當前位置:首頁 » 污水廢水 » 單糖廢水

單糖廢水

發布時間: 2021-04-14 14:11:32

㈠ 含糖廢水該怎麼處理呢

1.回收利用:一些紙漿廢液中含有木糖類化合物,可用異丙醇或乙醇萃取,或用離子交換樹脂法去除其中的木質素磺酸鹽而得到木糖。所用的樹脂有苯乙烯-二乙烯苯樹脂等。
2.物化及化學處理法:混凝沉降法較難去除水中溶解的單糖化合物,單在製糖工業中常用混凝沉降法去除水中單糖以外的其他物質,處理後做回用,或進一步處理或排放。水溶性多價金屬鹽與PVA可用來處理廢水中的碳水化合物。金屬鹽及PVA用量最好分別為大於0.5mol及0.1g。如2000mg/l的PVA加到由糖廠來的廢水,然後加入0.2mol硫酸銅/molPVA,經沉澱1h後上清液的cod為8mol/l。廢水中的葡萄糖液可用反滲透法處理。含糖廢水還可用活性炭吸附法處理,對於棉子糖、乳糖及糊精,粉狀活性炭對三者均有效,由於糊精分子質量較大,顆粒活性炭對其的吸附效果較差。含葡萄糖的廢水也可用移動床活性炭、氧化鋁等吸附處理,出水的cod可達4mg/l,bod可達1mg/l。化學氧化中,葡萄糖溶液可用濕式氧化法處理。如葡萄糖溶液可在17607-260.0℃、2.3mpa氧壓下進行氧化。葡萄糖的濕式氧化可分為3階段,即誘發階段,快速氧化階段及慢速氧化階段。氧化時事先添加少量的醋酸可以加速氧化反應的進行。廢水中的葡萄糖還可以用化學氧化劑如高鐵酸鉀所氧化。
3.生化處理:含糖廢水可用好氧微生物處理,如向日葵芯水解的廢液中含有阿拉伯糖、鼠李糖、精醛酸以及阿拉伯糖、木糖、甘露醇糖、葡萄糖及鼠李糖組成的低聚糖。上述糖中出阿拉伯糖及其有關的低聚糖外,均可被活性污泥所降解。製糖廢水可用Kollach法處理,即先用厭氧發酵,再對出水進行活性污泥法處理,出水的bod可達35mg/l,且其中可無異臭物質存在。

污水處理廠好氧池,厭氧池,缺氧池分別是什麼意思啊

好氧池的作用是讓活性污泥進行有氧呼吸,進一步把有機物分解成無機物。去除污染物的功能。運行好是要控制好含氧量及微生物的其他各需條件的最佳,這樣才能是微生物具有最大效益的進行有氧呼吸。
厭氧處理是利用厭氧菌的作用,去除廢水中的有機物,通常需要時間較長。厭氧過程可分為水解階段、酸化階段和甲烷化階段。
水解酸化的產物主要是小分子有機物,使廢水中溶解性有機物顯著提高,而微生物對有機物的攝取只有溶解性的小分子物質才可直接進入細胞內,而不溶性大分子物質首先要通過胞外酶的分解才得以進入微生物體內代謝。例如天然膠聯劑(主要為澱粉類),首先被轉化為多糖,再水解為單糖。纖維素被纖維素酶水解成纖維二糖與葡萄糖。半纖維素被聚木糖酶等水解成低聚糖和單糖。
水解過程較緩慢,同時受多種因素的影響,是厭氧降解的限速階段。在酸化這一階段,上述第一階段形成的小分子化合物在發酵細菌即酸化菌的細胞內轉化為更簡單的化合物並分泌到細菌體外,主要包括揮發性有機酸(VFA)、乳醇、醇類等,接著進一步轉化為乙酸、氫氣、碳酸等。酸化過程是由大量發酵細菌和產乙酸菌完成的,他們絕大多數是嚴格厭氧菌,可分解糖、氨基酸和有機酸。
就是1樓得這種解釋啦,咋啥都問呢。

㈢ 廢水生物處理方法有哪些

主要藉助微生物的分解作用把污水中有機物轉化為簡單的無機物,使污水得到凈化專.
1.按對氧氣需求情況可分為厭屬氧生物處理和好氧生物處理兩大類.厭氧生物處理系利用厭氧微生物把有機物轉化為有機酸,甲烷菌再把有機酸分解為甲烷、二氧化碳和氫等,如厭氧塘、化糞池、污泥的厭氣消化和厭氧生物反應器等.好氧生物處理系採用機械曝氣或自然曝氣(如藻類光合作用產氧等)為污水中好氧微生物提供活動能源,促進好氧微生物的分解活動,使污水得到凈化,如活性污泥、生物濾池、生物轉盤、污水灌溉、氧化塘的功能.
2,.按微生物的懸浮狀態分為活性污泥法和生物膜法.活性污泥法微生物懸浮在污水中,如氧化溝,a2o,傳統活性污泥法,sbr等等.生物膜法微生物附著在載體上,如生物轉盤法,生物流化床等等.

㈣ 請教低聚糖廢水的處理

好氧池的作用是讓活性污泥進行有氧呼吸,進一步把有機物分解成無機物。去除污染物的功能。運行好是要控制好含氧量及微生物的其他各需條件的最佳,這樣才能是微生物具有最大效益的進行有氧呼吸。
厭氧處理是利用厭氧菌的作用,去除廢水中的有機物,通常需要時間較長。厭氧過程可分為水解階段、酸化階段和甲烷化階段。
水解酸化的產物主要是小分子有機物,使廢水中溶解性有機物顯著提高,而微生物對有機物的攝取只有溶解性的小分子物質才可直接進入細胞內,而不溶性大分子物質首先要通過胞外酶的分解才得以進入微生物體內代謝。例如天然膠聯劑(主要為澱粉類),首先被轉化為多糖,再水解為單糖。纖維素被纖維素酶水解成纖維二糖與葡萄糖。半纖維素被聚木糖酶等水解成低聚糖和單糖。
水解過程較緩慢,同時受多種因素的影響,是厭氧降解的限速階段。在酸化這一階段,上述第一階段形成的小分子化合物在發酵細菌即酸化菌的細胞內轉化為更簡單的化合物並分泌到細菌體外,主要包括揮發性有機酸(VFA)、乳醇、醇類等,接著進一步轉化為乙酸、氫氣、碳酸等。酸化過程是由大量發酵細菌和產乙酸菌完成的,他們絕大多數是嚴格厭氧菌,可分解糖、氨基酸和有機酸。

㈤ 污水處理厭氧池是什麼

厭氧生物處理技術抄即為在厭氧狀態下,污水中的有機物被厭氧細菌分解、代謝、消化,使得污水中的有機物含量大幅減少,同時產生沼氣的一種高效的污水處理方式。

厭氧處理作為生物處理的一個重要形式,正在陸續地開發出一系列新的厭氧處理工藝和構築物,逐步克服了傳統厭氧工藝的缺點,在理論和實踐上取得了很大的進步。

在厭氧處理過程中,廢水中的有機物經大量微生物的共同作用,被最終轉化為甲烷、二氧化碳、水、硫化氫和氨等。

在此過程中,不同微生物的代謝過程相互影響,相互制約,形成了復雜的生態系統。對高分子有機物的厭氧過程的敘述,有助於我們了解這一過程的基本內容。

(5)單糖廢水擴展閱讀:

厭氧消化

有機物質被厭氧菌在厭氧條件下分解產生甲烷和二氧化碳的過程,厭氧是在空氣缺乏的條件下從有機物中移出而生成CO2的。無論是酸性發酵,還是沼氣發酵,參與生化反應的氧都是來自於水、有機物、硝酸鹽或被分解的亞硝酸鹽。

厭氧消化的優點是有機質經消化產生了能源,殘余物可作肥料。厭氧消化開始用於廢物處理等多個領域,如工業廢水處理、城市垃圾的處理及潛在能源的開發、作燃料與動力、並且已建立了大規模的厭氧消化工廠。

㈥ 我要檢測污水中的單糖和多糖,請問這有什麼意義主要是油田除油之後的污水。

既然是油田除油之後,肯定是考察除油效果,當含糖量高時,說明部分油被降解,石油菌很可能存在與污水中

㈦ 淺談廢水生物處理的方法有哪些

廢水生物處理法主要有:

生物化學法

生物化學法指通過微生物處理含重金屬廢水,將可溶性離子轉化為不溶性化合物而去除。硫酸鹽生物還原法是一種典型生物化學法。該法是在厭氧條件下硫酸鹽還原菌通過異化的硫酸鹽還原作用,將硫酸鹽還原成H2S,廢水中的重金屬離子可以和所產生的H2S反應生成溶解度很低的金屬硫化物沉澱而被去除,同時H2SO4的還原作用可將SO42-轉化為S2-而使廢水的pH值升高。因許多重金屬離子氫氧化物的離子積很小而沉澱。有關研究表明,生物化學法處理含Cr6+濃度為30—40mg/L的廢水去除率可達99.67%—99.97%。有人還利用家畜糞便厭氧消化污泥進行礦山酸性廢水重金屬離子的處理,結果表明該方法能有效去除廢水中的重金屬。趙曉紅等人用脫硫腸桿菌(SRV)去除電鍍廢水中的銅離子,在銅質量濃度為246.8 mg/L的溶液,當pH為4.0時,去除率達99.12%。[2]

生物絮凝法

生物絮凝法是利用微生物或微生物產生的代謝物進行絮凝沉澱的一種除污方法。微生物絮凝劑是一類由微生物產生並分泌到細胞外,具有絮凝活性的代謝物。一般由多糖、蛋白質、DNA、纖維素、糖蛋白、聚氨基酸等高分子物質構成,分子中含有多種官能團,能使水中膠體懸浮物相互凝聚沉澱。至目前為止,對重金屬有絮凝作用的約有十幾個品種,生物絮凝劑中的氨基和羥基可與Cu2+、 Hg2+、Ag+、Au2+等重金屬離子形成穩定的鰲合物而沉澱下來。應用微生物絮凝法處理廢水安全方便無毒、不產生二次污染、絮凝效果好,且生長快、易於實現工業化等特點。此外,微生物可以通過遺傳工程、馴化或構造出具有特殊功能的菌株。因而微生物絮凝法具有廣闊的應用前景。[2]

生物吸附法

生物吸附法是利用生物體本身的化學結構及成分特性來吸附溶於水中的金屬離子,再通過固液兩相分離去除水溶液中的金屬離子的方法。利用胞外聚合物分離金屬離子,有些細菌在生長過程中釋放的蛋白質,能使溶液中可溶性的重金屬離子轉化為沉澱物而去除。生物吸附劑具有來源廣、價格低、吸附能力強、易於分離回收重金屬等特點,已經被廣泛應用。[2]

需氧生物處理法

利用需氧微生物在有氧條件下將廢水中復雜的有機物分解的方法。生活污水中的典型有機物是碳水化合物、合成洗滌劑、脂肪、蛋白質及其分解產物如尿素、甘氨酸、脂肪酸等。這些有機物可按生物體系中所含元素量的多寡順序表示為 COHNS。

生物體系中這些反應有賴於生物體系中的酶來加速。酶按其催化反應分為:氧化還原酶:在細胞內催化有機物的氧化還原反應,促進電子轉移,使其與氧化合或脫氫。可分為氧化酶和還原酶。氧化酶可活化分子氧,作為受氫體而形成水或過氧化氫。還原酶包括各種脫氫酶,可活化基質上的氫,並由輔酶將氫傳給被還原的物質,使基質氧化,受氫體還原。水解酶:對有機物的加水分解反應起催化作用。水解反應是在細胞外產生的最基本的反應,能將復雜的高分子有機物分解為小分子,使之易於透過細胞壁。如將蛋白質分解為氨基酸,將脂肪分解為脂肪酸和甘油,將復雜的多糖分解為單糖等。此外還有脫氨基、脫羧基、磷酸化和脫磷酸等酶。

許多酶只有在一些稱為輔酶和活化劑的特殊物質存在時才能進行催化反應,鉀、鈣、鎂、鋅、鈷、錳、氯化物、磷酸鹽離子在許多種酶的催化反應中是不可缺少的輔酶或活化劑。

在需氧生物處理過程中,污水中的有機物在微生物酶的催化作用下被氧化降解,分三個階段:第一階段,大的有機物分子降解為構成單元──單糖、氨基酸或甘油和脂肪酸。在第二階段中,第一階段的產物部分地被氧化為下列物質中的一種或幾種:二氧化碳、水、乙醯基輔酶A、α-酮戊二酸(或稱 α-氧化戊二酸)或草醋酸(又稱草醯乙酸)。第三階段(即三羧酸循環,是有機物氧化的最終階段)是乙醯基輔酶A、α-酮戊二酸和草醋酸被氧化為二氧化碳和水。有機物在氧化降解的各個階段,都釋放出一定的能量。

在有機物降解的同時,還發生微生物原生質的合成反應。在第一階段中由被作用物分解成的構成單元可以合成碳水化合物、蛋白質和脂肪,再進一步合成細胞原生質。合成能量是微生物在有機物的氧化過程中獲得的。[2]

厭氧生物處理法

主要用於處理污水中的沉澱污泥,因而又稱污泥消化,也用於處理高濃度的有機廢水。這種方法是在厭氧細菌或兼性細菌的作用下將污泥中的有機物分解,最後產生甲烷和二氧化碳等氣體,這些氣體是有經濟價值的能源。中國大量建設的沼氣池就是具體應用這種方法的典型實例。消化後的污泥比原生污泥容易脫水,所含致病菌大大減少,臭味顯著減弱,肥分變成速效的,體積縮小,易於處置。城市污水沉澱污泥和高濃度有機廢水的完全厭氧消化過程可分為三個階段(見圖)。在第一階段,污泥中的固態有機化合物藉助於從厭氧菌分泌出的細胞外水解酶得到溶解,並通過細胞壁進入細胞中進行代謝的生化反應。在水解酶的催化下,將復雜的多糖類水解為單糖類,將蛋白質水解為縮氨酸和氨基酸,並將脂肪水解為甘油和脂肪酸。第二階段是在產酸菌的作用下將第一階段的產物進一步降解為比較簡單的揮發性有機酸等,如乙酸、丙酸、丁酸等揮發性有機酸,以及醇類、醛類等;同時生成二氧化碳和新的微生物細胞。[2]

反應原理

第一、二階段又稱為液化過程。第三階段是在甲烷菌的作用下將第二階段產生的揮發酸轉化成甲烷和二氧化碳,因此又稱為氣化過程,其反應可用下式表示:

一些有機酸或醇的氣化過程舉例如下:

乙酸:

CH3COOH─→CO2+CH4

丙酸:

4CH3CH2COOH+2H2O─→5CO2+7CH4

甲醇:

4CH3OH─→CO2+3CH4+2H2O

乙醇:

2CH3CH2OH+CO2─→2CH3COOH+CH4

為了使厭氧消化過程正常進行,必須將溫度、pH值、氧化還原電勢等保持在一定的范圍內,以維持甲烷菌的正常活動,保證及時地和完全地將第二階段產生的揮發酸轉化成甲烷。

生物化學反應的速度直接受溫度的影響。進行厭氧消化的微生物有兩類:中溫消化菌和高溫消化菌。前者的適應溫度范圍為17~43℃,最佳溫度為32~35℃;後者則在50~55℃具有最佳反應速度。

近年來,厭氧消化處理法發展到應用於處理高濃度有機廢水,如屠宰場廢水、肉類加工廢水、製糖工業廢水、酒精工業廢水、罐頭工業廢水、亞硫酸鹽制漿廢水等,比採用需氧生物處理法節省費用。

利用生物法處理廢水的具體方法有活性污泥法、生物膜法、氧化塘法、土地處理系統和污泥消化等。[2]

㈧ 怎樣利用微生物處理廢水

廢水生物處理法

隨著工業的發展,污水成分已愈來愈復雜。某些難降解的有機物質和有毒物質,需要運用微生物的方法進行處理,污水具備微生物生長和繁殖的條件,因而微生物能從污水中獲取養分,同時降解和利用有害物質,從而使污水得到凈化。廢水生物處理是利用微生物的生命活動,對廢水中呈溶解態或膠體狀態的有機污染物降解作用,從而使廢水得到凈化的一種處理方法。廢水生物處理技術以其消耗少、效率高、成本低、工藝操作管理方便可靠和無二次污染等顯著優點而備受人們的青睞。

    定義

    利用微生物的代謝作用除去廢水中有機污染物的一種方法,亦稱廢水生物化學處理法,簡稱廢水生化法。由於傳統治理方法有成本高、操作復雜、對於大流量低濃度的有害污染難處理等缺點,經過多年的探索和研究,生物治理技術日益受到人們的重視。隨著耐重金屬毒性微生物的研究進展,採用生物技術處理電鍍重金屬廢水呈現蓬勃發展勢頭,根據生物去除重金屬離子的機理不同可分為生物絮凝法、生物吸附法、生物化學法以及植物修復法。

    特點

    1、用生物方法去除有機物最經濟;

    2、90%廢水處理工藝屬於生物處理工藝;

    3、水中氨氮用生物處理方法去除最有效;

    4、絕大多數工業廢水也是以生物處理方法為主

    分類

    生物化學法

    生物化學法指通過微生物處理含重金屬廢水,將可溶性離子轉化為不溶性化合物而去除。硫酸鹽生物還原法是一種典型生物化學法。該法是在厭氧條件下硫酸鹽還原菌通過異化的硫酸鹽還原作用,將硫酸鹽還原成H2S,廢水中的重金屬離子可以和所產生的H2S反應生成溶解度很低的金屬硫化物沉澱而被去除,同時H2SO4的還原作用可將SO42-轉化為S2-而使廢水的pH值升高。因許多重金屬離子氫氧化物的離子積很小而沉澱。有關研究表明,生物化學法處理含Cr6+濃度為30—40mg/L的廢水去除率可達99.67%—99.97%。有人還利用家畜糞便厭氧消化污泥進行礦山酸性廢水重金屬離子的處理,結果表明該方法能有效去除廢水中的重金屬。趙曉紅等人用脫硫腸桿菌(SRV)去除電鍍廢水中的銅離子,在銅質量濃度為246.8 mg/L的溶液,當pH為4.0時,去除率達99.12%。[2]

    生物絮凝法

    生物絮凝法是利用微生物或微生物產生的代謝物進行絮凝沉澱的一種除污方法。微生物絮凝劑是一類由微生物產生並分泌到細胞外,具有絮凝活性的代謝物。一般由多糖、蛋白質、DNA、纖維素、糖蛋白、聚氨基酸等高分子物質構成,分子中含有多種官能團,能使水中膠體懸浮物相互凝聚沉澱。至目前為止,對重金屬有絮凝作用的約有十幾個品種,生物絮凝劑中的氨基和羥基可與Cu2+、 Hg2+、Ag+、Au2+等重金屬離子形成穩定的鰲合物而沉澱下來。應用微生物絮凝法處理廢水安全方便無毒、不產生二次污染、絮凝效果好,且生長快、易於實現工業化等特點。此外,微生物可以通過遺傳工程、馴化或構造出具有特殊功能的菌株。因而微生物絮凝法具有廣闊的應用前景。[2]

    生物吸附法

    生物吸附法是利用生物體本身的化學結構及成分特性來吸附溶於水中的金屬離子,再通過固液兩相分離去除水溶液中的金屬離子的方法。利用胞外聚合物分離金屬離子,有些細菌在生長過程中釋放的蛋白質,能使溶液中可溶性的重金屬離子轉化為沉澱物而去除。生物吸附劑具有來源廣、價格低、吸附能力強、易於分離回收重金屬等特點,已經被廣泛應用。[2]

    需氧生物處理法

    利用需氧微生物在有氧條件下將廢水中復雜的有機物分解的方法。生活污水中的典型有機物是碳水化合物、合成洗滌劑、脂肪、蛋白質及其分解產物如尿素、甘氨酸、脂肪酸等。這些有機物可按生物體系中所含元素量的多寡順序表示為 COHNS。

    生物體系中這些反應有賴於生物體系中的酶來加速。酶按其催化反應分為:氧化還原酶:在細胞內催化有機物的氧化還原反應,促進電子轉移,使其與氧化合或脫氫。可分為氧化酶和還原酶。氧化酶可活化分子氧,作為受氫體而形成水或過氧化氫。還原酶包括各種脫氫酶,可活化基質上的氫,並由輔酶將氫傳給被還原的物質,使基質氧化,受氫體還原。水解酶:對有機物的加水分解反應起催化作用。水解反應是在細胞外產生的最基本的反應,能將復雜的高分子有機物分解為小分子,使之易於透過細胞壁。如將蛋白質分解為氨基酸,將脂肪分解為脂肪酸和甘油,將復雜的多糖分解為單糖等。此外還有脫氨基、脫羧基、磷酸化和脫磷酸等酶。

    許多酶只有在一些稱為輔酶和活化劑的特殊物質存在時才能進行催化反應,鉀、鈣、鎂、鋅、鈷、錳、氯化物、磷酸鹽離子在許多種酶的催化反應中是不可缺少的輔酶或活化劑。

    在需氧生物處理過程中,污水中的有機物在微生物酶的催化作用下被氧化降解,分三個階段:第一階段,大的有機物分子降解為構成單元──單糖、氨基酸或甘油和脂肪酸。在第二階段中,第一階段的產物部分地被氧化為下列物質中的一種或幾種:二氧化碳、水、乙醯基輔酶A、α-酮戊二酸(或稱 α-氧化戊二酸)或草醋酸(又稱草醯乙酸)。第三階段(即三羧酸循環,是有機物氧化的最終階段)是乙醯基輔酶A、α-酮戊二酸和草醋酸被氧化為二氧化碳和水。有機物在氧化降解的各個階段,都釋放出一定的能量。

    在有機物降解的同時,還發生微生物原生質的合成反應。在第一階段中由被作用物分解成的構成單元可以合成碳水化合物、蛋白質和脂肪,再進一步合成細胞原生質。合成能量是微生物在有機物的氧化過程中獲得的。

    厭氧生物處理法

    主要用於處理污水中的沉澱污泥,因而又稱污泥消化,也用於處理高濃度的有機廢水。這種方法是在厭氧細菌或兼性細菌的作用下將污泥中的有機物分解,最後產生甲烷和二氧化碳等氣體,這些氣體是有經濟價值的能源。中國大量建設的沼氣池就是具體應用這種方法的典型實例。消化後的污泥比原生污泥容易脫水,所含致病菌大大減少,臭味顯著減弱,肥分變成速效的,體積縮小,易於處置。城市污水沉澱污泥和高濃度有機廢水的完全厭氧消化過程可分為三個階段(見圖)。在第一階段,污泥中的固態有機化合物藉助於從厭氧菌分泌出的細胞外水解酶得到溶解,並通過細胞壁進入細胞中進行代謝的生化反應。在水解酶的催化下,將復雜的多糖類水解為單糖類,將蛋白質水解為縮氨酸和氨基酸,並將脂肪水解為甘油和脂肪酸。第二階段是在產酸菌的作用下將第一階段的產物進一步降解為比較簡單的揮發性有機酸等,如乙酸、丙酸、丁酸等揮發性有機酸,以及醇類、醛類等;同時生成二氧化碳和新的微生物細胞。

    反應原理

    第一、二階段又稱為液化過程。第三階段是在甲烷菌的作用下將第二階段產生的揮發酸轉化成甲烷和二氧化碳,因此又稱為氣化過程,其反應可用下式表示:

    一些有機酸或醇的氣化過程舉例如下:

    乙酸:

    CH3COOH─→CO2+CH4

    丙酸:

    4CH3CH2COOH+2H2O─→5CO2+7CH4

    甲醇:

    4CH3OH─→CO2+3CH4+2H2O

    乙醇:

    2CH3CH2OH+CO2─→2CH3COOH+CH4

    為了使厭氧消化過程正常進行,必須將溫度、pH值、氧化還原電勢等保持在一定的范圍內,以維持甲烷菌的正常活動,保證及時地和完全地將第二階段產生的揮發酸轉化成甲烷。

    生物化學反應的速度直接受溫度的影響。進行厭氧消化的微生物有兩類:中溫消化菌和高溫消化菌。前者的適應溫度范圍為17~43℃,最佳溫度為32~35℃;後者則在50~55℃具有最佳反應速度。

    近年來,厭氧消化處理法發展到應用於處理高濃度有機廢水,如屠宰場廢水、肉類加工廢水、製糖工業廢水、酒精工業廢水、罐頭工業廢水、亞硫酸鹽制漿廢水等,比採用需氧生物處理法節省費用。

    利用生物法處理廢水的具體方法有活性污泥法、生物膜法、氧化塘法、土地處理系統和污泥消化等

    ㈨ 污水處理用的葡萄糖有效成分含量多少

    葡萄糖(Glucose)(化學式C6H12O6)又稱為玉米葡糖、玉蜀黍糖,簡稱為葡糖。專英文別名:Dextrose,Cornsugar,Grapesugar,Bloodsugar。是自然界分布屬最廣且最為重要的一種單糖,它是一種多羥基醛。純凈的葡萄糖為無色晶體,有甜味但甜味不如蔗糖(一般人無法嘗到甜味),易溶於水,微溶於乙醇,不溶於乙醚。水溶液旋光向右,故屬於"右旋糖"。葡萄糖在生物學領域具有重要地位,是活細胞的能量來源和新陳代謝中間產物,即生物的主要供能物質。植物可通過光合作用產生葡萄糖。在糖果製造業和醫葯領域有著廣泛應用。

    ㈩ 果糖廢水處理的特點有哪些

    果糖中含6個碳原子,也是一種單糖,是葡萄糖的同分異構體,它以游離狀態大量存在於水果的漿汁和蜂蜜中,果糖還能與葡萄糖結合生成蔗糖。 純凈的果糖為無色晶體,熔點為103~105℃,它不易結晶,通常為黏稠性液體,易溶於水、乙醇和乙醚。D-果糖是最甜的單糖。

    熔點: 103~105℃ (dec.)

    水溶性: 3750 g/L (20℃)

    密度1.694g/cm3

    沸點440.1℃ at 760 mmHg

    閃點220℃

    蒸氣壓1.36E-09mmHg at 25℃

    溶解性3750 g/L (20℃)[1]

    結構簡式: CH2OH(CHOH)3-(C=O)-CH2OH(C=O要豎著寫),即

    O
    ||

    CH2OH(CHOH)3- C-CH2OH。[2]

    果糖是一種最為常見的己酮糖。存在於蜂蜜、水果中,和葡萄糖結合構成日常食用的蔗糖。果糖中含6個碳原子,也是一種單糖,是葡萄糖的同分異構體,它以游離狀態大量存在於水果的漿汁和蜂蜜中,果糖還能與葡萄糖結合生成蔗糖。 純凈的果糖為無色晶體,熔點為103~105℃,它不易結晶,通常為黏稠性液體,易溶於水、乙醇和乙醚。D-果糖是最甜的單糖。

    一種提煉自各種水果和穀物,全天然、甜味濃郁的新糖類,因不易導致高血糖,不易產生脂肪堆積而發胖,更不會產生齲齒,而被更多的人們所認識。果糖主要產自天然的水果和穀物之中,具有口感好、甜度高、升糖指數低以及不易導致齲齒等優點。果糖的甜度是蔗糖的1.8倍,是所有天然糖中甜度最高的糖,所以在同樣的甜味標准下,果糖的攝入量僅為蔗糖的一半。

    過去認為使用果糖代替砂糖,在相同甜度下可以減少熱量攝取,其升糖指數也很低,果糖在預防及控製糖尿病上較佳。但此觀點已經遭到反駁。

    雖然有一少部分組織(例如精細胞[3]和一些腸細胞)會直接利用果糖,但果糖的最主要代謝是在肝臟[4]。

    相比食用高葡萄糖飲料而言,在用餐時食用高果糖飲料會導致胰島素和瘦素(leptin)的水平降低,飢餓激素(Ghrelin)水平升高[5]。研究者發現,由於胰島素和瘦素水平降低和飢餓激素水平升高,大量食用果糖會導致體重增加[6]。

    大量攝入果糖會導致非酒精性脂肪肝[7-8]。

    果糖晶體

    實際上,對於果糖我們並不陌生,大多數水果中均含有果糖。而人類食用果糖的歷史,也是源遠流長。自原始時代起,就有人類食用蜂蜜的記錄,而蜂蜜就是典型的果糖與葡萄糖各佔一半的混合糖漿。此後的數千年裡,果糖一直沒有遠離人類的飲食,但由於加工工藝和技術能力的限制,果糖一直沒有大規模的佔領人們的餐桌。直到上世紀70年代,美國一舉突破了生產果糖的技術瓶頸,開始了大規模工業化的生產果糖。此後,果糖的產量以每年遞增百分之30的速度迅猛發展。

    在果糖產量越來越大的同時,其獨特的優點也逐漸顯現。果糖,與傳統的天然糖之間最大的區別就是升糖指數低,即GI值低,GI(Glycemic Index)是反映食物引起人體血糖升高程度的指標。實驗證明,在同等條件下,如果將食用葡萄糖後所產生的血糖升高指數當作100的話,那麼食用果糖後,人體的血糖升高指數僅為23,甚至有的能低至19,而蔗糖則高達65。也就是說,食用果糖後人體血糖的升高程度要遠遠低於其他傳統的天然糖品,也因此,果糖以及相關製品被廣泛應用於糖尿病患者與肝功能不全者的飲食結構中。

    此外,果糖的口味和甜度也優於傳統糖,不僅自身具有水果香味,並且甜度高,其甜度達到了蔗糖的1.8倍,為天然糖中最甜的糖類。因此,只需要較少的用量,就可以擁有與其他糖類相同的甜度,進而滿足味覺享受。至於果糖不易導致齲齒的原因,實際上是因為果糖比較不容易被口腔內的微生物分解和聚合,所以,食用後產生蛀牙的幾率就比葡萄糖或蔗糖等天然糖要小的多。

    1.1 果糖的來源與結構 近年來,隨著層析技術的不斷提高和新型儀器的問世,對糖類生物化學的研究獲得了長足的發展。迄今為止,已證實自然界有200多種單糖。大量事實說明,在分子的語言中,單糖如同氨基酸及核酸,可以作為密碼字母,藉以拼寫許多天然物質的特異性。

    糖是生命和各種運動過程的重要能源。依水解狀況,可將糖分為3類:

    (1)凡不能水解成更小分子的糖為單糖;

    (2)凡僅能水解成少數(2~10個)單糖分子的糖為寡糖;

    (3)可水解為多個單糖分子的糖為多糖。

    葡萄糖、果糖和半乳糖是對人體最為重要的單糖。果糖存在於水果和蜂蜜中,且幾乎總是與葡萄糖同時存在於植物中,尤以菊科植物為多。從化學結構上看,糖是含有多個羥基的醛類或酮類,分別稱為醛糖和酮糖。葡萄糖為己醛糖,果糖為己酮糖;相似的化學結構決定了二者有一些相似的生化特性。

    1.2 果糖的代謝特點:

    (1)果糖主要在肝、腎和小腸中經果糖激酶催化生成1一磷酸果糖。

    (2)在體內,果糖可以轉化為葡萄糖或合成糖元;但是葡萄糖和糖元不能逆向轉化為果糖。

    (3)因果糖可繞過糖酵解中的限速酶(磷酸果糖激酶),遂在肝臟,果糖的分解速度快於葡萄糖。

    (4)果糖代謝的強度取決於果糖濃度,不受胰島素的影響。果糖的服用和吸收不會引起低血糖。

    1.3 果糖的吸收與生化效應 :

    (1)當果糖與腸粘膜上皮細胞載體蛋白結合後,能順利地被吸收(盡管慢於葡萄糖的吸收),在肝(是最主要的部位)、腎和小腸內被特異性果糖激酶作用而生成1—磷酸果糖。之後,在1—磷酸果糖醛縮酶的催化下生成磷酸二羥丙酮和甘油醛。後者通過甘油醛激酶的磷酸化而生成3—磷酸甘油醛。該產物與磷酸二羥丙酮經糖酵解途徑氧化分解或經糖元異生而合成糖元。

    (2)血糖是機體組織器官(特別是神經組織)的主要能源,血糖的高低及恆定與否,影響著組織器官的生理活動。通常,在神經和激素的調節下,糖的分解與合成保持動態平衡,血糖濃度相對恆定。正常空腹血糖為80~120毫克%(folin—吳憲法),實指血中還原總糖,其中主要是葡萄糖,也含有果糖在內。血中果糖濃度的升高對葡萄糖濃度有一定的抑製作用。

    (3)果糖入肝後,在特異的1—磷酸果糖醛縮酶的作用下,可迅速轉變成葡萄糖並加入「Cori循環」:果糖在肝內被轉化成葡萄糖→肝糖元→血糖→肌糖元→血乳酸→肝糖元。這一重要循環的存在,有助於機體維系血糖的正常水平;有助於運動中堆積之乳酸的消散和充分利用;有助於機體肝糖元和肌糖元的再合成。

    (4)Adopo(1994)證實,運動中攝入果糖是有益的。他報告攝入果糖與攝入等量葡萄糖的氧化量相似。若攝入等量混合的果糖和葡萄糖(例如各服50克),其氧化率要比單純攝入100克葡萄糖高21%。原因在於果糖和葡萄糖有各自不同的氧化途徑,相互間競爭性較小。

    希望我能幫助你解疑釋惑。

    熱點內容
    丁度巴拉斯情人電影推薦 發布:2024-08-19 09:13:07 瀏覽:886
    類似深水的露點電影 發布:2024-08-19 09:10:12 瀏覽:80
    《消失的眼角膜》2電影 發布:2024-08-19 08:34:43 瀏覽:878
    私人影院什麼電影好看 發布:2024-08-19 08:33:32 瀏覽:593
    干 B 發布:2024-08-19 08:30:21 瀏覽:910
    夜晚看片網站 發布:2024-08-19 08:20:59 瀏覽:440
    台灣男同電影《越界》 發布:2024-08-19 08:04:35 瀏覽:290
    看電影選座位追女孩 發布:2024-08-19 07:54:42 瀏覽:975
    日本a級愛情 發布:2024-08-19 07:30:38 瀏覽:832
    生活中的瑪麗類似電影 發布:2024-08-19 07:26:46 瀏覽:239