當前位置:首頁 » 污水廢水 » 使廢水中氨氮裂解氮氣

使廢水中氨氮裂解氮氣

發布時間: 2021-03-31 19:38:31

㈠ 怎麼去除廢水氨氮,廢水中的氨氮怎麼去除 沃德凱

根據廢水中氨氮濃度的不同,可將廢水分為3類:高濃度氨氮廢水(NH3-N>500mg/l),中等濃度氨氮廢水(NH3-N:50-500mg/l),低濃度氨氮廢水(NH3-N<50mg/l)。然而高濃度的氨氮廢水對微生物的活性有抑製作用,制約了生化法對其的處理應用和效果,同時會降低生化系統對有機污染物的降解效率,從而導致處理出水難以達到要求。
故本工程的關鍵之一在於氨氮的去除,去除氨氮的主要方法有:物理法、化學法、生物法。物理法含反滲透蒸餾、土壤灌溉等處理技術;化學法含離子交換、氨吹脫、折點加氯、焚燒、化學沉澱、催化裂解、電滲析、電化學等處理技術;生物法含藻類養殖、生物硝化、固定化生物技術等處理技術。目前比較實用的方法有:折點加氯法、選擇性離子交換法、氨吹脫法、生物法以及化學沉澱法。
1. 折點氯化法去除氨氮
折點氯化法是將氯氣或次氯酸鈉通入廢水中將廢水中的NH3-N氧化成N2的化學脫氮工藝。當氯氣通入廢水中達到某一點時水中游離氯含量最低,氨的濃度降為零。當氯氣通入量超過該點時,水中的游離氯就會增多。因此該點稱為折點,該狀態下的氯化稱為折點氯化。處理氨氮廢水所需的實際氯氣量取決於溫度、pH值及氨氮濃度。氧化每克氨氮需要9~10mg氯氣。pH值在6~7時為最佳反應區間,接觸時間為0.5~2小時。
折點加氯法處理後的出水在排放前一般需要用活性碳或二氧化硫進行反氯化,以去除水中殘留的氯。1mg殘留氯大約需要0.9~1.0mg的二氧化硫。在反氯化時會產生氫離子,但由此引起的pH值下降一般可以忽略,因此去除1mg殘留氯只消耗2mg左右(以CaCO3計)。折點氯化法除氨機理如下:
Cl2+H2O→HOCl+H++Cl-
NH4++HOCl→NH2Cl+H++H2O
NHCl2+H2O→NOH+2H++2Cl-
NHCl2+NaOH→N2+HOCl+H++Cl-
折點氯化法最突出的優點是可通過正確控制加氯量和對流量進行均化,使廢水中全部氨氮降為零,同時使廢水達到消毒的目的。對於氨氮濃度低(小於50mg/L)的廢水來說,用這種方法較為經濟。為了克服單獨採用折點加氯法處理氨氮廢水需要大量加氯的缺點,常將此法與生物硝化連用,先硝化再除微量殘留氨氮。氯化法的處理率達90%~100%,處理效果穩定,不受水溫影響,在寒冷地區此法特別有吸引力。投資較少,但運行費用高,副產物氯胺和氯化有機物會造成二次污染,氯化法只適用於處理低濃度氨氮廢水。
2. 選擇性離子交換化去除氨氮
離子交換是指在固體顆粒和液體的界面上發生的離子交換過程。離子交換法選用對NH4+離子有很強選擇性的沸石作為交換樹脂,從而達到去除氨氮的目的。沸石具有對非離子氨的吸附作用和與離子氨的離子交換作用,它是一類硅質的陽離子交換劑,成本低,對NH4+有很強的選擇性。
O.Lahav等用沸石作為離子交換材料,將沸石作為一種把氨氮從廢水中分離出來的分離器以及硝化細菌的載體。該工藝在一個簡單的反應器中分吸附階段和生物再生階段兩個階段進行。在吸附階段,沸石柱作為典型的離子交換柱;而在生物再生階段,附在沸石上的細菌把脫附的氨氮氧化成硝態氮。研究結果表明,該工藝具有較高的氨氮去除率和穩定性,能成功地去除原水和二級出水中的氨氮。
沸石離子交換與pH的選擇有很大關系,pH在4~8的范圍是沸石離子交換的最佳區域。當pH<4時,H+與NH4+發生競爭;當pH>8時,NH4+變為NH3而失去離子交換性能。用離子交換法處理含氨氮10~20mg/L的城市污水,出水濃度可達1mg/L以下。離子交換法具有工藝簡單、投資省去除率高的特點,適用於中低濃度的氨氮廢水(<500mg/L),對於高濃度的氨氮廢水會因樹脂再生頻繁而造成操作困難。但再生液為高濃度氨氮廢水,仍需進一步處理。
3. 空氣吹脫法與汽提法去除氨氮
空氣吹脫法是將廢水與氣體接觸,將氨氮從液相轉移到氣相的方法。該方法適宜用於高濃度氨氮廢水的處理。吹脫是使水作為不連續相與空氣接觸,利用水中組分的實際濃度與平衡濃度之間的差異,使氨氮轉移至氣相而去除廢水中的氨氮通常以銨離子(NH4+)和游離氨(NH3)的狀態保持平衡而存在。將廢水pH值調節至鹼性時,離子態銨轉化為分子態氨,然後通入空氣將氨吹脫出。吹脫法除氨氮,去除率可達60%~95%,工藝流程簡單,處理效果穩定,吹脫出的氨氣用鹽酸吸收生成氯化銨可回用於純鹼生產作母液,也可根據市場需求,用水吸收生產氨水或用硫酸吸收生產硫酸銨副產品,未收尾氣返回吹脫塔中。但水溫低時吹脫效率低,不適合在寒冷的冬季使用。
用該法處理氨氮時,需考慮排放的游離氨總量應符合氨的大氣排放標准,以免造成二次污染。低濃度廢水通常在常溫下用空氣吹脫,而煉鋼、石油化工、化肥、有機化工、有色金屬冶煉等行業的高濃度廢水則常用蒸汽進行吹脫。該方法比較適合處理高濃度氨氮廢水,但吹脫效率影響因子多,不容易控制,特別是溫度影響比較大,在北方寒冷季節效率會大大降低,現在許多吹脫裝置考慮到經濟性,沒有回收氨,直接排放到大氣中,造成大氣污染。
汽提法是用蒸汽將廢水中的游離氨轉變為氨氣逸出,處理機理與吹脫法一樣是一個傳質過程,即在高pH值時,使廢水與氣體密切接觸,從而降低廢水中氨濃度的過程。傳質過程的推動力是氣體中氨的分壓與廢水中氨的濃度相當的平衡分壓之間的差。延長氣水間的接觸時間及接觸緊密程度可提高氨氮的處理效率,用填料塔可以滿足此要求。塔的填料或充填物可以通過增加浸潤表面積和在整個塔內形成小水滴或生成薄膜來增加氣水間的接觸時間汽提法適用於處理連續排放的高濃度氨氮廢水,操作條件與吹脫法類似,對氨氮的去除率可達97%以上。但汽提塔內容易生成水垢,使操作無法正常進行。
吹脫和汽提法處理廢水後所逸出的氨氣可進行回收:用硫酸吸收作為肥料使用;冷凝為1%的氨溶液。
4. 生物法去除氨氮
生物法去除氨氮是在指廢水中的氨氮在各種微生物的作用下,通過硝化和反硝化等一系列反應,最終形成氮氣,從而達到去除氨氮的目的。生物法脫氮的工藝有很多種,但是機理基本相同。都需要經過硝化和反硝化兩個階段。
硝化反應是在好氧條件下通過好氧硝化菌的作用將廢水中的氨氮氧化為亞硝酸鹽或硝酸鹽,包括兩個基本反應步驟:由亞硝酸菌參與的將氨氮轉化為亞硝酸鹽的反應。由硝酸菌參與的將亞硝酸鹽轉化為硝酸鹽的反應。亞硝酸菌和硝酸菌都是自養菌,它們利用廢水中的碳源,通過與NH3-N的氧化還原反應獲得能量。反應方程式如下:
亞硝化: 2NH4++3O2→2NO2-+2H2O+4H+
硝化 : 2NO2-+O2→2NO3-
硝化菌的適宜pH值為8.0~8.4,最佳溫度為35℃,溫度對硝化菌的影響很大,溫度下降10℃,硝化速度下降一半;DO濃度:2~3mg/L;BOD5負荷:0.06-0.1kgBOD5/(kgMLSS•d);泥齡在3~5天以上。
在缺氧條件下,利用反硝化菌(脫氮菌)將亞硝酸鹽和硝酸鹽還原為氮氣而從廢水中逸出由於兼性脫氮菌(反硝化菌)的作用,將硝化過程中產生的硝酸鹽或亞硝酸鹽還原成N2的過程,稱為反硝化。反硝化過程中的電子供體是各種各樣的有機底物(碳源)。以甲醇為碳源為例,其反應式為:
6NO3-+2CH3OH→6NO2-+2CO2+4H2O
6NO2-+3CH3OH→3N2+3CO2+3H2O+6OH-
反硝化菌的適宜pH值為6.5~8.0;最佳溫度為30℃,當溫度低於10℃時,反硝化速度明顯下降,而當溫度低至3℃時,反硝化作用將停止;DO濃度<0.5mg/L;BOD5/TN>3~5。生物脫氮法可去除多種含氮化合物,總氮去除率可達70%~95%,二次污染小且比較經濟,因此在國內外運用最多。其缺點是佔地面積大,低溫時效率低。
常見的生物脫氮流程可以分為3類:
⑴多級污泥系統
多級污泥系統通常被稱為傳統的生物脫氮流程。此流程可以得到相當好的BOD5去除效果和脫氮效果,其缺點是流程長,構築物多,基建費用高,需要外加碳源,運行費用高,出水中殘留一定量甲醇;
⑵單級污泥系統
單級污泥系統的形式包括前置反硝化系統、後置反硝化系統及交替工作系統。前置反硝化的生物脫氮流程,通常稱為A/O流程。與傳統的生物脫氮工藝流程相比,該工藝特點:流程簡單、構築物少,只有一個污泥迴流系統和混合液迴流系統,基建費用可大大節省;將脫氮池設置在去碳源,降低運行費用;好氧池在缺氧池後,可使反硝化殘留的有機污染物得到進一步去除,提高出水水質;缺氧池在前,污水中的有機碳被反硝化菌所利用,可減輕其後好氧池的有機負荷。此外,後置式反硝化系統,因為混合液缺乏有機物,一般還需要人工投加碳源,但脫氮的效果高於前置式,理論上可接近100%的脫氮效果。交替工作的生物脫氮流程主要由兩個串聯池子組成,通過改換進水和出水的方向,兩個池子交替在缺氧和好氧的條件下運行。它本質上仍是A/O系統,但利用交替工作的方式,避免了混合液的迴流,其脫氮效果優於一般A/O流程。其缺點是運行管理費用較高,必須配置計算機控制自動操作系統;
⑶生物膜系統
將上述A/O系統中的缺氧池和好氧池改為固定生物膜反應器,即形成生物膜脫氮系統。此系統中應有混合液迴流,但不需污泥迴流,在缺氧的好氧反應器中保存了適應於反硝化和好氧氧化及硝化反應的兩個污泥系統。
由於常規生物處理高濃度氨氮廢水還存在以下:
為了能使微生物正常生長,必須增加迴流比來稀釋原廢水;
硝化過程不僅需要大量氧氣,而且反硝化需要大量的碳源,一般認為COD/TKN至少為9。
5. 化學沉澱法去除氨氮
化學沉澱法是根據廢水中污染物的性質,必要時投加某種化工原料,在一定的工藝條件下(溫度、催化劑、pH值、壓力、攪拌條件、反應時間、配料比例等等)進行化學反應,使廢水中污染物生成溶解度很小的沉澱物或聚合物,或者生成不溶於水的氣體產物,從而使廢水凈化,或者達到一定的去除率。
化學沉澱法處理NH3-N是始於20世紀60年代,在90年代興起的一種新的處理方法,其主要原理就是NH4+、Mg2+、PO43-在鹼性水溶液中生成沉澱。
在氨氮廢水中投加化學沉澱劑Mg(OH)2、H3PO4與NH4+反應生成MgNH4PO4•6H2O(鳥糞石)沉澱,該沉澱物經造粒等過程後,可開發作為復合肥使用。整個反應的pH值的適宜范圍為9~11。pH值<9時,溶液中PO43-濃度很低,不利於MgNH4PO4•6H2O沉澱生成,而主要生成Mg(H2PO4)2;如果pH值>11,此反應將在強鹼性溶液中生成比MgNH4PO4•6H2O更難溶於水的Mg3(PO4)2的沉澱。同時,溶液中的NH4+將揮發成游離氨,不利於廢水中氨氮的去除。利用化學沉澱法,可使廢水中氨氮作為肥料得以回收。

㈡ 水中氨氮的去除方法有哪些

就是氨氮唄,濃度高了,必須要處理到一定值以下,才能降。 ——崑山弱水無極環保科技

㈢ 污水除氨氮,用哪些方法

除氨氮可以用吹脫法。
在鹼性條件下,利用氨氮的氣相濃度和液相濃度之間的氣液平衡關系進行分離的一種方法。一般認為吹脫效率與溫度、pH、氣液比有關。
而控制吹脫效率高低的關鍵因素是溫度、氣液比和pH。
在水溫大於25 ℃,氣液比控制在3500左右,滲濾液pH控制在10.5左右,對於氨氮濃度高達2000~4000mg/L的垃圾滲濾液,去除率可達到90%以上。吹脫法在低溫時氨氮去除效率不高。
採用超聲波吹脫技術對化肥廠高濃度氨氮廢水(例如882mg/L)進行了處理試驗。最佳工藝條件為pH=11,超聲吹脫時間為40min,氣水比為1000:1試驗結果表明,廢水採用超聲波輻射以後,氨氮的吹脫效果明顯增加,與傳統吹脫技術相比,氨氮的去除率增加了17%~164%,在90%以上,吹脫後氨氮在100mg/L以內。
為了以較低的代價將pH調節至鹼性,需要向廢水中投加一定量的氫氧化鈣,但容易生水垢。同時,為了防止吹脫出的氨氮造成二次污染,需要在吹脫塔後設置氨氮吸收裝置。
在處理經UASB預處理的垃圾滲濾液(2240mg/L)時發現在pH=11.5,反應時間為24h,僅以120r/min的速度梯度進行機械攪拌,氨氮去除率便可達95%。而在pH=12時通過曝氣脫氨氮,在第17小時pH開始下降,氨氮去除率僅為85%。據此認為,吹脫法脫氮的主要機理應該是機械攪拌而不是空氣擴散攪拌。

㈣ 廢水中氨氮去除,有什麼方法

去除氨氮的主要方法有:物理法、化學法、生物法。物理法有反滲透、蒸餾、土壤回灌溉等處理技術;化學答法有離子交換、氨吹脫、折點加氯、焚燒、化學沉澱、催化裂解、電滲析、電化學等處理技術;生物法有藻類養殖、生物硝化、固定化生物技術等處理技術。

目前比較實用的方法有:折點加氯法、選擇性離子交換法、氨吹脫法、生物法以及化學沉澱法。

㈤ 污水中氨氮去除的最好方法是什麼

生物法機理——生物硝化和反硝化機理:在污水的生物脫氮處理過程中,首先在好氧條件下,通過內好氧硝化容菌的作用 ,將污水中的氨氮氧化為亞硝酸鹽或硝酸鹽 ;然後在缺氧條件下,利用反硝化菌(脫氮菌)將亞硝酸鹽和硝酸鹽還原為氮氣而從污水中逸出。因而,污水的生物脫氮包括硝化和反硝化兩個階段。生物脫氮工藝流程見圖1 。

硝化反應是將氨氮轉化為硝酸鹽的過程 ,包括兩個基本反應步驟 : 由亞硝酸菌參與的將氨氮轉化為亞硝酸鹽的反應;由硝酸菌參與的將亞硝酸鹽轉化為硝酸鹽的反應。

在缺氧條件下,由於兼性脫氮菌(反硝化菌) 的作用,將硝化過程中產生的硝酸鹽或亞硝酸鹽還原成N2的過程,稱為反硝化。反硝化過程中的電子供體是各種各樣的有機底物(碳源) 。

生物脫氮法可去除多種含氮化合物,總氮去除率可達70%—95%,二次污染小且比較經濟,因此在國內外運用最多。但缺點是佔地面積大,低溫時效率低。

㈥ 怎麼才能有效驅除廢水中氨氮和總氮

氨氮廢水的來源
鋼鐵、煉油、化肥、無機化工、鐵合金、玻璃製造、肉類加工和飼料生產等工業,均排放高濃度的氨氮廢水。 其中,某些工業自身會產生氨氮污染物,如鋼鐵工業及肉類加工業等。 而另一些工業將氨用作化學原料,如用氨等配成消光液以製造磨砂玻璃。此外,皮革、孵化、動物排泄物等新鮮廢水中氨氮初始含量並不高,但由於廢水中有機氮的脫氨基反應,在廢水積存過程中氨氮濃度會迅速增加。
過量氨氮排入水體將導致水體富營養化,降低水體觀賞價值,並且被氧化生成的硝酸鹽和亞硝酸鹽還會影響水生生物甚至人類的健康。因此,廢水脫氮處理受到人們的廣泛關注。目前,主要的脫氮方法有生物硝化反硝化、折點加氯、氣提吹脫和離子交換法等。消化污泥脫水液、垃圾滲濾液、催化劑生產廠廢水、肉類加工廢水和合成氨化工廢水等含有極高濃度的氨氮,以上方法會由於游離氨氮的生物抑製作用或者成本等原因而使其應用受到限制。高濃度氨氮廢水的處理方法可以分為物化法、生化聯合法和新型生物脫氮法。
不同種類的工業廢水中氨氮濃度干變萬化,即使同類工業不同工廠的廢水中其濃度也各不相同。以某化工廠香蘭素生產廢水為例,其氨氮濃度高達6~7×104mg/L。為了徹底治理污染,除對生產工藝進行必要的改造外,必須尋找合適的氨氮廢水處理技術,降低廢水處理的成本。
氨氮廢水處理技術研究與應用現狀
目前,氨氮廢水的處理技術可以分為兩大類:一類是物化處理技術,包括吹脫(或汽提)、沉澱、膜吸收、濕式氧化等,其中吹脫和膜吸收技術都需要氨氮盡可能以氨分子形態存在;另一類技術是生物脫氮技術。
物化處理技術
依據NH3的質量分數與pH的關系,如果氨氮的去除形態為氨氣,為達到較高的去除率,就必須調節溶液的pH在11以上。這類技術包括吹脫、汽提、膜吸收等。在處理氨氮廢水的過程中,需要消耗大量鹼,但可以回收部分氨。
吹脫(汽提)法吹脫法是將廢水pH值調節至鹼性,然後在填料塔中通入空氣或蒸汽,通過氣液接觸將廢水中的游離氨吹脫至大氣或蒸汽中。 採用蒸汽可以提高廢水溫度,從而提高一定pH值時被吹脫氨的比例。一般情況下,如果採用吹脫法去除98%以上的氨氮,需pH調節。例如採用汽提技術對對硝基苯胺廢水進行了處理,在pH 大於11的條件下,廢水中的氨氮由3150 mg/L下降為187 mg/L,去除率為93%。
低濃度廢水通常在常溫下用空氣吹脫,而煉鋼、石油化工、化肥、有機化工、有色金屬冶煉等行業的高濃度廢水則常用蒸汽進行吹脫。但是這種方法一般要採用NaOH調節廢水的pH值,葯劑和能源消耗比較大。 為了降低葯劑成本,採用Ca(OH)2調節pH,結果表明,吹脫速率和吹脫效率要遠小於NaOH,而且在汽提過程中容易結垢,使得操作運行困難。
這種技術的另一個關鍵在於保證填料塔內的氣液充分接觸,有效防止溝流、液泛等非正常操作。 因此,填料的選擇和填充至關重要。除較高的能耗與鹼耗外,利用吹脫技術處理氨氮的不足還在於使氨氮由液相轉移至氣相,如果沒有相應的回收技術,很容易導致大氣的二次污染。此技術主要用於高濃度氨氮廢水的預處理。
膜吸收技術
膜吸收過程是將膜分離和吸收相結合而出現的一種新型膜過程,它使用微孔膜將氣、液兩相分隔開來,利用膜孔提供氣、液兩相間傳質的場所。 膜吸收法處理含氨廢水的原理為:疏水性微孔膜(聚丙烯、聚四氟乙烯、偏聚氟乙烯)把含氨廢水和H2SO4吸收液分隔於膜兩側,通過調節廢水的pH值,使廢水中離子態的NH3轉變為分子態的揮發性NH3。 在膜兩側NH3的濃度差的推動下,廢水中的NH3在廢水一微孔膜界面汽化揮發。氣態的NH3沿膜微孔向膜的另一側擴散,在吸收液一微孑L膜界面上為H2SO4吸收,並反應生成不揮發的(NH3)2SO4而被回收。由於氨在廢水和吸收液中存在形式的不同,使得廢水中的氨能通過存在形式的轉換不斷向吸收液傳遞,直到吸收液中的H2SO4全部為氨中和為止,處理後廢水中的氨氮濃度理論上可達到零。與吹脫(汽提)技術和生化法等其他高氨氮廢水處理方法比較,膜吸收法的最大特點是,可以在常溫、常壓的條件下濃縮並回收廢水中的氨,無二次污染產生,實現含氨廢水的資源化。
現在,膜吸收工藝的難點在於防止膜的滲漏。為了保證較高的通量,一般的微孔膜的膜厚都比較薄,膜兩側的水相在壓差的作用下很容易發生滲漏。只有非常精確地調整膜兩側的壓力和流速,才能基本保證膜兩側的液量不發生變化。 即使在這樣的條件下,在進行氨吸收過程中,氨溶液一側的pH值還是有顯著的降低,經檢測,溶液中有大量硫酸根離子存在,最終導致氨溶液中的去除率僅在6O%左右。
因此,如何在保證氨氮傳質通量的情況下有效防止膜的滲漏是膜吸收工藝研究的重要內容。
沸石脫氨法
利用沸石中的陽離子與廢水中的NH4+進行交換以達到脫氮的目的。沸石一般被用於處理低濃度含氨廢水或含微量重金屬的廢水。然而,蔣建國等[4]探討了沸石吸附法去除垃圾滲濾液中氨氮的效果及可行性。小試研究結果表明,每克沸石具有吸附15.5 mg氨氮的極限潛力,當沸石粒徑為30~16目時,氨氮去除率達到了78.5%,且在吸附時間、投加量及沸石粒徑相同的情況下,進水氨氮濃度越大,吸附速率越大,沸石作為吸附劑去除滲濾液中的氨氮是可行的。
實驗表明用沸石離子交換法處理經厭氧消化過的豬肥廢水時發現Na-Zeo、Mg-Zeo、Ca-Zeo、k-Zeo中Na-Zeo沸石效果最好,其次是Ca-Zeo。增加離子交換床的高度可以提高氨氮去除率,綜合考慮經濟原因和水力條件,床高18cm(H/D=4),相對流量小於7.8BV/h是比較適合的尺寸。離子交換法受懸浮物濃度的影響較大。
應用沸石脫氨法必須考慮沸石的再生問題,主要有再生液法和焚燒法。採用焚燒法時,產生的氨氣必須進行處理。通常採用再生液進行再生,再生液濃液再進行脫氨處理。
膜分離技術
利用膜的選擇透過性進行氨氮脫除的一種方法。這種方法操作方便,氨氮回收率高,無二次污染。蔣展鵬等[6]採用電滲析法和聚丙烯(PP)中空纖維膜法處理高濃度氨氮無機廢水可取得良好的效果。電滲析法處理氨氮廢水2000~3000 mg/L,去除率可在85%以上,同時可獲得8.9%的濃氨水。此法工藝流程簡單、不消耗葯劑、運行過程中消耗的電量與廢水中氨氮濃度成正比。PP中空纖維膜法脫氨效率>90%,回收的硫酸銨濃度在25%左右。運行中需加鹼,加鹼量與廢水中氨氮濃度成正比。
乳化液膜是種以乳液形式存在的液膜具有選擇透過性,可用於液-液分離。分離過程通常是以乳化液膜(例如煤油膜)為分離介質,在油膜兩側通過NH3的濃度差和擴散傳遞為推動力,使NH3進入膜內,從而達到分離的目的。用液膜法處理某濕法冶金廠總排放口廢水(1000~1200 mgNH4+-N/L,pH為6~9),當採用烷醇醯胺聚氧乙烯醚為表面活性劑用量為4%~6%,廢水pH調至10~11,乳水比在1:8~1:12,油內比在0.8~1.5。硫酸質量分數為10%,廢水中氨氮去除率一次處理可達到97%以上。
膜分離法應用的主要問題是投資成本及運行成本較高,操作復雜,難以控制。
MAP沉澱法
主要是利用以下化學反應:
Mg2 ++NH4++PO43-=MgNH4PO4
理論上講以一定比例向含有高濃度氨氮的廢水中投加磷鹽和鎂鹽,當[Mg2 + ][NH4+][PO43 -]>2.5×10–13時可生成磷酸銨鎂(MAP),除去廢水中的氨氮。穆大綱等[8]採用向氨氮濃度較高的工業廢水中投加MgCl2•6H2O和Na2HP04•12H20生成磷酸銨鎂沉澱的方法,以去除其中的高濃度氨氮。結果表明,在pH為8.9l,Mg2+,NH4,P043-的摩爾比為1.25:1:1,反應溫度為25 ℃,反應時間為20 min,沉澱時間為20 min的條件下,氨氨質量濃度可由9500 mg/L降低到460 mg/L,去除率達到95%以上。由於在多數廢水中鎂鹽的含量相對於磷酸鹽和氨氮會較低,盡管生成的磷酸銨鎂可以做為農肥而抵消一部分成本,投加鎂鹽的費用仍成為限制這種方法推行的主要因素。海水取之不盡,並且其中含有大量的鎂鹽。以海水做為鎂離子源試驗研究了磷酸銨鎂結晶過程。鹽鹵是制鹽副產品,主要含MgCl2和其他無機化合物。Mg2+約為32 g/L為海水的27倍。Lee等[10]用MgCl2、海水、鹽鹵分別做為Mg2+源以磷酸銨鎂結晶法處理養豬場廢水,結果表明,pH是最重要的控制參數,當終點pH≈9.6時,反應在10 min內即可結束。由於廢水中的N/P不平衡,與其他兩種Mg2+源相比,鹽鹵的除磷效果相同而脫氮效果略差。
採用化學沉澱法的關鍵因素在於:
1)絮凝劑的用量;2)沉澱產物的去向。
一般情況下,採用磷酸銨鎂沉澱法處理氨氮廢水的氨氮濃度不大於1 500 mg/L。化學沉澱法的應用瓶頸同樣是運行成本較高,無法進行工程應用。
催化濕式氧化法
催化濕式氧化法是8O年代國際上發展起來的一種治理廢水的新技術。 在一定溫度、壓力下,在催化劑作用下,經空氣氧化,可使污水中的有機物和氨分別氧化分解成CO2、N2和H2O等無害物質,達到凈化的目的。具有凈化效率高(據報道,廢水經過凈化後可達到飲用水標准)、流程簡單、佔地面積少等特點。經多年應用與實踐,這一廢水處理方法的建設及運行費用僅為常規方法6O%左右,因而在技術上和經濟上均具有較強的競爭力。杜鴻章等對催化濕式氧化法作了一系列的研究,在270 ℃、9 MPa工藝條件下,研製的催化劑可使焦化污水氨氮的去除率達到99.6%,經處理後的污水水質優於國家環保排放標準的要求。濕式氧化法不足在於催化劑的流失和設備的腐蝕。
化學氧化法
利用強氧化劑將氨氮直接氧化成氮氣進行脫除的一種方法。折點加氯是利用在水中的氨與氯反應生成氨氣脫氨,這種方法還可以起到殺菌作用,但是產生的余氯會對魚類有影響,故必須附設除余氯設施。在溴化物存在的情況下,臭氧與氨氮會發生如下類似折點加氯的反應:
Br-+O3+H+→HBrO+O2,
NH3+HBrO→NH2Br+H2O,
NH2Br+HBrO→NHBr2+H2O,
NH2Br+NHBr2→N2+3Br-+3H+。
用一個有效容積32 L的連續曝氣柱對合成廢水(氨氮600 mg/L)進行試驗研究,探討Br/N、pH以及初始氨氮濃度對反應的影響,以確定去除最多的氨氮並形成最少的NO3-的最佳反應條件。發現NFR(出水NO3--N與進水氨氮之比)在對數坐標中與Br-/N成線性相關關系,在Br-/N>0.4,氨氮負荷為3.6~4.0 kg/(m3•d)時,氨氮負荷降低則NFR降低。出水pH=6.0時,NFR和BrO--Br(有毒副產物)最少。BrO--Br可由Na2SO3定量分解,Na2SO3投加量可由ORP控制。
生化法
微生物去除氨氮過程需經過硝化和反硝化兩個階段過程。 傳統觀點認為:硝化過程為好氧過程,在此過程中,氨態氮在微生物的作用下轉化為硝基氮和亞硝基氮;而反硝化過程為厭氧過程,在此過程中,硝基氮和亞硝基氮轉化為氮氣。 因此,一般的生物脫氮過程為厭氧/好氧過程、或厭氧/缺氧/好氧過程。
近年來的研究表明,反硝化過程可以在有氧的條件下進行,即好氧反硝化過程。它為突破傳統生物脫氮技術限制,利用一個生物反應器在一種條件下完成脫氮反應提供了依據。SBR生物脫氮工藝的優點在於以時間序列代替空間序列,使好氧硝化過程和反硝化過程在同一容器中完成。採用SBR技術處理高氨氮廢水,在曝氣段實現高氨氮廢水的好氧硝化/反硝化處理。通過實驗研究,她們提出的反應序列為:一段缺氧一好氧曝氣一二段缺氧的SBR反應器,好氧段反硝化脫氮率要佔總脫氮率的70%以上。研究表明:好氧反硝化菌為異養菌,脫氮反應歷程與缺氧反硝化菌相同,並且最終產物主要為N2。
目前生物脫氮的濃度一般在400 mg/L以下,採用生物脫氮技術處理高濃度氨氮廢水就需要進行大倍數稀釋,這就使得生物處理設施的體積龐大,能耗會相應提高。 因此,在處理高氨氮廢水時,採用生物處理前,一般要首先進行物化處理。
物化方法在處理高濃度氨氮廢水時不會因為氨氮濃度過高而受到限制,但是不能將氨氮濃度降到足夠低(如100 mg/L以下)。而生物脫氮會因為高濃度游離氨或者亞硝酸鹽氮而受到抑制。實際應用中採用生化聯合的方法,在生物處理前先對含高濃度氨氮的廢水進行物化處理。目前,較先進的生化脫氨主要有以下幾類方法。
膜生物反應器技術
膜生物反應器(MBR)是一種由膜過濾取代傳統生化處理技術中二次沉澱池和沙濾池的水處理技術。MBR將分離工程中的膜技術應用於廢水處理系統,提高了泥水分離效率,並且由於曝氣池中活性污泥濃度的增大和污泥中特效菌(特別是優勢菌群)的出現,提高了生化反應速率。同時,通過降低F/M比減少剩餘污泥產生量(甚至為零),從而基本解決了傳統活性污泥法存在的突出問題。
硝化菌為自養菌,生長繁殖的世代周期長,常規的生物脫氮工藝中,為保持構築物中有足夠數量的硝化菌以完成生物硝化作用,在維持較長污泥齡的同時也相應增大了構築物的容積。此外,絮凝性較差的硝化菌常會被二沉池的出水帶出,硝化菌數量的減少影響硝化作用,進而降低了系統的脫氮效率。膜生物反應器能夠完全截留微生物,可以有效防止硝化菌的流失,是一種比較理想的硝化反應器。
在適宜的pH、DO條件下,容積負荷控制在2 kg/(m3•d)以下時,採用一體化膜生物反應器可以將濃度為2×103mg/L的氨氮轉化為硝酸鹽。
雖然採用膜生物反應器處理氨氮廢水會解決傳統活性污泥法存在的一些問題,但膜污染問題尚未見有較好的解決辦法
短程硝化反硝化
生物硝化反硝化是應用最廣泛的脫氮方式。由於氨氮氧化過程中需要大量的氧氣,曝氣費用成為這種脫氮方式的主要開支。短程硝化反硝化(將氨氮氧化至亞硝酸鹽氮即進行反硝化),不僅可以節省氨氧化需氧量而且可以節省反硝化所需炭源。用合成廢水試驗確定實現亞硝酸鹽積累的最佳條件。要想實現亞硝酸鹽積累,pH不是一個關鍵的控制參數,因為pH在6.45~8.95時,全部硝化生成硝酸鹽,在pH<6.45或pH>8.95時發生硝化受抑,氨氮積累。當DO=0.7 mg/L時,可以實現65%的氨氮以亞硝酸鹽的形式積累並且氨氮轉化率在98%以上。DO<0.5 mg/L時發生氨氮積累,DO>1.7 mg/L時全部硝化生成硝酸鹽。對低碳氮比的高濃度氨氮廢水採用亞硝玻型和硝酸型脫氮的效果進行對比分析。試驗結果表明,亞硝酸型脫氮可明顯提高總氮去除效率,氨氮和硝態氮負荷可提高近1倍。此外,pH和氨氮濃度等因素對脫氮類型具有重要影響。
短程硝化反硝化處理焦化廢水的中試結果表明,進水COD、氨氮、TN 和酚的濃度分別為1201.6、510.4、540.1、110.4 mg/L時,出水COD、氨氮、TN和酚的平均濃度分別為197.1、14.2、181.5、0.4 mg/L,相應的去除率分別為83.6%、97.2%、66.4%、99.6%。與常規生物脫氮工藝相比,該工藝氨氮負荷高,在較低的C/N值條件下可使TN去除率提高。
厭氧氨氧化(ANAMMOX)和全程自養脫氮(CANON)
厭氧氨氧化是指在厭氧條件下氨氮以亞硝酸鹽為電子受體直接被氧化成氮氣的過程。ANAMMOX的生化反應式為:
NH4++NO2-→N2↑+2H2O
ANAMMOX菌是專性厭氧自養菌,因而非常適合處理含NO2-、低C/N的氨氮廢水。與傳統工藝相比,基於厭氧氨氧化的脫氮方式工藝流程簡單,不需要外加有機炭源,防止二次污染,又很好的應用前景。厭氧氨氧化的應用主要有兩種:CANON工藝和與中溫亞硝化(SHARON)結合,構成SHARON-ANAMMOX聯合工藝。
CANON工藝是在限氧的條件下,利用完全自養性微生物將氨氮和亞硝酸鹽同時去除的一種方法,從反應形式上看,它是SHARON和ANAMMOX工藝的結合,在同一個反應器中進行。固體廢棄物填埋場滲濾液處理,溶解氧控制在1 mg/L左右,進水氨氮<800 mg/L,氨氮負荷<0.46 kgNH4+/(m3•d)的條件下,可以利用SBR反應器實現CANON工藝,氨氮的去除率>95%,總氮的去除率>90%。
ANAMMOX和CANON過程都可以在氣提式反應器中運轉良好,並且達到很高的氮轉化速率。控制溶解氧在0.5mg/L左右,在氣提式反應器中,ANAMMOX過程的脫氮速率達到8.9 kgN/(m3•d),而CANON過程可以達到1.5 kgN/(m3•d)。
好氧反硝化
傳統脫氮理論認為,反硝化菌為兼性厭氧菌,其呼吸鏈在有氧條件下以氧氣為終末電子受體在缺氧條件下以硝酸根為終末電子受體。所以若進行反硝化反應,必須在缺氧環境下。近年來,好氧反硝化現象不斷被發現和報道,逐漸受到人們的關注。一些好氧反硝化菌已經被分離出來,有些可以同時進行好氧反硝化和異養硝化(如Robertson等分離、篩選出的Tpantotropha.LMD82.5)。這樣就可以在同一個反應器中實現真正意義上的同步硝化反硝化,簡化了工藝流程,節省了能量。
用序批式反應器處理氨氮廢水,試驗結果驗證了好氧反硝化的存在,好氧反硝化脫氮能力隨混合液溶解氧濃度的提高而降低,當溶解氧濃度為0.5 mg/L時,總氮去除率可達到66.0%。
連續動態試驗研究表明,對於高濃度氨氮滲濾液,普通活性污泥達的好氧反硝化工藝的總氮去除串可達10%以上。硝化反應速率隨著溶解氧濃度的降低而下降;反硝化反應速率隨著溶解氧濃度的降低而上升。硝化及反硝化的動力學分析表明,在溶解氧為0.14 mg/L左右時會出現硝化速率和反硝化速率相等的同步硝化反硝化現象。其速率為4.7mg/(L•h),硝化反應KN=0.37 mg/L;反硝化反應KD=0.48 mg/L。
在反硝化過程中會產生N2O是一種溫室氣體,產生新的污染,其相關機制研究還不夠深入,許多工藝仍在實驗室階段,需要進一步研究才能有效地應用於實際工程中。另外,還有諸如全程自養脫氮工藝、同步硝化反硝化等工藝仍處在試驗研究階段,都有很好的應用前景。

㈦ 我公司的廢水含有有機氨,經過生化池,由於氨化作用,氨氮就會上升,請問有什麼好的解決方法么

該考慮化學生物聯用
本文作者: 陳昭考

隨著工農業生產的發展和人民生活水平的提高,含氮化合物的排放量急劇增加,已成為環境的主要污染源,並引起各界的關注。經濟有效地控制氨氮廢水污染已經成為當今環境工作者所面臨的重大課題。

1 氨氮廢水的來源
含氮物質進入水環境的途徑主要包括自然過程和人類活動兩個方面。含氮物質進入水環境的自然來源和過程主要包括降水降塵、非市區徑流和生物固氮等。人類的活動也是水環境中氮的重要來源,主要包括未處理或處理過的城市生活和工業廢水、各種浸濾液和地表徑流等。人工合成的化學肥料是水體中氮營養元素的主要來源,大量未被農作物利用的氮化合物絕大部分被農田排水和地表徑流帶入地下水和地表水中。隨著石油、化工、食品和制葯等工業的發展,以及人民生活水平的不斷提高,城市生活污水和垃圾滲濾液中氨氮的含量急劇上升。近年來,隨著經濟的發展,越來越多含氮污染物的任意排放給環境造成了極大的危害。氮在廢水中以有機態氮、氨態氮(NH4+-N)、硝態氮(NO3--N)以及亞硝態氮(NO2--N)等多種形式存在,而氨態氮是最主要的存在形式之一。廢水中的氨氮是指以游離氨和離子銨形式存在的氮,主要來源於生活污水中含氮有機物的分解,焦化、合成氨等工業廢水,以及農田排水等。氨氮污染源多,排放量大,並且排放的濃度變化大。
2 氨氮廢水的危害
水環境中存在過量的氨氮會造成多方面的有害影響:
(1)由於NH4+-N的氧化,會造成水體中溶解氧濃度降低,導致水體發黑發臭,水質下降,對水生動植物的生存造成影響。在有利的環境條件下,廢水中所含的有機氮將會轉化成NH4+-N,NH4+-N是還原力最強的無機氮形態,會進一步轉化成NO2--N和NO3
--N。根據生化反應計量關系,1gNH4+-N氧化成NO2--N消耗氧氣3.43 g,氧化成NO3--N耗氧4.57g。
(2)水中氮素含量太多會導致水體富營養化,進而造成一系列的嚴重後果。由於氮的存在,致使光合微生物(大多數為藻類)的數量增加,即水體發生富營養化現象,結果造成:堵塞濾池,造成濾池運轉周期縮短,從而增加了水處理的費用;妨礙水上運動;藻類代謝的最終產物可產生引起有色度和味道的化合物;由於藍-綠藻類產生的毒素,家畜損傷,魚類死亡;由於藻類的腐爛,使水體中出現氧虧現象。
(3)水中的NO2--N和NO3--N對人和水生生物有較大的危害作用。長期飲用NO3--N含量超過10mg/L的水,會發生高鐵血紅蛋白症,當血液中高鐵血紅蛋白含量達到70mg/L,即發生窒息。水中的NO2--N和胺作用會生成亞硝胺,而亞硝胺是「三致」物質。NH4+-N和氯反應會生成氯胺,氯胺的消毒作用比自由氯小,因此當有NH4+-N存在時,水處理廠將需要更大的加氯量,從而
增加處理成本。近年來,含氨氮廢水隨意排放造成的人畜飲水困難甚至中毒事件時有發生,我國長江、淮河、錢塘江、四川沱江等流域都有過相關報道,相應地區曾出現過諸如藍藻污染導致數百萬居民生活飲水困難,以及相關水域受到了「牽連」等重大事件,因此去除廢水中的氨氮已成為環境工作者研究的熱點之一。

3 氨氮廢水處理的主要技術
目前,國內外氨氮廢水處理有折點氯化法、化學沉澱法、離子交換法、吹脫法和生物脫氨法等多種方法,這些技術可分為物理化學法和生物脫氮技術兩大類。

3.1 生物脫氮法
微生物去除氨氮過程需經兩個階段。第一階段為硝化過程,亞硝化菌和硝化菌在有氧條件下將氨態氮轉化為亞硝態氮和硝態氮的過程。第二階段為反硝化過程,污水中的硝態氮和亞硝態氮在無氧或低氧條件下,被反硝化菌(異養、自養微生物均有發現且種類很多)還原轉化為氮氣。在此過程中,有機物(甲醇、乙酸、葡萄糖等)作為電子供體被氧化而提供能量。常見的生物脫氮流程可以分為3類,分別是多級污泥系統、單級污泥系統和生物膜系統。

工業氨氮去除大全

根據廢水中氨氮濃度的不同,可將廢水分為3類:高濃度氨氮廢水(NH3-N>500mg/l),中等濃度氨氮廢水(NH3-N:50-500mg/l),低濃度氨氮廢水(NH3-N<50mg/l)。然而高濃度的氨氮廢水對微生物的活性有抑製作用,制約了生化法對其的處理應用和效果,同時會降低生化系統對有機污染物的降解效率,從而導致處理出水難以達到要求。故本工程的關鍵之一在於氨氮的去除,去除氨氮的主要方法有:物理法、化學法、生物法。物理法含反滲透、蒸餾、土壤灌溉等處理技術;化學法含離子交換、氨吹脫、折點加氯、焚燒、化學沉澱、催化裂解、電滲析、電化學等處理技術;生物法含藻類養殖、生物硝化、固定化生物技術等處理技術。目前比較實用的方法有:折點加氯法、選擇性離子交換法、氨吹脫法、生物法以及化學沉澱法。1. 折點氯化法去除氨氮折點氯化法是將氯氣或次氯酸鈉通入廢水中將廢水中的NH3-N氧化成N2的化學脫氮工藝。當氯氣通入廢水中達到某一點時水中游離氯含量最低,氨的濃度降為零。當氯氣通入量超過該點時,水中的游離氯就會增多。因此該點稱為折點,該狀態下的氯化稱為折點氯化。處理氨氮廢水所需的實際氯氣量取決於溫度、pH值及氨氮濃度。氧化每克氨氮需要9~10mg氯氣。pH值在6~7時為最佳反應區間,接觸時間為0.5~2小時。折點加氯法處理後的出水在排放前一般需要用活性碳或二氧化硫進行反氯化,以去除水中殘留的氯。1mg殘留氯大約需要0.9~1.0mg的二氧化硫。在反氯化時會產生氫離子,但由此引起的pH值下降一般可以忽略,因此去除1mg殘留氯只消耗2mg左右(以CaCO3計)。折點氯化法除氨機理如下: Cl2+H2O→HOCl+H++Cl- NH4++HOCl→NH2Cl+H++H2O NHCl2+H2O→NOH+2H++2Cl- NHCl2+NaOH→N2+HOCl+H++Cl- 折點氯化法最突出的優點是可通過正確控制加氯量和對流量進行均化,使廢水中全部氨氮降為零,同時使廢水達到消毒的目的。對於氨氮濃度低(小於50mg/L)的廢水來說,用這種方法較為經濟。為了克服單獨採用折點加氯法處理氨氮廢水需要大量加氯的缺點,常將此法與生物硝化連用,先硝化再除微量殘留氨氮。氯化法的處理率達90%~100%,處理效果穩定,不受水溫影響,在寒冷地區此法特別有吸引力。投資較少,但運行費用高,副產物氯胺和氯化有機物會造成二次污染,氯化法只適用於處理低濃度氨氮廢水。2. 選擇性離子交換化去除氨氮離子交換是指在固體顆粒和液體的界面上發生的離子交換過程。離子交換法選用對NH4+離子有很強選擇性的沸石作為交換樹脂,從而達到去除氨氮的目的。沸石具有對非離子氨的吸附作用和與離子氨的離子交換作用,它是一類矽質的陽離子交換劑,成本低,對NH4+有很強的選擇性。O.Lahav等用沸石作為離子交換材料,將沸石作為一種把氨氮從廢水中分離出來的分離器以及硝化細菌的載體。該工藝在一個簡單的反應器中分吸附階段和生物再生階段兩個階段進行。在吸附階段,沸石柱作為典型的離子交換柱;而在生物再生階段,附在沸石上的細菌把脫附的氨氮氧化成硝態氮。研究結果表明,該工藝具有較高的氨氮去除率和穩定性,能成功地去除原水和二級出水中的氨氮。沸石離子交換與pH的選擇有很大關系,pH在4~8的范圍是沸石離子交換的最佳區域。當pH<4時,H+與NH4+發生競爭;當pH>8時,NH4+變為NH3而失去離子交換性能。用離子交換法處理含氨氮10~20mg/L的城市污水,出水濃度可達1mg/L以下。離子交換法具有工藝簡單、投資省去除率高的特點,適用於中低濃度的氨氮廢水(<500mg/L),對於高濃度的氨氮廢水會因樹脂再生頻繁而造成操作困難。但再生液為高濃度氨氮廢水,仍需進一步處理。3. 空氣吹脫法與汽提法去除氨氮空氣吹脫法是將廢水與氣體接觸,將氨氮從液相轉移到氣相的方法。該方法適宜用於高濃度氨氮廢水的處理。吹脫是使水作為不連續相與空氣接觸,利用水中組分的實際濃度與平衡濃度之間的差異,使氨氮轉移至氣相而去除廢水中的氨氮通常以銨離子(NH4+)和游離氨(NH3)的狀態保持平衡而存在。將廢水pH值調節至堿性時,離子態銨轉化為分子態氨,然後通入空氣將氨吹脫出。吹脫法除氨氮,去除率可達60%~95%,工藝流程簡單,處理效果穩定,吹脫出的氨氣用鹽酸吸收生成氯化銨可回用於純堿生產作母液,也可根據市場需求,用水吸收生產氨水或用硫酸吸收生產硫酸銨副產品,未收尾氣返回吹脫塔中。但水溫低時吹脫效率低,不適合在寒冷的冬季使用。用該法處理氨氮時,需考慮排放的游離氨總量應符合氨的大氣排放標准,以免造成二次污染。低濃度廢水通常在常溫下用空氣吹脫,而煉鋼、石油化工、化肥、有機化工、有色金屬冶煉等行業的高濃度廢水則常用蒸汽進行吹脫。該方法比較適合處理高濃度氨氮廢水,但吹脫效率影響因子多,不容易控制,特別是溫度影響比較大,在北方寒冷季節效率會大大降低,現在許多吹脫裝置考慮到經濟性,沒有回收氨,直接排放到大氣中,造成大氣污染。汽提法是用蒸汽將廢水中的游離氨轉變為氨氣逸出,處理機理與吹脫法一樣是一個傳質過程,即在高pH值時,使廢水與氣體密切接觸,從而降低廢水中氨濃度的過程。傳質過程的推動力是氣體中氨的分壓與廢水中氨的濃度相當的平衡分壓之間的差。延長氣水間的接觸時間及接觸緊密程度可提高氨氮的處理效率,用填料塔可以滿足此要求。塔的填料或充填物可以通過增加浸潤表面積和在整個塔內形成小水滴或生成薄膜來增加氣水間的接觸時間汽提法適用於處理連續排放的高濃度氨氮廢水,操作條件與吹脫法類似,對氨氮的去除率可達97%以上。但汽提塔內容易生成水垢,使操作無法正常進行。吹脫和汽提法處理廢水後所逸出的氨氣可進行回收:用硫酸吸收作為肥料使用;冷凝為1%的氨溶液。4. 生物法去除氨氮生物法去除氨氮是在指廢水中的氨氮在各種微生物的作用下,通過硝化和反硝化等一系列反應,最終形成氮氣,從而達到去除氨氮的目的。生物法脫氮的工藝有很多種,但是機理基本相同。都需要經過硝化和反硝化兩個階段。硝化反應是在好氧條件下通過好氧硝化菌的作用將廢水中的氨氮氧化為亞硝酸鹽或硝酸鹽,包括兩個基本反應步驟:由亞硝酸菌參與的將氨氮轉化為亞硝酸鹽的反應。由硝酸菌參與的將亞硝酸鹽轉化為硝酸鹽的反應。亞硝酸菌和硝酸菌都是自養菌,它們利用廢水中的碳源,通過與NH3-N的氧化還原反應獲得能量。反應方程式如下: 亞硝化: 2NH4++3O2→2NO2-+2H2O+4H+ 硝化 : 2NO2-+O2→2NO3-硝化菌的適宜pH值為8.0~8.4,最佳溫度為35℃,溫度對硝化菌的影響很大,溫度下降10℃,硝化速度下降一半;DO濃度:2~3mg/L;BOD5負荷:0.06-0.1kgBOD5/(kgMLSS•d);泥齡在3~5天以上。在缺氧條件下,利用反硝化菌(脫氮菌)將亞硝酸鹽和硝酸鹽還原為氮氣而從廢水中逸出由於兼性脫氮菌(反硝化菌)的作用,將硝化過程中產生的硝酸鹽或亞硝酸鹽還原成N2的過程,稱為反硝化。反硝化過程中的電子供體是各種各樣的有機底物(碳源)。以甲醇為碳源為例,其反應式為: 6NO3-+2CH3OH→6NO2-+2CO2+4H2O 6NO2-+3CH3OH→3N2+3CO2+3H2O+6OH-反硝化菌的適宜pH值為6.5~8.0;最佳溫度為30℃,當溫度低於10℃時,反硝化速度明顯下降,而當溫度低至3℃時,反硝化作用將停止;DO濃度<0.5mg/L;BOD5/TN>3~5。生物脫氮法可去除多種含氮化合物,總氮去除率可達70%~95%,二次污染小且比較經濟,因此在國內外運用最多。其缺點是佔地面積大,低溫時效率低。常見的生物脫氮流程可以分為3類:⑴多級污泥系統多級污泥系統通常被稱為傳統的生物脫氮流程。此流程可以得到相當好的BOD5去除效果和脫氮效果,其缺點是流程長,構築物多,基建費用高,需要外加碳源,運行費用高,出水中殘留一定量甲醇;⑵單級污泥系統單級污泥系統的形式包括前置反硝化系統、後置反硝化系統及交替工作系統。前置反硝化的生物脫氮流程,通常稱為A/O流程。與傳統的生物脫氮工藝流程相比,該工藝特點:流程簡單、構築物少,只有一個污泥迴流系統和混合液迴流系統,基建費用可大大節省;將脫氮池設置在去碳源,降低運行費用;好氧池在缺氧池後,可使反硝化殘留的有機污染物得到進一步去除,提高出水水質;缺氧池在前,污水中的有機碳被反硝化菌所利用,可減輕其後好氧池的有機負荷。此外,後置式反硝化系統,因為混合液缺乏有機物,一般還需要人工投加碳源,但脫氮的效果高於前置式,理論上可接近100%的脫氮效果。交替工作的生物脫氮流程主要由兩個串聯池子組成,通過改換進水和出水的方向,兩個池子交替在缺氧和好氧的條件下運行。它本質上仍是A/O系統,但利用交替工作的方式,避免了混合液的迴流,其脫氮效果優於一般A/O流程。其缺點是運行管理費用較高,必須配置計算機控制自動操作系統;⑶生物膜系統將上述A/O系統中的缺氧池和好氧池改為固定生物膜反應器,即形成生物膜脫氮系統。此系統中應有混合液迴流,但不需污泥迴流,在缺氧的好氧反應器中保存了適應於反硝化和好氧氧化及硝化反應的兩個污泥系統。由於常規生物處理高濃度氨氮廢水還存在以下:為了能使微生物正常生長,必須增加迴流比來稀釋原廢水;硝化過程不僅需要大量氧氣,而且反硝化需要大量的碳源,一般認為COD/TKN至少為9。5. 化學沉澱法去除氨氮化學沉澱法是根據廢水中污染物的性質,必要時投加某種化工原料,在一定的工藝條件下(溫度、催化劑、pH值、壓力、攪拌條件、反應時間、配料比例等等)進行化學反應,使廢水中污染物生成溶解度很小的沉澱物或聚合物,或者生成不溶於水的氣體產物,從而使廢水凈化,或者達到一定的去除率。化學沉澱法處理NH3-N是始於20世紀60年代,在90年代興起的一種新的處理方法,其主要原理就是NH4+、Mg2+、PO43-在堿性水溶液中生成沉澱。在氨氮廢水中投加化學沉澱劑Mg(OH)2、H3PO4與NH4+反應生成MgNH4PO4•6H2O(鳥糞石)沉澱,該沉澱物經造粒等過程後,可開發作為復合肥使用。整個反應的pH值的適宜范圍為9~11。pH值<9時,溶液中PO43-濃度很低,不利於MgNH4PO4•6H2O沉澱生成,而主要生成Mg(H2PO4)2;如果pH值>11,此反應將在強堿性溶液中生成比MgNH4PO4•6H2O更難溶於水的Mg3(PO4)2的沉澱。同時,溶液中的NH4+將揮發成游離氨,不利於廢水中氨氮的去除。利用化學沉澱法,可使廢水中氨氮作為肥料得以回收。

㈧ 廢水中氨氮應該如何去除

生物法機理——生物硝化和反硝化機理:在污水的生物脫氮處理過程中,在好回氧條件下通過好氧硝化菌的作答用,將污水中的氨氮氧化為亞硝酸鹽或硝酸鹽,在缺氧條件下利用反硝化菌(脫氮菌)將亞硝酸鹽和硝酸鹽還原為氮氣而從污水中逸出。因而污水的生物脫氮包括硝化和反硝化兩個階段。

A/O系統:A/O脫氮除磷系統,即缺氧、好氧脫氮除磷系統,是70年代主要由美國、南非等國開發的具有去除廢水中氮污染物的工藝,同時對脫磷亦有一定的效果,A/O系統流程簡單、運行管理方便,且很容易利用原廠改建,從而提高了出水水質。

(8)使廢水中氨氮裂解氮氣擴展閱讀:

注意事項:

生活污水水質通常比較穩定,一般的處理方法包括酸化、好氧生物處理、消毒等。而工業廢水應根據具體的水質情況進行工藝流程的合理選擇。

特別需要指出的是,對於採用好氧生物處理工藝處理廢水來說,要注意廢水的可生化性,通常要求COD/BOD5>0.3,如不能滿足要求,可考慮進行厭氧生物水解酸化,以提高廢水的可生化性,或是考慮採用非生物處理的物理或化學方法等。

㈨ 廢水中氨氮去除,用哪種葯劑較好

是向抄氨氮污水中投加含Mg2+和PO43-的葯劑,襲使污水中的氨氮和磷以鳥糞石(磷酸銨鎂)的形式沉澱出來,同時回收污水中的氮和磷。
其工藝設計操作相對簡單,反應穩定,受外界環境影響小,抗沖擊能力強,脫氮率高效果明顯,生成的磷酸銨鎂可作為無機復合肥使用,因此解決了氮的回收和二次污染的問題,具有良好的經濟和環境效益。磷酸銨鎂沉澱法適用於處理氨氮濃度較高的工業廢水磷酸銨鎂沉澱法處理氨氮廢水的適宜條件是:pH約為9.0,n(P)∶n(N)∶n(Mg)在1∶1∶1.2左右,磷酸銨鎂沉澱法的脫氮率能維持在較高水平,普遍能夠達到90 %以上

熱點內容
丁度巴拉斯情人電影推薦 發布:2024-08-19 09:13:07 瀏覽:886
類似深水的露點電影 發布:2024-08-19 09:10:12 瀏覽:80
《消失的眼角膜》2電影 發布:2024-08-19 08:34:43 瀏覽:878
私人影院什麼電影好看 發布:2024-08-19 08:33:32 瀏覽:593
干 B 發布:2024-08-19 08:30:21 瀏覽:910
夜晚看片網站 發布:2024-08-19 08:20:59 瀏覽:440
台灣男同電影《越界》 發布:2024-08-19 08:04:35 瀏覽:290
看電影選座位追女孩 發布:2024-08-19 07:54:42 瀏覽:975
日本a級愛情 發布:2024-08-19 07:30:38 瀏覽:832
生活中的瑪麗類似電影 發布:2024-08-19 07:26:46 瀏覽:239