黃鐵礦酸性廢水控制
Ⅰ 酸性礦井廢水:這個問題能不能解決
石灰及其衍處理礦山酸性廢水用,該 廢水微量害重金屬元素除作用通解.該文用石灰石版、石灰處理某權硫鐵礦露采場酸性廢水,考察廢水微量害重金屬元素沉澱除效 .結表明:數重金屬離言,pH值越高,重金屬離除效越,若重金屬離兩性化合物沉澱,則存適宜pH值.石灰石 酸性條件沉澱重金屬離除效及沉渣沉降性能較,高pH值6,其重金屬離除效限;石灰pH值較調 節范圍,處理效明顯優於石灰石;石灰石-石灰二段處理效總體與石灰相,達與石灰相同處理效,能夠降低約1/3石灰投加量 沉渣產量,沉渣含水率相比石灰更低,沉降性能更.廢水微量害重金屬元素沉澱除效與pH值密切相關,工藝選擇外, 劑投加量投加式,處理設施更精準掌控運作非關鍵,研究確立石灰石-石灰處理礦山酸性廢水佳工藝程式控制制條件提供依據.
酸性礦井廢水:這個問題能不能解決
請詳細描敘問題
Ⅱ (12分)以硫鐵礦為原料生產硫酸所得的酸性廢水中砷元素含量極高,為控制砷的排放,採用化學沉降法處理含砷
⑴0.29⑵ c 3 (Ca 2 + )· c 2 (AsO 4 3 - ) 5.7×10 - 17 ⑶2H + +MnO 2 +H 3 AsO 3 =H 3 AsO 4 +Mn 2 + +H 2 O ⑷①CaSO 4 ②H 3 AsO 4 是弱酸,當溶液中pH調節到8左右時AsO 4 3 - 濃度增大,Ca 3 (AsO 4 ) 2 開始沉澱 Ⅲ 酸性礦山廢水為什麼用石灰石進行治理的效果不理想 石灰中和及其衍生方法是處理礦山酸性廢水最常用的方法,但該法對 廢水中微量有版害重金屬元素的去除作權用通常不被了解.該文用石灰石、石灰中和處理某硫鐵礦露天采場的酸性廢水,考察了廢水中微量有害重金屬元素的沉澱去除效 果.結果表明:對大多數重金屬離子而言,pH值越高,重金屬離子的去除效果越好,但若重金屬離子生成兩性化合物沉澱,則存在一個最適宜的pH值.石灰石中 和法對在酸性條件下生成沉澱的重金屬離子去除效果及沉渣的沉降性能較好,但最高pH值為6,對其他的重金屬離子的去除效果有限;石灰法的pH值有較大的調 節范圍,處理效果明顯優於石灰石;石灰石-石灰二段中和法的處理效果在總體上與石灰法相當,在達到與石灰相同的處理效果時,能夠降低約1/3的石灰投加量 和沉渣的產生量,沉渣的含水率相比石灰法更低,沉降性能更好.廢水中微量有害重金屬元素的中和沉澱去除效果與pH值密切相關,因此在工藝的選擇之外,中和 劑的投加量和投加方式,處理設施更為精準的掌控和運作非常關鍵,研究可為確立石灰石-石灰法處理礦山酸性廢水的最佳工藝和過程式控制制條件提供依據. Ⅳ 煤礦酸性水水化學特徵及其環境地球化學信息研究 摘 要 以水化學數據為依據,應用相關分析,結合地質、水文勘探資料,對煤礦酸性礦排水( AMD) 的水化學特點及其成因進行了研究。煤礦 AMD 在一定的物質條件和環境條件下形成,只要條件適宜,不管是高硫煤還是低硫煤均可產生酸性水; 低 pH、高 Eh、高 TDS 及高硬度是煤礦 AMD 的重要特徵,水中的 SO42 -與其 EC 之間以及 Fe3 +/ Fe2 +比值與其 Eh 值走勢具有良好的一致性,水中微量元素及重金屬來源較復雜,如 Ni、Cu、Co、Zn 等來源於黃鐵礦的氧化溶解,但 Pb、Sr 等主要來自 AMD 對煤系地層中煤及岩石中礦物的淋濾作用。 任德貽煤岩學和煤地球化學論文選輯 一、引言 煤礦在開采過程中,因含煤地層中所含硫化物( 主要為黃鐵礦) 的賦存環境變化而自發進行氧化還原反應,可導致產生酸性礦排水( AMD) 。AMD 的低 pH 值和較高的礦化度特徵,說明其有很強的溶解性和侵蝕性,這種礦排廢水能攜帶大量的重金屬及有害化學物質進入環境。煤礦酸性礦井水在我國分布廣泛,北方主要分布在陝、晉、魯和內蒙等省區,南方分布在川、桂、貴、浙、閩等省區。目前,對 AMD 的研究多集中在金屬礦床、礦尾庫等的酸性礦排水治理方面,而對含煤地層環境下產生的 AMD 的水化學數據中所蘊含的豐富環境地球化學信息的解讀還不多見。煤礦 AMD 的化學特徵在一定程度上反映了相應地區的物質組成、主要水—岩反應和水中組分的相互作用等環境信息,對這些信息的研究可了解煤礦AMD 的產生、變化過程及可能產生的環境效應,為煤礦環境治理及模擬預測提供可靠依據。筆者通過對福建省永安及上京兩個礦區的井下現場勘查,系統採集和測試了煤層、頂底板岩石、黃鐵礦以及礦井中的酸性水樣品,通過綜合分析這些數據,試圖總結煤系酸性水的水化學特徵,並探討其中所反映的環境信息。 二、研究區地質環境 區內地層主要由上石炭統船山組、下二疊統棲霞組、文筆組、童子岩組、上二疊統翠屏山組及第四系殘坡積物層組成。下二疊統童子岩組為主要含煤地層,由一套海陸過渡相岩性組成,以泥質岩為主,次為粉砂岩和砂質岩,砂岩多為鈣質膠結。普遍含形態各異、含量不等的菱鐵礦和黃鐵礦結核。童子岩組內由下而上分為第 1、第 2、第 3 段,其中第 1 和第 3 段為含煤段。在永安礦區,第 3 段為主要含煤段,自上而下有 0 ~11 號煤層,其中 1 號、2 號、5 +6 號、9 號為主採煤層。在上京礦區,第 1 段為主要含煤段,煤層自上而下為 22 ~ 49 號煤,其中 33、34、38、45、48 等 16 層煤層為可採煤層。 研究區溝谷發育,植被茂盛,海拔最高點標高為809m,最低點為300m。本區為亞熱帶潮濕氣候區,年平均降雨量和氣溫分別為1565mm、18.9℃,氣溫最高39.2℃,全年相對濕度平均79%。水文地質條件屬簡單—中等類型,下部棲霞灰岩富水性較強,但遠離煤層(距煤層200m左右),正常情況下對煤層沒有影響。大氣降水是礦坑水的直接或間接補給水源。另外煤系構造裂隙發育,但富水性弱,岩性為砂岩,鑽孔涌水量Q=0.57~4.5L/s,滲透系數K=0.073~0.15m/d。裂隙水水質為HCO3-Ca-Mg和HCO3-SO4-Cl-Mg型,總礦化度0.016~0.15g/L,屬低礦化度具侵蝕性水。 三、樣品採集與檢測 為全面了解永安礦區童子岩組內整個含煤地層酸性水的情況,在永安礦區東坑仔礦的0號、1號、9號和上京礦區小華煤礦的34、38、48號等主採煤層的頂底板、煤和水及部分黃鐵礦進行采樣。在井下現場測定了水樣溫度、Eh值和pH值,其餘水質項目按取樣標准處理後送核工業北京地質研究院測定。用等離子質譜法(ICP-MS)測定水中陽離子及痕量元素含量;離子色譜法(IC)測定氯離子、氟離子、溴離子、硝酸根離子和硫酸根含量;採用容量法測定碳酸根、重碳酸根、氫氧根的濃度。對煤樣、煤層頂底板岩樣及黃鐵礦樣品進行了X射線衍射(XRD)分析和等離子質譜分析。 四、結果與討論 1.井下AMD的環境特徵 在井下調研時發現,大量褐紅色氧化鐵沉澱物與酸性水伴生,可視其為存在酸性水或曾經有酸性水產出的標志。酸性水常常出現在鬆散、破碎的煤層頂板處及平巷上部的采空區下方,這些現象表明酸性水明顯受環境條件的控制,這可能與含氧水的進入有關。在無破碎區,地表水中有限溶解氧在緩慢的下滲過程中,被淺部地層中的物質消耗,不足以氧化較深部的含硫礦物而產生酸性水。 地質勘探資料表明,本區煤系由以鋁、硅酸鹽礦物為主的泥岩、粉砂岩及砂岩組成,地層中碳酸鹽岩組分相對很少,CaCO3僅以脈狀或鈣質膠結物形式產出。有關黃鐵礦氧化動力學實驗表明[1],在有碳酸鹽岩存在時,產酸能力受到抑制。Holmstrom[2]等的研究表明,尾礦是否產生酸性排水和釋放重金屬主要取決於碳酸鹽礦物的含量,而不是硫化物的含量。永安礦區煤中總硫含量小於1%,為低硫煤,但卻產生了pH值低達2.75的酸性水,這一事實表明不管是高硫煤還是低硫煤均可產生酸性水。 2.煤層AMD的水化學特徵 所取水樣有3種類型:煤層酸性水樣、煤層非酸性水樣、地表水樣。各水樣的化學組成檢測結果見表1,樣品中除JS8為地表水外,其餘為井下礦排水。 根據礦井原鑽孔資料,未經淋濾的地層裂隙水的水質為HCO3-Ca-Mg和HCO3-SO4-Cl-Mg型,總礦化度0.016~0.15g/L。而經淋濾煤層後形成的酸性水的組成變化很大,按庫爾洛夫表達式計算後,水質類型變為SO4-Ca-Mg(如DS2)和SO4-Mg-Fe-Ca(如HS5)型水,TDS為1.64~4.398g/L,為高礦化度水。 表1 永安礦區煤層礦井水水化學常量組分含量w單位:mg·L-1 注:-為未檢出;表中硬度以CaCO3計。 由表1可以得出本區煤礦酸性有如下特點: (1)pH值變化范圍較大,可從5點幾至2點幾,而在pH≤3.00的水中,HCO-3含量均為未檢出。根據水中碳酸系統平衡關系,此時水中的碳酸鹽組分以H2CO3或游離CO2形式存在,即水的總鹼度趨於零,具有較強的侵蝕性。 (2)酸性水具有SO42-高、總硬度高和TDS高的三高特徵。SO2-4含量在陰離子中占絕對優勢,表1中HS7水樣硫酸根離子濃度達3239.9mg/L,煤礦酸性水水化學類型一般為SO2-4-Ca、Mg(Fe、Al)型。酸性水使地層中碳酸鹽類及鋁硅酸鹽類礦物大量溶解,而造成水的高硬度和高TDS,TDS>1g/L。如,HS7的TDS達4398.5mg/L。酸性水中硫酸鹽是其礦化度主要貢獻者,水中SO2-4離子濃度與其電導率(EC)具有良好的對應關系(圖1)。 (3)煤礦酸性水的Eh范圍在600~800mv,是一種高氧化態水,水中的多價態元素以高價態存在,如Fe3+、V5+、Mn4+、Cr6+等。檢測結果表明,Fe3+/Fe2+比值在多數情況下與環境的Eh值有良好的相關性(圖2),Eh隨Fe3+/Fe2+值增加而增加,Fe3+/Fe2+比值在井下酸性水環境中起到決定電勢作用。 圖1 電導率與SO42-含量走勢相關圖 圖2 Eh與Fe3+/Fe2+走勢相關圖 3.AMD中微量組分來源分析 造岩礦物及礦石礦物中的微量元素通常以類質同象形式存在,而天然水中微量元素的分布通常受環境中水—岩相互作用控制。對永安礦區酸性礦坑水樣中50多種微量元素進行了ICP—MS測定。對7個礦井水樣中含量100×10-9以上的微量元素與水樣中的主要特徵元素進行了相關分析(表2)。綜合分析上述數據,並結合煤、岩及黃鐵礦樣品的XRD分析結果,可得出以下初步結論: (1)pH值與大多數組分呈負相關,說明各組分的溶解度隨介質pH的降低而增大,尤其對Fe和Al溶解度影響較大。同時也可能與它們在pH增大時易形成氫氧化物膠體而沉澱有關。膠體形成後對其他微量元素的吸附產生共沉澱是pH對微量元素含量的一個間接影響。 (2)Ni、Co、Zn、Y等與Fe、SO2-4高度相關,相關系數大於0.94,說明它們的來源與黃鐵礦的氧化溶解密切相關。Ni、Co、Zn均為過渡元素,常在黃鐵礦中與鐵形成類質同象替代,而在黃鐵礦風化過程中被釋放進入溶液;與Fe、SO2-4有較高相關性的還有Na、Cu、Mg、Mn元素,這些元素在地球化學上與鐵元素常親密共生,說明黃鐵礦是其部分來源,或是黃鐵礦的氧化溶解對它們的釋放遷移有重要影響。 (3)水中Pb-K和Pb-Al的相關系數分別為0.77和0.64,而與Fe和SO2-4的相關系數較低,分別為0.39和0.41。ICP-MS對煤、岩、礦的分析結果表明,大多數煤樣品中的Pb含量高於同層位中黃鐵礦的Pb含量,且由於本區為低硫煤,因此黃鐵礦對礦井水中Pb的貢獻相對較小,即本區酸性水樣中的Pb除來源於黃鐵礦的氧化溶解外,還來源於地層中的含鉛礦物,如鉀長石、黑雲母的水解反應: 任德貽煤岩學和煤地球化學論文選輯 (4)鍶是廣泛存在於地下水中的一種微量元素。它在造岩礦物中的分配主要受鈣和鉀的互帶性控制[3],Sr2+主要是以類質同象的形式存在於含鈣、鉀的鋁硅酸鹽礦物中,隨著含鍶的鈣長石、鉀長石、白雲母等礦物的水解,鍶被釋放而進入地下水中。 本研究水樣中鍶含量在幾百~上千μg/L,Sr與Ca呈正相關,相關系數為0.79,與K的相關系數僅為0.27。本水樣中的鍶可能主要來源於鈣長石的水解反應。趙廣濤(1998)[4]對嶗山礦泉水的研究得出Ca-Sr的相關系數為0.6636,而K-Sr的正相關則不明顯。這一結論與本文結果較為吻合,但是否具有代表性還有待研究。 表2 永安酸性煤礦坑水中特徵組分及微量元素間的相關系數矩陣 五、結論 (1)煤礦AMD可產生於高硫煤或低硫煤層中,含氧水沿破碎帶入滲和地層中相對少量的碳酸鹽岩是產生煤礦AMD的重要條件。 (2)低pH、高礦化度和高硬度是煤礦AMD的水化學的典型特徵。水中的硫酸鹽是其礦化度的主要貢獻者;煤礦酸性水中的SO2-4含量與其電導率具有良好的對應關系;Eh隨Fe3+/Fe2+比值的增加而增加,Fe3+/Fe2+比值決定著煤礦酸性水的電勢。 (3)煤礦AMD中含有眾多重金屬及其他微量元素。其中Ni、Co、Zn、As等主要有害微量元素來源於黃鐵礦的氧化分解,而Pb、Sr等則來源於酸性水對地層中物質的溶濾作用。煤礦酸性水的酸度大大增加了環境中有害化學物質的出溶率和遷移性。 參 考 文 獻 [1] Nicholson R V,Gillham R W,Reardon E J. Pyrite oxidation in carbionate buffered solution: 1. Experimental Kineti- ca. Geochim Cosmochim Acta,1988,52: 1007 - 1085 [2] Holmstrom H,Salmon U J,Carlsson E et al. Geochemical investigations of sulfide-bearing tailings at Kristineberg,north- ern Sweden,a few years after remediation. The Science of the Total Environment,2001,( 273) : 111 - 133 [3] 文冬光,沈照理,鍾佐 . 水-岩互相作用的地球化學模擬理論及應用 . 中國地質大學出版社,1998 [4] 趙廣濤,李玉瑛,曹欽臣等 . 青島西北地區礦泉水的水化學特徵與形成機理 . 青島海洋大學學報,1998,28( 1) :135 - 141 The environment geochemistry information of the coal mine acid mining drainage YUE Mei1,2,ZHAO Feng-hua1,REN De-yi1 ( 1. Department of Resource & Earth Sciences,University of China Mining & Technology( Beijing) ; Key Laboratory of Coal Resource,Ministry of Ecation,Beijing 100083,China; 2. Anhui University of Sciences & Technology,Huainan 232001,China) Abstract: The chemical characteristic and its formation of the coal acid mining drainage are discussed in this paper based on the spot investigation,samples examination,applied the cor- relation analysis method,and combined w ith the geology and hydrogeology background informa- tion. Coal AMD formed in the specific substance and environment condition. And w hen the con- dition is meet,the AMD can be proced in both high or low sulfur in the coal. Low pH and high Eh,TDS,hardness are the important characteristic of coal AMD. There are good relation betw een SO2 -4and EC,Fe3 +/ Fe2 +radio and Eh. Some trace elements and harmful heavy metal such as Ni、Cu、Co、Zn in the AMD come from pyrit dissolution w hile some others like Pb、Sr are mainly come from the AMD eluviation to the coal and rocks. Key words: coal AMD; chemical characteristic; trace elements; correlation analysis ( 本文由岳梅、趙峰華、任德貽合著,原載《煤田地質與勘探》,2004 年第 32 卷第 3 期) Ⅳ 硫鐵礦制硫酸請問下他的廢水是哪個環節產生的,怎麼產生的 最後一個環節產生的 就是SO3+H2O=H2SO4 實際是用稀硫酸吸收SO3 Ⅵ 酸性廢水過濾中和及吹脫實驗處理效果與哪些因素有關 酸性廢水處理來說相對簡單,只需要加入鹼性物質(石灰、苛性鈉等),調節PH值到6--9范圍內,就可以達標排放。了解更多這方面的問題可以到環保通。常用的方法有多種,而以上提及的處理方法影響因素主要是PH值、溫度、壓力、還有待吹脫物質的濃度。所以只要控制好這些因素,即可做到達標。 Ⅶ (2014安徽模擬)鐵及其化合物在生活、生產中有廣泛應用.請回答下列問題:(1)黃鐵礦(FeS2)是生產硫 (1)3FeS2+8O2
|