當前位置:首頁 » 污水廢水 » 廢水萃取設計計算

廢水萃取設計計算

發布時間: 2021-04-08 10:11:34

Ⅰ 化肥廠廢水處理設計計算

清污分流,零排放。將雨水、生活廢水、工藝污水分開進行管理。重點在於處理工藝污水,通回過專用的污答水處理裝置,可以實現零排放。
污水池的大小和數量要根據工藝流程設置常態處理容納,以及事故處理預放池。考慮一定比例的餘量。

Ⅱ 污水的迴流比怎麼計算

計算公式:

迴流水量或泥量除以進水量

迴流比與分離所需理論板數的關系(見圖[理論板數與迴流比內的關系])表明:回容流比從最小值逐漸增大的過程中,所需理論板數起初急劇減少,設備費用亦明顯下降,足以補償能耗費用的增加;但當迴流比繼續增大時,所需理論板數減少趨勢緩慢 (其極限值是全迴流所需要的最少理論板數),此時設備費用的減少將不能補償能耗費用的增加。

(2)廢水萃取設計計算擴展閱讀

在污水處理中,下列幾種情況為迴流:

1、利用污水廠的出水,或生物處理單元的出水稀釋進水的做法;

2、利用沉澱池的污泥來補充生物處理單元內活性污泥濃度(即微生物濃度)的做法。

若選取的迴流比太大,不僅使加熱蒸汽及冷卻水的消耗量增大,操作費增大,還可能影響塔徑,使設備投資費用也增大。而且迴流比太大使塔在操作時改變的難度加大,調節塔的分離能力的作用也大大減小。因此,無論從經濟上考慮,還是操作上考慮,在精餾設計或操作時都應選取適宜的迴流比。因而找到最佳迴流比在設計過程中很重要。

Ⅲ 污水處理設計中ABR池怎麼設計計算 謝謝

ABR反應器設計計算
設計條件:廢水量1 200 m3/d,PH=4.5,水溫15℃,CODcr=8000 mg/L,水力停留時間48h。
1、反應器體積計算
按有機負荷計算
按停留時間計算 V=
式中:——反應器有效容積,m3;
——廢水流量,m3/d;
——進水有機物濃度,g COD/L 或g BOD5/L;
——容積負荷,kg COD/m3.d;
——水力停留時間,d。
已知進水濃度COD18000mg/L,COD去除率取80%,參考國內澱粉設計容積負荷[1]P206:kgCOD/m3.d,取 kg COD/m3.d。則
按有機負荷計算反應器有效容積

按水力停留時間計算反應器有效容積
取反應器有效容積2400m3校核容積負荷
kgCOD/m3.d 符合要求[1]P206
取反應器實際容積2400 m3。
2、反應器高度
採用矩形池體。一般經濟的反應器高度(深度)為4~6m,本設計選擇7.0m。超高0.5m。

3、反應器上下流室設計
進水系統兼有配水和水力攪拌功能,應滿足設計原則:
①確保各單位面積的進水量基本相同,防止短路現象發生;
②盡可能滿足水力攪拌需要,保證進水有機物與污泥迅速混合;
③很容易觀察到進水管的堵塞;
④當堵塞被發現後,很容易被清除。
反應器上向反應隔室設計
慮施工維修方便,取下向流室水平寬度為940mm,選擇上流和下流室的水平寬度比為4:1。
校核上向流速
基本滿足設計要求
[5] 要求上向流速度0.55mm/s。(1.98m/h)
[6]P94要求進水COD大於3000mg/L時,上向流速度宜控制在0.1~0.5m/h;進水COD小於3000mg/L時,上向流速度宜控制在0.6~3.0m/h。
[1]P202UASB要求上向流速度宜控制在0.1~0.9m/h。
下向流速

4、配水系統設計
[5]選擇折流口沖擊流速1.10mm/s,以上求知反應器縱向寬度為,則折流口寬度

選擇,校核折流口沖擊流速.
> 1.10mm/s [5]
折流口設一450斜板,使得平穩下流的水流速在斜板斷面驟然流速加大,對低部的污泥床形成沖擊,使其浮動達到使水流均勻通過污泥層的目的[5]。

5、反應器各隔室落差設計
[1]P208重力流布水,如果進水水位差僅比反應器的水位稍高(水位差小於100mm)將經常發生堵塞,因為進水的水頭不足以消除阻塞,若水位差大於300mm則很少發生這種堵塞。設計選擇反應器各隔室水力落差250mm。

6、反應器有效容積核算

選擇則設計的反應器結構容積大於按容積負荷計算反應器實際所需容積2400 m3,滿足處理負荷要求。
7、氣體收集裝置
[2]P203沼氣的產氣量一般按0.4~0.5 Nm3/kg(COD)估算。
沼氣產量
[7]P157選用氣流速度5m/s,則沼氣單池總管管徑

選擇管子規格DN80。
兩池總管匯集
選擇DN125,即進入阻火器管徑。

8、水封高度
沼氣輸送管應注意冷凝水積累及其排除,水封中設置一個排除冷凝水的出口,以保持水封罐中水位一定。

9、排泥設備
一般污泥床的底層將形成濃污泥,而在上層是稀的絮狀污泥。剩餘污泥應該從污泥床的上部排出。在反應器底部的「濃」污泥可能由於積累顆粒和小沙礫活性變低的情況下,建議偶爾從反應器底部排泥,避免或減少在反應內積累的沙礫。設計原則:
①建議清水區高度0.5~1.5m;
②可根據污泥面高度確定排泥時間,一般周排泥1~2次;
③剩餘污泥排泥點以設在污泥區中上部為宜;
④矩形池應沿池縱向多點排泥;
⑤應考慮下部排泥的可能性,避免或減少在反應內積累的沙礫;
⑥對一管多孔排泥管可兼作放空管或出水迴流水力攪拌污泥床的布水管。
⑦排泥管一般不小於150mm。
排泥量計算:
產泥系數:r=0.15kg干泥/(kgCOD.d),見[1]P156
設計流量:Q=1200m3/d ,進水濃度S0=8000mg/L=8kg/m3,厭氧處理效率E=80%
Δx= r×Q×S0×E=1200×8×0.8×0.15=1152kg
設污泥含水率為98%,因含水率P>95%,取污泥密度ρ=1000kg/m3,則污泥產量為:
每天排泥:
每周排泥:57.6×7=403.2 m3
每組反應器每天排泥:
一組每周排泥:28.8×7=201.6 m3
每個隔室每天排泥:
一隔每周排泥:4.8×7=33.6 m3
13、進水裝置設計
水泵選擇:水量 Q=1200 m3/d=50 m3/h
揚程 H=15h (凈揚程10m,管阻2m,自由水頭1m)
查進水泵規格:

型號

流量(m3/h)

揚程(m)

軸功率(kw)

效率(%)

轉速(rpm)

2 1/2PW

70

16.5

5.5

63

1850

迴流泵選擇:迴流100%(目的是提高進水的pH),水量為1200 m3/d
查迴流泵規格:

型號

流量(m3/h)

揚程(m)

軸功率(kw)

效率(%)

轉速(rpm)

2 1/2PW

72

8.5

2.72

61.5

1440

查泵管規格:公稱直徑2 1/2管,外徑75.5mm,普通壁厚3.75mm。
高位槽容積設計按5min泵的最大流量計算:
設計為

Ⅳ 急!用UASB法處理5000噸每日酒精廢水處理工藝論文,要有具體的設計計算!非常感謝

先根據污泥容積負荷確定反應時間計算出流速,再根據這些數據計算出UASB的工藝尺寸。一般出水還要有20%迴流。比如污泥負荷10kgCOD/m³*d,一天有3000kgCOD處理,就要20m³污泥處理15小時,再根據每日5000噸廢水計算出每小時的流速確定塔的底部面積,底部面積和總容積算出來高度就出來了。
下面有些資料你參考下
(1) 污泥參數
設計溫度T=25℃
容積負荷NV=8.5kgCOD/(m3.d) 污泥為顆粒狀
污泥產率0.1kgMLSS/kgCOD,
產氣率0.5m3/kgCOD
(2) 設計水量Q=2800m3/d=116.67m3/h=0.032 m3/s。
(3) 水質指標
表5 UASB反應器進出水水質指標
水 質 指 標 COD(㎎∕L) BOD(㎎∕L) SS(㎎∕L)
進 水 水 質 3735 2340 568
設計去除率 85% 90% /
設計出水水質 560 234 568

3.5.2 UASB反應器容積及主要工藝尺寸的確定[5]
(1) UASB反應器容積的確定
本設計採用容積負荷法確立其容積V V=QS0/NV
V—反應器的有效容積(m3)
S0—進水有機物濃度(kgCOD/L)
V=3400 3.735/8.5=1494m3
取有效容積系數為0.8,則實際體積為1868m3
(2) 主要構造尺寸的確定
UASB反應器採用圓形池子,布水均勻,處理效果好。
取水力負荷q1=0.6m3/(m2•d)
反應器表面積 A=Q/q1=141.67/0.6=236.12m2
反應器高度 H=V/A=1868/236.12=7.9m 取H=8m
採用4座相同的UASB反應器,則每個單池面積A1為:
A1=A/4=236.12/4=59.03m2
取D=9m
則實際橫截面積 A2=3.14D2/4=63.6 m2
實際表面水力負荷 q1=Q/4A2=141.67/5 63.6=0.56
q1在0.5—1.5m/h之間,符合設計要求。
3.5.3 UASB進水配水系統設計
(1) 設計原則
① 進水必須要反應器底部均勻分布,確保各單位面積進水量基本相等,防止短路和表面負荷不均;
② 應滿足污泥床水力攪拌需要,要同時考慮水力攪拌和產生的沼氣攪拌;
③ 易於觀察進水管的堵塞現象,如果發生堵塞易於清除。
本設計採用圓形布水器,每個UASB反應器設30個布水點。
(2) 設計參數
每個池子的流量
Q1=141.67/4=35.42m3/h
(3) 設計計算
查有關數據[6],對顆粒污泥來說,容積負荷大於4m3/(m2.h)時,每個進水口的負荷須大於2m2
則 布水孔個數n必須滿足 пD2/4/n>2 即n<пD2/8=3.14 9 9/8=32 取n=30個
則 每個進水口負荷 a=пD2/4/n=3.14 9 9/4/30=2.12m2
可設3個圓環,最裡面的圓環設5個孔口,中間設10個,最外圍設15個,其草圖見圖4
① 內圈5個孔口設計
服務面積: S1=5 2.12=10.6m2
摺合為服務圓的直徑為:

用此直徑用一個虛圓,在該圓內等分虛圓面積處設一實圓環,其上布5個孔口
則圓環的直徑計算如下:
3.14 d12/4=S1/2

② 中圈10個孔口設計
服務面積: S1=10 2.12=21.2m2
摺合為服務圓的直徑為:

則中間圓環的直徑計算如下:
3.14 (6.362-d22)/4=S2/2
則 d2=5.2m
③ 外圈15個孔口設計
服務面積: S3=15 2.12=31.8m2
摺合為服務圓的直徑為

則中間圓環的直徑計算如下:3.14 (92-d32)=S3/2
則 d3=7.8m
布水點距反應器池底120mm;孔口徑15cm

圖4 UASB布水系統示意圖
3.5.4 三相分離器的設計
(1) 設計說明 UASB的重要構造是指反應器內三相分離器的構造,三相分離器的設計直接影響氣、液、固三相在反應器內的分離效果和反應器的處理效果。對污泥床的正常運行和獲得良好的出水水質起十分重要的作用,根據已有的研究和工程經驗, 三相分離器應滿足以下幾點要求:
沉澱區的表面水力負荷<1.0m/h;
三相分離器集氣罩頂以上的覆蓋水深可採用0.5~1.0m;
沉澱區四壁傾斜角度應在45º~60º之間,使污泥不積聚,盡快落入反應區內;
沉澱區斜面高度約為0.5~1.0m;
進入沉澱區前,沉澱槽底縫隙的流速≤2m/h;
總沉澱水深應≥1.5m;
水力停留時間介於1.5~2h;
分離氣體的擋板與分離器壁重疊在20mm以上;
以上條件如能滿足,則可達到良好的分離效果。
(2) 設計計算
本設計採用無導流板的三相分
① 沉澱區的設計
沉澱器(集氣罩)斜壁傾角 θ=50°
沉澱區面積: A=3.14 D2/4=63.6m2
表面水力負荷q=Q/A=141.67/(4 63.6)=0.56m3/(m2.h)<1.0 m3/(m2.h) 符合要求
② 迴流縫設計
h2的取值范圍為0.5—1.0m, h1一般取0.5
取h1=0.5m h2=0.7m h3=2.4m
依據圖8中幾何關系,則 b1=h3/tanθ
b1—下三角集氣罩底水平寬度,
θ—下三角集氣罩斜面的水平夾角
h3—下三角集氣罩的垂直高度,m
b1=2.4/tan50=2.0m b2=b-2b1=9-2 2.0=5.0m
下三角集氣罩之間的污泥迴流縫中混合液的上升流速v1,可用下式計算:
V1=Q1/S1=4Q1/3.14b2
Q1—反應器中廢水流量(m3/s)
S1—下三角形集氣罩迴流縫面積(m2)
符合要求
上下三角形集氣罩之間迴流縫流速v2的計算: V2=Q1/S2
S2—上三角形集氣罩迴流縫面積(m2)
CE—上三角形集氣罩迴流縫的寬度,CE>0.2m 取CE=1.0m
CF—上三角形集氣罩底寬,取CF=6.0m
EH=CE sin50=1.0 sin50=0.766m
EQ=CF+2EH=6.0+2 1.0 sin50=7.53m
S2=3.14(CF+EQ).CE/2=3.14 (6.0+7.53) 1.0/2=21.24m2
v2=141.67/4/21.24=1.67m/h
v2<v1<2.0m/h , 符合要求
確定上下集氣罩相對位置及尺寸
BC=CE/cos50=1.0/cos50=1.556m
HG=(CF-b2)/2=0.5m
EG=EH+HG=1.266m
AE=EG/sin40=1.266/sin40=1.97m
BE=CE tan50=1.19m
AB=AE-BE=0.78m
DI=CD sin50=AB sin50=0.778 sin50=0.596m
h4=AD+DI=BC+DI=2.15m
h5=1.0m
氣液分離設計
由圖5可知,欲達到氣液分離的目的,上、下兩組三角形集氣罩的斜邊必須重疊,重疊的水平距離(AB的水平投影)越大,氣體分離效果越好,去除氣泡的直徑越小,對沉澱區固液分離效果的影響越小,所以,重疊量的大小是決定氣液分離效果好壞的關鍵。
由反應區上升的水流從下三角形集氣罩迴流縫過渡到上三角形集氣罩迴流縫再進入沉澱區,其水流狀態比較復雜。當混合液上升到A點後將沿著AB方向斜面流動,並設流速為va,同時假定A點的氣泡以速度Vb垂直上升,所以氣泡的運動軌跡將沿著va和vb合成速度的方向運動,根據速度合成的平行四邊形法則,則有:

要使氣泡分離後進入沉澱區的必要條件是:

在消化溫度為25℃,沼氣密度 =1.12g/L;水的密度 =997.0449kg/m3;
水的運動粘滯系數v=0.0089×10-4m2/s;取氣泡直徑d=0.01cm
根據斯托克斯(Stokes)公式可得氣體上升速度vb為

vb—氣泡上升速度(cm/s)
g—重力加速度(cm/s2)
β—碰撞系數,取0.95
μ—廢水的動力粘度系數,g/(cm.s) μ=vβ

水流速度 ,
校核:

, 故設計滿足要求。

圖5 三相分離器設計計算草圖
3.5.5 排泥系統設計
每日產泥量為
=3735×0.85×0.1×3400×10-3=1079㎏MLSS/d
則 每個UASB每日產泥量為
W=1097/4=269.75㎏MLSS/d
可用200mm的排泥管,每天排泥一次。
3.5.6 產氣量計算
每日產氣量 G=3726×0.85×0.5×3400×10-3 =5397 m3/d=224.9 m3/h
儲氣櫃容積一般按照日產氣量的25%~40%設計,大型的消化系統取高值,小型的取低值,本設計取38%。儲氣櫃的壓力一般為2~3KPa,不宜太大。
3.5.7 加熱系統
設進水溫度為15°C,反應器的設計溫度為25°C。那麼所需要的熱量:
QH= dF. γF.( tr-t) . qv /η
QH-加熱廢水需要的熱量,KJ/h;
dF-廢水的相對密度,按1計算;
γF-廢水的比熱容,kJ/(kg.K);
qv-廢水的流量,m3/h
tr-反應器內的溫度,°C
t-廢水加熱前的溫度,°C
η-熱效率,可取為0.85
所以 QH=4.2 1 (25-15) 141.67/0.85=7000KJ/h
每天沼氣的產量為5397 m3,其主要成分是甲烷,沼氣的平均熱值為22.7 KJ/L
每小時的甲烷總熱量為:(5397/24) 22.7 103=5.1 106 KJ/h,因此足夠加熱廢水所需要的熱量。
3.5.8 加鹼系統
在厭氧生物處理中,產甲烷菌最佳節pH值是6.8~7.2,由於厭氧過程的復雜性,很難准確測定和控制反應器內真實的pH值,這就要和靠鹼度來維持和緩沖,一般鹼度要2000~5000mgCaCO3/L時,就會導致其pH值下降,所以,反應器內鹼度須保持在1000mgCaCO3/L以上,因為為保證厭氧反應器內pH值在適當的范圍內,必須向反應器中直接加入致鹼或致酸物質。間接調節pH值。主要致鹼葯品有:NaCO3、NaHCO 3、NaOH以及Ga(OH)2[6]。
在UASB反應器中安裝pH指示儀,並在加鹼管路上設有計量裝置,將計量裝置和pH指示儀用信號線連接起來,根據UASB反應器中pH值的大小來調整加鹼量,當UASB反應器中pH值過低時,打開加鹼管路上的開關,往UASB反應器中加鹼,使pH值下降;反之,當UASB反應器中pH值過高時,關閉加鹼管路上的開關,停止加鹼,使pH值上升。
3.5.9 活性污泥的培養與馴化 對於一個新建的UASB反應器來說,啟動過程主要是用未馴化的絮狀污泥(如污水處理廠的消化污泥)對其進行接種,並經過一定時間的啟動調試運行,使反應器達到設計負荷並實現有機物的去除效果,通常這一過程會伴隨著污泥顆粒化的實現,因此也稱為污泥的顆粒化。由於厭氧生物,特別是甲烷菌增殖很慢,厭氧反應器的啟動需要很長的時間。但是,一旦啟動完成,在停止運行後的再次啟動可以迅速完成。當沒有現成的厭氧污泥或顆粒污泥時,採用最多的是城市污水處理廠的消化污泥。除了消化污泥之外,可用作接種的物料很多,例如牛糞和各類糞肥、下水道污泥等。一些污水溝的污泥和沉澱物或微生物的河泥也可以被用於接種,甚至好氧活性污泥也可以作為接種污泥,並同樣能培養出顆粒污泥。污泥的接種濃度以6~8kgVSS/m3(按反應器總有效容積計算)為宜,至少不低於5 kgVSS/m3,接種污泥的填充量應不超過反應器容積的60%。從負荷角度考慮UASB的初次啟動和顆粒化過程,可分為三個階段:
階段1:即啟動的初始階段,這一階段是低負荷的階段(<2Kg COD/(m3•d))。
階段2:即當反應器負荷上升至2~5Kg COD/(m3•d)的啟動階段。在這階段污泥的洗出量增大,其中大多為細小的絮狀污泥。實際上,這一階段在反應器里對較重的污泥顆粒和分散的、絮狀的污泥進行選擇。使這一階段的末期留下的污泥中開始產生顆粒狀污泥或保留沉澱性能良好的污泥。所以在5.0 Kg COD/(m3•d)左右是反應器中以顆粒污泥或絮狀污泥為主的一個重要的分界。
階段3:這一階段是反應器負荷超過5.0 Kg COD/(m3•d)。在此時,絮狀污泥變得迅速減少,而顆粒污泥加速形成直到反應器內不再有絮狀污泥存在。
當反應器負荷大於5.0 Kg COD/(m3•d),由於顆粒污泥的不斷形成,反應器的大部分被顆粒污泥充滿時其最大負荷可以超過20 Kg COD/(m3•d)。當反應器運行在小於5.0 Kg COD/(m3•d),系統中雖然可能形成顆粒污泥,但是,反應器的污泥性質是由佔主導地位的絮狀污泥所確定。

Ⅳ 有機廢水處理的基本設計與計算 這書怎麼樣

多年工程經驗的總結,實用性極強。
可以選擇自己去看一下的
肯定是對自己會有幫助的。。。

Ⅵ 污水處理設計公式有哪些

1、格柵計算、沉澱池計算、高程
2、設計參數
1.設計流量:一般按Qmax計算,並用Qmin校核其過柵最小流速。
2.過柵流速:柵前渠道內水流速度一般嚴用O.4~0.9m/s;廢水通過柵條間隙的流速可
採用O.6~1.0m/s。應注意設計過流能力一般取格柵生產廠商提供最大過流能力的
80%以留有餘地。
3.水流通過格柵的水頭損失值:大型污水處理廠應通過計算決定。對於小型污水處理工
程(1×104m3/d以下)一般採用O.08~O.15m,柵後渠底應比柵前渠底相應降低O.08
~0.15m
4.有效過濾面積:按流速O.6~1.0s/m計算,但總寬度不小於進水管渠寬度的1.2倍,與篩網一起使用時可取1.8倍。
5.格柵的傾角:一般採用45°~75°,人工清除柵渣時取低值。
6.格柵上部需設置工作台,其高度應高出格柵前最高設計水位O.5m,工作台上應有安全和沖洗設施,工作台兩側過道寬度不小於O.7m;工作台正面過道寬度,當人工清除渣時,不應小於1.2m,當機械清除柵渣時,不應小於1.5m。
http://wenku..com/view/d0cf9738376baf1ffc4fad06.html
http://www.docin.com/p-96887513.html

Ⅶ 工業廢水處理中格柵的設計計算

如果按照設計手冊上的公式計算
格柵很可能只有一兩個間隙,格柵的寬專度估計還不到10厘米屬
因此,沒必要根據公式進行計算
一般可以水量的大小設計0.5~1米的格柵渠,格柵渠中放置0.5~1米寬的格柵即可
格柵的柵隙在1厘米就可以了

Ⅷ 誰推薦或者給個水處理設計計算的書

您好,我是做這一塊設計的,你說的一般工業廢水根本不知道BOD多少,這個有時候真的是這專樣,但是我們在屬設計的時候更多的是參考行業的經驗以及相關的污染物的成分而估算一個較高的值去做的設計,教材更多的還是作為參考。如果你僅僅是需要經驗,可能我幫不了你,這個只能靠你自己積累,環保這一塊很多還真的是這樣,給你一個簡單而粗糙的經驗,可能會導致你不能專心的去設計,我們都是在充分熟悉設計資料的前提下做的經驗推測,不要成為在外人眼裡的非專業人士,加個好友,我給你個已經運行的工程設計方案僅作為參考,祝你好運!

Ⅸ 污水處理設計中ABR池怎麼設計計算,要詳細的步驟和參數的選取,能找實例的加分,最好是近幾年的設計,謝謝

ABR反應器設計計算
設計條件:廢水量1 200 m3/d,PH=4.5,水溫15℃,CODcr=8000 mg/L,水力停留時間48h。
1、反應器體積計算
按有機負荷計算
按停留時間計算
式中: ——反應器有效容積,m3;
——廢水流量,m3/d;
——進水有機物濃度,g COD/L 或g BOD5/L;
——容積負荷,kg COD/m3.d;
——水力停留時間,d。
已知進水濃度COD8000mg/L,COD去除率取80%,參考國內澱粉設計容積負荷[1]P206: kgCOD/m3.d,取 kg COD/m3.d。則
按有機負荷計算反應器有效容積

按水力停留時間計算反應器有效容積
取反應器有效容積2400m3校核容積負荷
kgCOD/m3.d 符合要求[1]P206
取反應器實際容積2400 m3。

2、反應器高度
採用矩形池體。一般經濟的反應器高度(深度)為4~6m,本設計選擇7.0m。超高0.5m。

3、反應器上下流室設計
進水系統兼有配水和水力攪拌功能,應滿足設計原則:
①確保各單位面積的進水量基本相同,防止短路現象發生;
②盡可能滿足水力攪拌需要,保證進水有機物與污泥迅速混合;
③很容易觀察到進水管的堵塞;
④當堵塞被發現後,很容易被清除。
反應器上向反應隔室設計
慮施工維修方便,取下向流室水平寬度為940mm,選擇上流和下流室的水平寬度比為4:1。
校核上向流速
基本滿足設計要求
[5] 要求上向流速度0.55mm/s。(1.98m/h)
[6]P94要求進水COD大於3000mg/L時,上向流速度宜控制在0.1~0.5m/h;進水COD小於3000mg/L時,上向流速度宜控制在0.6~3.0m/h。
[1]P202UASB要求上向流速度宜控制在0.1~0.9m/h。
下向流速

4、配水系統設計
[5]選擇折流口沖擊流速1.10mm/s,以上求知反應器縱向寬度為 ,則折流口寬度

選擇 ,校核折流口沖擊流速
> 1.10mm/s [5]
折流口設一450斜板,使得平穩下流的水流速在斜板斷面驟然流速加大,對低部的污泥床形成沖擊,使其浮動達到使水流均勻通過污泥層的目的[5]。

5、反應器各隔室落差設計
[1]P208重力流布水,如果進水水位差僅比反應器的水位稍高(水位差小於100mm)將經常發生堵塞,因為進水的水頭不足以消除阻塞,若水位差大於300mm則很少發生這種堵塞。設計選擇反應器各隔室水力落差250mm。

6、反應器有效容積核算

選擇 則設計的反應器結構容積大於按容積負荷計算反應器實際所需容積2400 m3,滿足處理負荷要求。
7、氣體收集裝置
[2]P203沼氣的產氣量一般按0.4~0.5 Nm3/kg(COD)估算。
沼氣產量
[7]P157選用氣流速度5m/s,則沼氣單池總管管徑

選擇管子規格DN80。
兩池總管匯集
選擇DN125,即進入阻火器管徑。

8、水封高度
沼氣輸送管應注意冷凝水積累及其排除,水封中設置一個排除冷凝水的出口,以保持水封罐中水位一定。

9、排泥設備
一般污泥床的底層將形成濃污泥,而在上層是稀的絮狀污泥。剩餘污泥應該從污泥床的上部排出。在反應器底部的「濃」污泥可能由於積累顆粒和小沙礫活性變低的情況下,建議偶爾從反應器底部排泥,避免或減少在反應內積累的沙礫。設計原則:
①建議清水區高度0.5~1.5m;
②可根據污泥面高度確定排泥時間,一般周排泥1~2次;
③剩餘污泥排泥點以設在污泥區中上部為宜;
④矩形池應沿池縱向多點排泥;
⑤應考慮下部排泥的可能性,避免或減少在反應內積累的沙礫;
⑥對一管多孔排泥管可兼作放空管或出水迴流水力攪拌污泥床的布水管。
⑦排泥管一般不小於150mm。
排泥量計算:
產泥系數:r=0.15kg干泥/(kgCOD.d),見[1]P156
設計流量:Q=1200m3/d ,進水濃度S0=8000mg/L=8kg/m3,厭氧處理效率E=80%
Δx= r×Q×S0×E=1200×8×0.8×0.15=1152kg
設污泥含水率為98%,因含水率P>95%,取污泥密度ρ=1000kg/m3,則污泥產量為:
每天排泥:
每周排泥:57.6×7=403.2 m3
每組反應器每天排泥:
一組每周排泥:28.8×7=201.6 m3
每個隔室每天排泥:
一隔每周排泥:4.8×7=33.6 m3
13、進水裝置設計
水泵選擇:水量 Q=1200 m3/d=50 m3/h
揚程 H=15h (凈揚程10m,管阻2m,自由水頭1m)
查進水泵規格:
型號 流量(m3/h) 揚程(m) 軸功率(kw) 效率(%) 轉速(rpm)
2 1/2PW 70 16.5 5.5 63 1850
迴流泵選擇:迴流100%(目的是提高進水的pH),水量為1200 m3/d
查迴流泵規格:
型號 流量(m3/h) 揚程(m) 軸功率(kw) 效率(%) 轉速(rpm)
2 1/2PW 72 8.5 2.72 61.5 1440

查泵管規格:公稱直徑2 1/2管,外徑75.5mm,普通壁厚3.75mm。
高位槽容積設計按5min泵的最大流量計算:
設計為

熱點內容
丁度巴拉斯情人電影推薦 發布:2024-08-19 09:13:07 瀏覽:886
類似深水的露點電影 發布:2024-08-19 09:10:12 瀏覽:80
《消失的眼角膜》2電影 發布:2024-08-19 08:34:43 瀏覽:878
私人影院什麼電影好看 發布:2024-08-19 08:33:32 瀏覽:593
干 B 發布:2024-08-19 08:30:21 瀏覽:910
夜晚看片網站 發布:2024-08-19 08:20:59 瀏覽:440
台灣男同電影《越界》 發布:2024-08-19 08:04:35 瀏覽:290
看電影選座位追女孩 發布:2024-08-19 07:54:42 瀏覽:975
日本a級愛情 發布:2024-08-19 07:30:38 瀏覽:832
生活中的瑪麗類似電影 發布:2024-08-19 07:26:46 瀏覽:239