO、F/M比等,來預測各種廢水在污水處理設施中的去除效果,及其各種因素對生物處理的影響。
由於模擬實驗法採用的微生物、廢水與實際過程相同,而且生化反應條件也接近實際值,從水處理研究的角度來講,相當於實際處理工藝的小試研究,各種實際出現的影響因素都可以在實驗過程中體現,避免了其他判定方法在實驗過程中出現的誤差,且由於實驗條件和反應空間更接近於實際情況,因此模擬實驗法與培養液測定法相比,能夠更准確地說明廢水生物處理的可行性。
但正是由於該種判定方法針對性過強,各種廢水間的測定結果沒有可比性,因此不容易形成一套系統的理論,而且小試過程的判定結果在實際放大過程中也可能造成一定的誤差。
4綜合模型法
綜合模型法主要是針對某種有機污染物的可生化的判定,通過對大量的已知污染物的生物降解性和分子結構的相關性利用計算機模擬預測新的有機化合物的生物可降解性,主要的模型有:BIODEG模型、PLS模型等。
綜合模型法需要依靠龐大的已知污染物的生物降解性資料庫(如EU的EINECS資料庫),而且模擬過程復雜,耗資大,主要用於預測新化合物的可生化性和進入環境後的降解途徑。
除以上的可生化性判定方法之外,近年來還發展了許多其他方法,如利用多級過濾和超濾的方法得到廢水的粒徑分布PSD(particlesizedistribution)和COD分布來作為預測廢水可生化性的指標;利用耗氧量、生化反應某端產物、生物活性值聯合評價廢水的可生化性;利用經驗流程圖來預測某種有機污染物的可生化性。
綜上所述,目前國內外對於廢水的可生化性判定方法各有千秋,在實際操作中應根據廢水的性質和實驗條件來選擇合適的判定方法。
④ 廢水的可生化性指標是如何規定的
一般考慮廢水的B/C,如果在0.3以上,可認為可生物處理,如果低於0.2,基本可不用考慮生化處理,在0.2~0.3之間嘗試如何提高B/C——水解酸化,高級氧化等。
(4)nb污水擴展閱讀:
模擬實驗法是指直接通過模擬實際廢水處理過程來判斷廢水生物處理可行性的方法。根據模擬過程與實際過程的近似程度,可以大致分為培養液測定法和模擬生化反應器法。
1、培養液測定法
培養液測定法又稱搖床試驗法,具體操作方法是:在一系列三角瓶內裝入某種污染物(或廢水)為碳源的培養液,加入適當N、P等營養物質,調節pH值,然後向瓶內接種一種或多種微生物(或經馴化的活性污泥)。
將三角瓶置於搖床上進行振盪,模擬實際好氧處理過程,在一定階段內連續監測三角瓶內培養液物理外觀(濃度、顏色、嗅味等)上的變化,微生物(菌種、生物量及生物相等)的變化以及培養液各項指標:pH、COD或某污染物濃度的變化。
2、模擬生化反應器法
模擬生化反應器法是在模型生化反應器(如曝氣池模型)中進行的,通過在生化模型中模擬實際污水處理設施(如曝氣池)的反應條件,如:MLSS濃度、溫度、DO、F/M比等,來預測各種廢水在污水處理設施中的去除效果,及其各種因素對生物處理的影響。
由於模擬實驗法採用的微生物、廢水與實際過程相同,而且生化反應條件也接近實際值,從水處理研究的角度來講,相當於實際處理工藝的小試研究,各種實際出現的影響因素都可以在實驗過程中體現,避免了其他判定方法在實驗過程中出現的誤差,且由於實驗條件和反應空間更接近於實際情況,因此模擬實驗法與培養液測定法相比,能夠更准確地說明廢水生物處理的可行性。
但正是由於該種判定方法針對性過強,各種廢水間的測定結果沒有可比性,因此不容易形成一套系統的理論,而且小試過程的判定結果在實際放大過程中也可能造成一定的誤差。
⑤ 生活污水中BOD和COD的比值一般在什麼范圍
BOD/COD應在在0.5左右、或者更高點。
化學需氧量COD是以化學方法測量水樣中需要被氧化的還原性物質的量。廢水、廢水處理廠出水和受污染的水中,能被強氧化劑氧化的物質(一般為有機物)的氧當量。
BOD為生化需氧量或生化耗氧量(一般指五日生化需氧量),表示水中有機物等需氧污染物質含量的一個綜合指標。說明水中有機物由於微生物的生化作用進行氧化分解,使之無機化或氣體化時所消耗水中溶解氧的總數量。
(5)nb污水擴展閱讀:
COD對生活的影響:
化學需氧量高意味著水中含有大量還原性物質,其中主要是有機污染物。化學需氧量越高,就表示江水的有機物污染越嚴重,這些有機物污染的來源可能是農葯、化工廠、有機肥料等。
如果不進行處理,許多有機污染物可在江底被底泥吸附而沉積下來,在今後若干年內對水生生物造成持久的毒害作用。在水生生物大量死亡後,河中的生態系統即被摧毀。
人若以水中的生物為食,則會大量吸收這些生物體內的毒素,積累在體內,這些毒物常有致癌、致畸形、致突變的作用,對人極其危險。另外,若以受污染的江水進行灌溉,則植物、農作物也會受到影響,容易生長不良,而且人也不能取食這些作物。
但化學需氧量高不一定就意味著有前述危害,具體判斷要做詳細分析,如分析有機物的種類,到底對水質和生態有何影響。是否對人體有害等。
如果不能進行詳細分析,也可間隔幾天對水樣再做化學需氧量測定,如果對比前值下降很多,說明水中含有的還原性物質主要是易降解的有機物,對人體和生物危害相對較輕。
⑥ 水處理設備中什麼叫B/CB/C表示什麼意義
B/C是BOD5(生化需氧量)與COD(化學需氧量)比值的縮寫,該比值可以表示廢水的可生化降解特性。
當BOD5/COD≥0.45時,不可生物降解的有機物僅僅佔全部有機物的20%以下,而當BOD5/COD≤0.2時,不可生物降解的有機物已佔全部有機物的60%以上。
因此,BOD5/COD值常常被作為有機物生物降解性的評價指標。
BOD5/COD0.45易生物降解
BOD5/COD0.30可生物降解
BOD5/COD0.30較難生物降解
BOD5/COD0.20較以難生物降解
B/C在環境工程上有著非常重要而實用的意義。
⑦ 甲廠的廢水明顯呈鹼性,故甲廠廢水中所含的三種離子是 、 、 &nb...
OH - Cl - K + 鐵粉 Ag(或銀) Ag + 、Fe 3 + 、Cl - 、OH - KNO 3
⑧ 煉金廠的廢水中含有CN-有劇毒,其性質與鹵素離子相似,還原性介於I-與Br-之間,HCN為弱酸.下列說法不正
A、HCN為弱酸,根據強酸制弱酸規律可知,CN-可以和稀硫酸反應生成HCN,故A正確; ⑨ NB-IoT可以用於以下哪些場景(多選題) A 溫度檢測 B 自動駕駛 C 污水監測 D 智能抄表
NB-IoT(Narrow Band Internet of Things),即基於蜂窩的窄帶物聯網,構建於蜂窩網路,只消耗大約180KHz的帶寬,可直內接部署於GSM網路、UMTS網路或LTE網路,以降容低部署成本、實現平滑升級,NB-IoT具備:廣覆蓋、大連接、低功耗和低成本四大亮點。 熱點內容
|