廢水aox
根據污染物的來源及性質,將污染物控制項目分為基本控制項目和選擇控制項目兩類。基本控制項目主要包括影響水環境和城鎮污水處理廠一般處理工藝可以去除的常規污染物,以及部分一類污染物,共 19項。選擇控制項目包括對環境有較長期影響或毒性較大的污染物,共計 43 項。
根據城鎮污水處理廠排入地表水域環境功能和保護目標,以及污水處理廠的處理工藝,將基本控制項目的常規污染物標准值分為一級標准、二級標准、三級標准。一級標准分為 A標准和 B 標准。一類重金屬污染物和選擇控制項目不分級。
表 1 基本控制項目最高允許排放濃度(日均值) 單位 mg/L
一級標准
序號 基本控制項目
A 標准 B 標准
二級標准 三級標准
1 化學需氧量(COD) 50 60 100 120
2 生化需氧量(BOD5) 10 20 30 60
3 懸浮物(SS) 10 20 30 50
4 動植物油 1 3 5 20
5 石油類 1 3 5 15
6 陰離子表面活性劑 0.5 1 2 5
7 總氮 (以 N 計) 15 20 - -
8 氨氮(以 N 計)② 5(8) 8(15) 25(30) -
2005 年 12 月 31 日前建設的 1 1.5 3 5
9 總磷
(以 P計) 2006年1月1日起建設的 0.5 1 3 5
10 色度(稀釋倍數) 30 30 40 50
11 pH 6-9
12 糞大腸菌群數(個/L) 10^3 10^4 10^4 -
表 2 部分一類污染物最高允許排放濃度(日均值) 單位 mg/
序號 項目 標准值
1 總汞 0.001
2 烷基汞 不得檢出
3 總鎘 0.01
4 總鉻 0.1
5 六價鉻 0.05
6 總砷 0.1
7 總鉛 0.1
表 3 選擇控制項目最高允許排放濃度(日均值) 單位 mg/L
序號 選擇控制項目 標准值 序號 選擇控制項目 標准值
1 總鎳 0.05 23 三氯乙烯 0.3
2 總鈹 0.002 24 四氯乙稀 0.1
3 總銀 0.1 25 苯 0.1
4 總銅 0.5 26 甲苯 0.1
5 總鋅 1.0 27 鄰-二甲苯 0.4
6 總錳 2.0 28 對-二甲苯 0.4
7 總硒 0.1 29 間-二甲苯 0.4
8 苯並(a)芘 0.00003 30 乙苯 0.4
9 揮發酚 0.5 31 氯苯 0.3
10 總氰化物 0.5 32 1,4-二氯苯 0.4
11 硫化物 1.0 33 1,2-二氯苯 1.0
12 甲醛 1.0 34 對硝基氯苯 0.5
13 苯胺類 0.5 35 2,4-二硝基氯苯 0.5
14 總硝基化合物 2.0 36 苯酚 0.3
15 有機磷農葯 (以P計) 0.5 37 間-甲酚 0.1
16 馬拉硫磷 1.0 38 2,4-二氯酚 0.6
17 樂果 0.5 39 2,4,6 –三氯酚 0.6
18 對硫磷 0.05 40 鄰苯二甲酸二丁酯 0.1
19 甲基對硫磷 0.2 41 鄰苯二甲酸二辛酯 0.1
20 五氯酚 0.5 42 丙烯晴 2.0
21 三氯甲烷 0.3 43 可吸附有機鹵化物(AOX 以 CL計) 1.0
22 四氯化碳 0.03
Ⅱ 臭氧降cod
工業廢水處理---臭氧系統,能夠處理幾乎所有類型的廢水。廢水臭氧氧化的運行條件取決於行業種類和廢水種類。這些運行過程可以按下列方式分類:
*整個處理流程(單純化學工藝,化學/生物和化學/生物/物理的組合工藝)
*應用(用於水循環使用的室內預處理,或用於間接排放到公共水設施的水及用於直接排放至河流和海灣的管網末端的水處理)
*去除化合物(有毒或有色物質的氧化轉化,降低綜合參數(DOC或COD),,消毒或去除顆粒物)
通常採用臭氧氧化可生物降解過程相組合工藝,可降低臭氧用量和運行費用。(即O3-生物處理-O3系統)。
一、消毒
在廢水排入受納水體之前,需要對廢水進行消毒以達到一定的水質標准,如希望將處理過的水直接作為灌溉用水或工藝用水時更應進行消毒,而且要比飲用水的臭氧投加量更多。最常用的消毒劑是用氯和二氧化氯用於消毒,而氯可形成眾所周知的鹵化消毒副產物(尤其是三鹵甲烷,THMS),由於生成潛在的消毒副產物,因此人們對臭氧的用途越來越感興趣。
在進行化學消毒的設計時,經常使用Chick-Watson定律中的ct值的概念(游離消毒劑濃度c乘以有效接觸時間t)。大量過去和最近的研究證實,分子態的臭氧是一種十分有效而且很有前途的消毒劑,效果優於游離氯、二氧化氯。
二、無機化合物的氧化
為了破壞廢水中的有毒物質而對無機化合物進行臭氧氧化,主要局限於氰化物的去除。在金屬加工和電子工業的電解處理工藝中,氰化物使用頻繁,它可以以游離態CN-的形成存在,但是更多的情況下是與鐵或銅結合,以硌合物形態存在。在氰離子濃度高於5mg/L時,臭氧與游離氰離子反應速度很快,表明反應可能由傳質過程式控制制,而絡合的氰化物對於分子態臭氧的攻擊作用非常穩定。通過臭氧氧化可以去除亞硝酸鹽(NO2-)和硫化物(H2S/2-)。這兩類物質與臭氧反應速度都很快。
三、有機化合物的氧化
工業廢水中帶來問題的物質大部分是有機物。通常,要處理所含物質不同、濃度各異的混合液(濃度可以從mg/L到g/L)。廢水臭氧處理的主要任務是:
*轉化有毒化合物
*對溶解有機碳(DOC)中生物難降解的成分進行部分氧化,目的在於提高後續的生物降解性能.
*去除色度
與飲用水處理相似,很難用經濟的方法將DOC完全礦化,建議採用臭氧氧化與其他工藝組合的方法。處理過程的成功與否是用總體DOC去除來衡量。臭氧氧化系統已經用於處理廢水,如垃圾滲濾液、紡織、制葯和化學工業的廢水。這些水中的主要污染物是難降解有機物,可分類如下:
*垃圾滲濾液中的腐殖質(褐色或黃色)和可吸附的有機鹵化物(AOX)
*紡織廢水中的有色(聚)芳香簇化合物(這類物質常常與大量金屬離子Cu,Ni,Zn,Cr)混合在一起)
*制葯和化學工業產生的有毒或殺生性物質(例如農葯)
*化妝品和其他工業產生的表面活性劑
*紙漿和造紙廢液中的COD及有色物質在廢水臭氧氧化系統中,最常見的運行問題是產生泡沫,形成草酸鈣、碳酸和氫氧化鐵(Fe(OH)3)淀物,他們很容易阻塞反應器、管道或閥門,和會對泵造成損壞。
四、污水氧化水質、水量分析
根據居民生活小區所排放的污水,重點超標項目是COD、BOD、懸浮物、各類膠體、各種細菌進行取樣分析,做出報告。
1 設計標准
污水處理後,COD、BOD、懸浮物SS、各類細菌溶解性總固體的濃度與含量符合中華
人民共和國建設部生活雜 用水標准CJ25.1-89,中水回用水質標准如下:
2 設計依據
(1)、 國家環境保護"九五"計劃和2010年遠景目標規劃。
(2)、 污水取樣報告本。
(3)、 <室外排水設計規范>(GBJ14-87)。
(4)、 中華人民共和國建設部生活雜用水標准CJ25.1-89。
3 設計原則
(1)、 認真執行國家有關法規、標准及規定,根據小區污水的實際情況,採取切實可行的治理方案,符合處理效果好、建設投資少、運行費用低、管理操作簡便的要求。
(2)、 廢水處理後應符合中華人民共和國建設部生活雜用水標准CJ25.1-89。
4.技術工藝流程簡述:
(1)、密閉安全型膜,生物反應垃圾滲濾液處理工藝 關鍵:膜生物反應技術+O3
(2)、密閉安全型生物接氧化法垃圾滲濾液處理工藝 關鍵:生物接觸氧化技術與高效斜板沉澱相結合+O3
(3)、SBR垃圾滲濾液處理工藝 關鍵:SBR氧化工藝+O3
5、中水回用處理工藝: 接觸氧化——過濾工藝
Ⅲ 焦化廠污水排放標准
中國對焦化污水中有害物質的最高允許排放濃度為:酚0.5mg/L,氰化物0.5mg/L,硫化物1.0mg/L,氨氮15mg/L,化學需氧量100mg/L、生化需氧量30mg/L。苯並(a)芘列為第一類污染物,其最高允許排放濃度為0.03μg/L。
焦化廢水中多環芳烴不但難以降解,而且通常還是強致癌物質,對環境造成嚴重污染的同時也直接威脅到人類健康。
(3)廢水aox擴展閱讀
廢水來源
焦化廠主要生產焦碳、商業煤氣、硫銨和輕苯等化工產品。該廠焦油回收系統採用硫銨流程,焦油加工採用管式爐兩塔連續蒸餾,工業奈生產工藝為雙爐雙塔連續蒸餾、洗滌、精製。
在焦爐煤氣冷卻、洗滌、粗苯加工及焦油加工過程中,產生含有酚、氰、油、氨及大量有機物的工業廢水。
Ⅳ 印染廢水,是染漿廢水來的,脫色效果不好,怎麼辦
不知到你用的什麼工藝,一般生物處理不易脫色的話,可以考慮加點絮凝劑,另外氧化法也比較常用,下面一個參考文摘不錯的:
由於染料生產品種多,並朝著抗光解、抗氧化、抗生物氧化方向發展,從而使染料廢水處理難度加大。染料廢水處理難點:一是COD高,而BOD/COD值小,可生化性差;二是色度高,而成分復雜。三是水質水量不穩定,排放具有間歇性。印染廢水的處理目標一般是COD的去除與脫色,但脫色問題難度更大。
3. 脫色處理方法
3.1 物理方法
3.1.1吸附法
吸附法是利用多孔性的固體物質,使廢水中的一種或多種物質被吸附在固體表面而去除的方法。吸附脫色技術是依靠吸附劑的吸附作用來脫除染料分子的。吸附按其作用力可分為物理吸附、化學吸附和離子交換吸附三種。目前用於吸附脫色的吸附劑主要是靠物理吸附, 但離子交換纖維、改性膨潤土等也有化學吸附作用。
常用的吸附劑包括可再生吸附劑如活性炭、離子交換纖維等和不可再生吸附劑如各種天然礦物(膨潤土、硅藻土)、工業廢料(煤渣、粉煤灰) 及天然廢料(木炭、鋸屑) 等。傳統的吸附劑是活性碳,活性炭具有較高的比表面積(500- 600 m2/g),它只對陽離子染料、直接染料、酸性染料、活性染料等水溶性染料具有較好的吸附性能。活性炭去除水中溶解性有機物(分子量不超過400)非常有效,但它不能去除水中的膠體疏水性染料。若廢水BOD5> 500mg/L,則採用吸附法是不經濟的。膨潤土作為水處理中的吸附劑和絮凝劑,已被廣泛用於印染廢水脫色領域,近年來製成多種復合膨潤土、VS型纖維和聚苯乙烯基陽離子交換纖維等,具有物理吸附和離子交換功能,且比表面大、離子交換速度快,易再生,對難處理的陽離子染料廢水有很好的脫色效果,有些改性的膨潤土的脫色效果甚至高於活性炭[4];某些集吸附與絮凝性能為一體的吸附劑如硅藻土復合凈水劑也已開發;用電廠粉煤灰製成具有絮凝性能的改性粉煤灰,對疏水性和親水性染料廢水均具有很高的脫色率;另外工業廢料(如煤渣、粉煤灰等)、天然廢料(如木炭、木屑等)、植物秸稈(如玉米棒等)均對印染廢水具有一定的吸附作用。
吸附法尤其適合難生化降解的紡織印染廢水脫色處理,印染廢水的吸附脫色技術是一項非常有效而又比較經濟的方法。活性炭吸附脫色技術不適合印染廢水一級處理,只能用於深度脫色處理,活性炭處理成本高,再生困難,所以活性炭的再生技術是正在研究的課題,其中生物再生是研究的重點方向。煤、爐渣吸附劑,原料來源廣,成本低,但在處理印染廢水之後存在二次污染,所以只適合與生化法或砂過濾等方法聯合使用。離子交換樹脂對水溶性染料離子吸附特別有效,離子交換吸附劑的開發研製是今後的主要發展方向之一。廉價、高效、因地制宜新型吸附材料的開發是一項很有前途的技術。吸附法與其它處理方法的優化組合處理印染廢水,脫色效果更佳。[5]
綜上所述,吸附脫色的發展方向體現在兩個方面: ①根據吸附機制開發、尋找新的吸附劑; ②對現有吸附劑的改性與活化, 以提高脫色效果和再生能力。
3.1.2超濾法脫色
超濾是利用一定的流體壓力推動力和孔徑在20~200üA 的半透膜實現高分子和低分子的分離。超濾過程的本質是一種篩濾過程,膜表面的孔隙大小是主要的控制因素。該法的優點是不會產生副作用,可以使水循環使用。早在70 年代初期, 膜分離技術就嘗試用來處理印染廢水。目前, 該方法可用於去除各種染料和添加劑。但由於分離染料混合物的困難, 並未達到完美的程度。
在這種技術中,半透膜的性質起著決定性的作用。就材料而言,膜有動態膜,纖維素類膜,聚碸超濾膜,荷電超濾膜或疏鬆反滲透膜。[6]
(1)動態膜從處理效果和經濟上講,ZrO-PAA 動態膜是可行的。但能耗較大,其滲透水及化學物質的再利用率可達88% 到96%。
(2) 纖維素類膜。CA 膜的選擇性隨膜表面與各種染料互變異構體相互作用而發生變化,但膜材料本身在耐pH、耐溫等方面仍然有所不足。纖維素類膜在耐pH值、耐壓、耐溫度等方面優於CA ,用纖維素超濾膜反滲透處理染色廢液, 染料去除率97% 以上可實現水的循環使用,但反滲透所需的高壓操作仍是它的不足。
(3) 聚碸超濾膜由於其良好的物理化學穩定性,有較大的應用前景。使用聚碸超濾膜代替纖維素膜可實現高溫操作, 回收染料減輕污染, 但仍未達到國家排放的標准。
(4) 荷電超濾膜或疏鬆反滲透膜是用來描述其分離性能介於反滲透和超濾之間的一種膜。荷電超濾膜是以其化學結構含有荷電基團而定義的, 疏鬆反滲透膜是以其物理結構而命名, 它們往往指的一種膜。對鹽NaCl 截留只有2%~ 3% , 而對於500~2 000 分子量的物質,具有較高的分離率, 同時保持高的水通量。一般染料的分子量正好在這種膜的截留范圍, 特別是離子型染料。該膜在低壓下操作(10 kg/cm 2) 耐pH值、耐壓密、耐污染、耐溫等方面都比較突出,前景廣闊[7]。
3.1.3輻射降解法
電離輻射可有效地降解染料水溶液,輻射技術和其它技術有很好的協同作用。與常規污染物處理技術相比,輻射技術在常溫常壓下進行,具有工藝簡單、無二次污染等特點,對難降解有機污染物的處理更有其獨特長處。[8]
用60Co γ射線輻照甲基橙和活性艷藍KNR水溶液,輻照後染料水溶液的可見光區和紫外區的特徵吸收峰隨吸收劑量的增加而漸漸下降至接近零,說明輻射降解反應既破壞了染料分子的發色基團,同時也破壞了染料的有機分子結構。脫色率和COD去除率均隨吸收劑量的增加而增加。過氧化氫與輻射有協同作用,在相同的吸收劑量下,脫色率和COD去除率均隨過氧化氫的濃度增加而增加。另外,該法pH值適用范圍很廣;溶液的初始濃度越大,COD去除和脫色效果越差;氧的存在可以促進染料分子的降解。在同樣輻照條件下,染料的輻射降解效果因染料分子的結構不同而略有不同[9]。
輻射法處理印染等難降解污水時雖然有機物的去除率高、設備佔地小、操作簡便,但用來產生高能粒子的裝置價格昂貴,技術要求高,而且該方法能耗較大,能量利用率不高,若要真正投入實際運行,還需進行大量的研究工作。
3.2 物理化學法
3.2.1絮凝法
印染廢水的絮凝脫色技術, 投資費用低, 設備佔地少, 處理量大, 是一種被普遍採用的脫色技術。某印染廠採用混凝脫色- 懸浮曝氣生物濾池工藝處理主要含活性染料的廢水,原水CODCr, SS的平均質量濃度分別為296,285 mg/L 和平均色度為550倍, 處理後出水水質相應各項指標分別為40, 20 mg/L 和10 倍, 其去除率分別為87%, 92%和98%。[10]
在印染廢水中使用的絮凝劑很多,大致可分為無機絮凝劑、有機絮凝劑和微生物絮凝劑三類,其中,有機絮凝劑還分為天然有機高分子絮凝劑、合成有機高分子絮凝劑。由於印染廢水水質比較復雜,無機單鹽絮凝劑在水解絮凝過程中,未能完成具有優勢絮凝效果的形態,投葯量大,絮凝效果差;無機高分子絮凝劑可以較好地除去廢水中大部分懸浮態染料,但對於水溶性染料中分子量小、不容易形成膠體的廢水則難以處理;有機高分子絮凝劑對於水溶性染料等廢水具有很好的脫色性能,但單獨使用效果差,而且易於產生有毒物質;因此,開發研製價廉、無毒、高效的新型有機絮凝劑,已成為目前絮凝法的主要研究方向之一。
復合絮凝劑則能同時發揮幾種絮凝劑的優點,使絮凝法用於印染廢水處理既經濟,又適用。如將有機絮凝劑與無機絮凝劑復配使用,充分發揮有機高分子絮凝劑的吸咐架橋性能和無機絮凝劑的電性中和能力,可以使處理出水達到較好的效果。此外,澱粉衍生物、木質素衍生物、羧甲基殼聚糖[11]等天然高分子具有無毒、原料廣、價廉和可生物降解等優點,也得到科研工作者的高度重視。另外,微生物絮凝劑是利用生物技術,從微生物體或其分泌物提取、純化而獲得的一種安全、高效,且能自然降解的新型水處理劑。與普通的絮凝劑相比,有固液易於分離,沉澱少,適用性廣等優點,因此微生物絮凝劑的研究正成為當今世界絮凝劑方面研究的重要課題[12]。總之,高效、無毒、無害的環境友好性絮凝即將在印染廢水處理中有廣闊的應用前景。
絮凝法雖然是含染料廢水處理的常用方法,但對於許多可溶性好的染料, 處理效果往往不佳。因此, 復合絮凝法將成為工業廢水處理工藝研究的主要內容和發展方向。根據實際出水要求,採用適當的預處理和後處理手段,發揮絮凝工藝與其它工藝的協同工作的優勢,以達綜合治理的目的,這對於提高印染廢水的處理效果,降低處理成本具有極其重要的意義。
然而,用絮凝法進行廢水脫色依然存在以下幾個方面的問題:產生大量的淤泥;由於廢水水質變化大,每批廢水脫色前均需要進行預試驗,以確定最佳條件,提高了成本,又費時。過量的陽離子絮凝劑會在廢水中產生大量氮的化合物,它們對魚類有毒且難以生物降解和硝酸化抑制,絮凝劑過量也可能導致沉澱重新溶解。脫色效率低,不符合排放標准。因此,實際生產中,應根據實際出水要求,採用適當的預處理和後處理手段,發揮混凝工藝與其它工藝的協同工作的優勢,以達綜合治理的目的,這對於提高印染廢水的處理效果,降低處理成本具有極其重要的意義。
3.3 化學方法
3.3.1電化學法
電化學法是處理印染廢水的另一種有效的處理方法。電化學法通過可溶性電極在陽極和陰極上發生電絮凝、電氣浮和H的間接還原作用從而達到處理廢水的目的。電化學法處理印染廢水具有設備小、佔地少、運行管理簡單、COD去除率高和脫色好等優點,但同時電化學法存在著能耗大、成本高和析氧析氫副反應等缺點。近年來,隨著電化學和電力工業的發展以及許多新型高析氧析氫過電位電極的發明,電化學法又重新引起人們的重視。根據電極反應方式劃分, 傳統電化學方法可細分為內電解法、電絮凝和電氣浮法、電氧化學。
內電解法是利用廢水中有些組分易被氧化,有些組分易被還原,在有導電介質存在時,電化學反應便會自發進行,同時兼有絮凝、吸附、共沉澱等綜合作用的一種廢水處理方法[13]。最著名的內電解法是鐵屑法, 即將鑄鐵作為濾料, 使印染廢水浸沒或通過, 利用Fe 和FeC 與溶液的電位差, 發生電極反應, 產生較高化學活性新生態H, 能與印染廢水多種組分發生氧化還原反應, 破壞染料發色結構, 而陽極產生的新生態Fe2+, 其水解產物有較強的吸附和絮凝作用。該法不需要外加電源,操作簡單,成本低廉,是種很有前途的處理方法。
電氣浮法是以Fe、AL作陽極產生的H2將絮體浮起;而電絮法則是利用電極反應產生的Fe2+ 、Al3+實現絮凝脫色。採用石墨、鈦板等作極板, 對染料廢水通電電解, 陽極產生O2或Cl2, 陰極產生H2。通過O的氧化作用及H的還原作用破壞染料分子而使印染廢水脫色, 脫色率可達98% 以上,COD去除率達80%以上。
國內重點研究的是電化學與其它方法相結合,其中較為有成就的是用絮凝復合床新技術處理高色度印染廢水,對色度>10000倍的印染廢水處理後,脫色率可達99%以上,CODCr去除率達75%。國外在新型電極方面研究較多,如:Sb/SnO2、Ti/SnO2、Ti/RnO2、Ti/Pt等電極。
電催化高級氧化技術(Advanced Electro catalysis Oxidation Processes , AEOP) 是最近發展起來的新型AOPs ,因其處理效率高、操作簡便、與環境兼容等優點引起了研究者的注意。它能在常溫常壓下,通過有催化活性的電極反應直接或間接產生輕基自由基, 從而有效降解難生化污染物。陳武等進行了三維電極電化學方法處理印染廢水實驗, COD去除率達74.7% ,色度去除率達93.3%[14]。
3.3.2氧化法
氧化法是使染料分子中發色基團的不飽和雙鍵被氧化斷開,形成分子量較小的有機物或無機物,從而使染料失去發色能力的一種印染廢水處理方法。氧化法主要有:高溫深度氧化法、化學氧化法和光催化氧化降解法等。
高溫深度氧化法主要是焚燒法。
化學氧化法是印染廢水脫色處理的主要方法,其機理是利用氧化劑將染料不飽和的發色基團打破而脫色。Fenton試劑(Fe2+-H2O2)、臭氧、氯氣、次氯酸鈉等是一般採用的氧化劑。常見的有組合法和催化氧化法等。如採用混凝- 二氧化氯組合法的優點在於ClO2氧化能力強,是HClO的9倍多,且無氯氣氧化法處理廢水時可能與水中有機物結合生成氯代有機物(AOX)[15]。
化學氧化法能有效地去除印染廢水中的色度,但不能很好地去除廢水中的COD,對此有人提出了不完全氧化的方法,即只部分氧化,使有機物通過自由基耦合降低水溶性而絮凝去除。陳玉峰[16]等通過實驗發現,電生成Fenton試劑處理實際工業印染廢水,CODCr去除率在80 %以上, 脫色率達到95% ,處理費用1117元/m3,具有很好的實際應用價值和市場前景.盛翼春[17]通過研究發現,採用新型電催化氧化對染料濃度高達0.3g/l的水溶性染料廢水在2分鍾內脫色率高達95%以上。
同時,隨著太陽能技術的發展進步,光催化氧化也越來越受到人們的重視。夏金虹[18]用納米TiO2粉體光催化降解印染廢水,脫色率為96% , CODCr去除率為86%,TiO2催化性能比較穩定,可重復使用。光催化氧化技術具有工藝設備簡單、操作條件易控制、處理成本較低、氧化能力強、無二次污染等突出優點,在有機廢水處理中有著廣闊的應用前景。但懸浮體系的納米TiO2顆粒由於粒徑極為細小,存在著難以回收、容易中毒、不易分散等缺點,需通過先進的負載技術或光化學反應器,甚才會獲得更高催化效率。因此,納米TiO2光催化劑的負載技術對其實現大規模實用化、商品化和工業化具有重大的實際意義,是今後TiO2研究的主要方向[19]。
總之, 氧化法是一種優良的印染廢水脫色方法,但也有其自身的缺憾。如果氧化程度不足, 染料分子的發色基團可能被破壞而脫色, 但其中的COD仍未除盡; 若將染料分子充分氧化, 能量、葯劑量消耗可能會過大, 成本太高, 所以氧化法一般用於氧化- 絮凝或絮凝- 氧化工藝。採用氧化- 絮凝工藝, 目的是通過氧化法將水溶性染料分子變為疏水性或使陽離子染料分子轉變為中性, 陰性分子, 以利絮凝除去。反之, 採用絮凝- 氧化工藝則是將氧化作為後處理步驟, 對印染廢水做深度處理經進一步去除殘余色度及COD[20]。
3.3.3還原法
還原法式使用還原型脫色劑對直接染料廢水進行脫色處理的方法,使用的原料主要是鐵屑。鐵屑是機械加工過程中的廢料, 用於處理印染廢水,不僅成本低廉、操作簡單, 而且能夠獲得以廢治廢的效果。該方法主要基於電化學反應。鐵屑是鐵-碳合金, 浸入廢液後形成無數微小原電池。電極反應產物為Fe2+, H2,OH-, 均具有較高的化學活性, 可有效地脫除廢水中的染料分子。其它還原劑有保險粉(+ 活性炭)、亞硫酸及其鹽。洪俊明等[21]通過鐵屑內電解的強化A/ O MBR 工藝處理印染廢水, 出水的水質中色度的去除率超過90.0 %和COD的去除率達到94.9 %。董永春[22]等採用以含硫還原劑和氫化物引發劑為基礎的穩定雙組分還原反應系統,處理直接染料染色廢水,使之與其中的直接染料發生還原脫色反應,其優點是脫色劑用量少,反應快速,脫色率高。還原法的主要缺點是還原降解產物具有毒性, 必須經過二次處理。如活性炭吸附等, 處理費用增大。
3.3.4高級氧化法
高級氧化法(Advanced Oxidation Processes ,AOPs)脫色被認為是一種很有前途的方法。所謂高級氧化法如UV + H2O2、UV + O3, 因為在氧化過程中產生羥基自由基(·OH), 其強氧化性使染料廢水脫色。經研究發現它對偶氮染料的脫色很有效, 高級氧化反應隨O3和H2O2加入量的增加,其反應速率也隨之增加[23]。 在實際生產中與某些化學輔助劑會提高脫色效果, 而且UV + H2O2方法處理偶氮型活性染料產生的降解產物對環境完全無害。最近的研究發現二氯三嗪基型偶氮類活性染料使用UV + H2O2方法脫色也有很好的效果[24]。
氧化劑O3對絕大多數染料的脫色效果較好, 無二次污染, 引入紫外光(UV) 等可加快氧化和提高脫色率。有學者指出O3/UV 對偶氮染料脫色效果好,UV 的引入促使O3在溶液中產生氧化性強的羥自由基。胡文容[25]等指出, 雖超聲波幾乎不能降解偶氮腫I , 但對O3氧化有明顯的強化作用, 當O3濃度為7107mg/ L , 加80w 超聲波是超聲波協同O3處理偶氮腫的最佳組合, 既可滿足90 %脫色率, 又可節省48%的O3。但是目前用O3處理染料廢水費用較高, 開發新型臭氧發生器並和UV 或超聲波連用以提高效率、降低費用是O3在染料廢水處理中推廣的前提, O3對COD的去除不理想。
高級氧化法的對環境污染極小,效果較好,但有一個嚴重不足之處是處理費用較高, 從而限制了它的廣泛使用。
3.3.5超聲波氧化
超聲波處理印染廢水是基於超聲波能在液體中產生局部高溫、高壓、高剪切力,誘使水分子及染料分子裂解產生活性非常強的氫氧自由基, 對大部分有機污染物有氧化作用並可並促進絮凝;同時,在超聲波作用下傳質加強,超聲空化產生局部高溫高壓,可大大強化氫氧自由基對有機物的氧化速度,提高降解效率。
用超聲波可以強化臭氧氧化處理偶氮類染料廢水,這是因為超聲波空化效應產生高能條件促使臭氧快速分解,產生大量的自由基,從而使氮類染料脫色。張家港市九州精細化工廠用根據超聲波氣振技術設計的FBZ 廢水處理設備處理染料廢水[26],色度平均去除率為97.0 % ,CODCr去除率為90.6% ,總污染負荷削減率為85.9 %。符德學[27]等使用該法處理含鹼性湖藍-5B的印染廢水,COD去除率達90.2%,脫色率達到98.3%。劉靜[28]等的實驗結果表明,超聲波與微電場的協同作用大大提高了脫色率,在最佳條件下處理60min,色度去除率可達96.6%。
3.3.6萃取法
萃取是採用與水互不相溶,但能很好溶解污染物的萃取劑,使其與廢水充分混合接觸後,利用污染物在水中和溶劑中不同的分配比分離和提取污染物,從而凈化廢水。廢水中的酸性染料可用混合胺進行萃取回收,陰離子染料可用離子對萃取法用長碳鏈去除,萃取劑可用氫氧化鈉再生。由鄰苯二甲酸與間苯二酚為原料制備熒光黃的生產廢水可用N235/煤油系統萃取,其COD去除率可達91-98%,色度去除率為99.8%[29]。
離子對萃取法是一種新的廢水脫色方法。該法是將染色殘液與一非水溶性有機溶劑一同振盪,當兩相分離時,水相中便呈現無色,染料聚積於上層有機相中。只要燃料含有至少一個磺酸基團或者是染料必須是酸性的,那麼任何深濃的染色廢液均可用此法脫色。該有機相可反復使用數次[30]。離子對萃取法的優點有:液/液相分離工藝簡單,能耗低。對於活性染料來說,僅鈉鹽和鈣鹽形成的水解產物需處理。萃取劑無需再生就可重復使用[31]。
3.4 生物處理方法
生物法是利用微生物酶來氧化或還原染料分子,破壞其不飽和鍵及發色基團,從而達到處理目的的一種印染廢水處理方法。生物法目前仍是國內外主要的印染廢水處理方法。
生物法的缺點在於微生物對營養物質、PH、溫度等條件有一定的要求,難以適應印染廢水水質波動大、染料種類多、毒性高的特點;同時還存在佔地面積大、管理復雜、對色度和COD去除率低等缺點。生物法處理印染廢水的脫色率和COD去除率不高,一般不適宜單獨應用,可作為預處理或深度處理。
3.4.1傳統生物處理技術
生物法處理印染廢水中,以活性污泥法最為普遍,這是因為活性污泥法具有可分解大量有機物、能去除部分色素、可調節pH值、運轉效率高且費用低等優點,但對色度的去除往往不夠理想,因此組合式生物處理技術是目前印染廢水的常用方法。我國生物法中以表面活性污泥法和接觸氧化法佔多數,此外,鼓風曝氣活性污泥法、射流曝氣活性污泥法、生物轉盤法等也有應用,生物流化床尚處於試驗性應用階段。
在印染廢水處理中,厭氧- 好氧工藝具有的這種獨特降解機理引起國內的廣泛關注,並得到了深入的研究和應用,取得了明顯的效果[32]。婁金生等在印染廢水的處理過程中採用了厭氧- 好氧工藝,取得了良好效果,COD總去除率大於90 % ,脫色率大於95%。
3.4.2微生物強化處理技術
隨著紡織工業新產品和新技術的開發,印染廢水中水溶性染料、活性染料和化學漿料的數量和種類的不斷增加,從而導致印染廢水可生物降解性下降,如大量的聚乙烯醇(PVA)等,因此選育及應用優化脫色菌和PVA降解菌開始引起人們的關注。選育和培養出各種優良脫色菌株或菌群是生物法一個重要的發展方向。白腐真菌不但對活性艷紅X3B染料有較好的脫色作用,而且對難處理的成分復雜的實際染料廢水也有較好的降解作用,能有效去除印染廢水的COD和BOD5。雖然不能徹底生化降解染料廢水,但給後續的深度處理帶來極大方便[33]。
黃建岷[34]在實驗中採用富集法分離菌株,所得脫色菌處理印染廢水有明顯的脫色效果,脫色率可達70 %以上。與活性炭吸附脫色相比差異不大,證明利用微生物處理印染廢水的色度問題是可行的, 但在菌種篩選方面仍有大量工作可做。
3.4.3膜生物反應器處理技術
膜生物反應器處理技術作為一種新型的污水處理工藝,是傳統活性污泥法和膜分離技術的有機結合,可通過膜片提高某些專性菌的濃度和活性,還可以截留許多分解速度較慢的大分子難降解物質,通過延長其停留時間而提高對它的降解效率。但由於膜易堵塞且製造費用較高,對膜技術在水處理領域全面推廣產生一定阻力。不過,隨著材料科學的發展、膜製造技術的進步、膜質量的提高、膜製造成本的降低以及工藝的改進,膜生物反應器的應用范圍將越來越廣。
3.4.4生物酶脫色技術
一些使用合適的厭氧和嗜氧的聯合生物處理可提高染料的降解性, 但是在厭氧條件下, 偶氮還原酶通常將偶氮染料分解為相應的胺類, 其中許多會致低能或致癌,而且偶氮還原酶具有強專一性, 只分解被選擇染料的偶氮鍵。與此相反,苯氧化酶——過氧化木質素酶(木質素酶, LiP) , 過氧化錳酶(MnP) , 和漆酶——對芳香環沒有強的專一性, 因此, 有可能降解各種不同的芳香化合物。這些酶制劑可有效地使許多結構不同的染料脫色。初始反應速率與制劑中每一個酶(漆酶、LiP 和MnP) 都有關系。一些染料添加劑可顯著降低脫色速率。因此, 在評價新的酶及其處理工藝時, 必須考慮染色助劑對酶活性的影響。今後研究工作主要集中於已選擇出的酶的固定化以便為酶脫色的工業應用打下基礎[35]。
4. 發展前景
各種脫色方法比較分析,可以看出每種處理方法從經濟性,技術性,對環境影響和實用性都有一定的缺陷, 氣吹、混凝、吸附、過濾等一般具有設備簡單、操作簡便和工藝成熟等優點,但是這類處理方法通常是將有機物從液相轉移到固相或氣相,不僅沒有完全消除有機污染物和消耗化學葯劑,而且造成廢物堆積和二次污染。吸附脫色具有隻吸附染料, 但不破壞其結構的特點, 但目前使用的吸附劑往往存在吸附量不夠, 或再生不容易的缺點。高級氧化法脫色如光氧化、超臨界氧化、濕式氧化、低溫等離子體化學法被認為是一種很有前途的方法, 但其昂貴的價格成為制約其廣泛應用的重要原因。一些傳統的氧化方法如NaClO、H2O2、臭氧和紫外氧化等證明對廢水脫色並不有效, 採用強化物理化學與酶催化降解的方法可能將有非常廣闊的應用前景。因此在實際工程中應該按照具體條件和要求,合理選擇工藝組合,以便取得最佳的效果。
Ⅳ 哪能找到生活污水水質標准
生活污水水質標准歸入污水綜合排放標准
污水綜合排放標准
GB 8978-1996
批准日期 1996-10-04 實施日期 1998-01-01
中華人民共和國國家標准
GB 8978-1996
代替 GB 8978-88 污水綜合排放標准
Integrated wastewater discharge standard
為貫徹《中華人民共和國環境保護法》、《中華人民共和國水污染防治法》和《中華人民共和國海洋環境保護法》,控制水污染,保護江河、湖泊、運河、渠道、水庫和海洋等地面水以及地下水水質的良好狀態,保障人體健康,維護生態平衡,促進國民經濟和城鄉建設的發展,特製定本標准。
1 主題內容與適用范圍
1.1 主題內容
本標准按照污水排放去向,分年限規定了69種水污染物最高允許排放濃度及部分行業最高允許排水量。
1.2 適用范圍
本標准適用於現有單位水污染物的排放管理,以及建設項目的環境影響評價、建設項目環境保護設施設計、竣工驗收及其投產後的排放管理。
按照國家綜合排放標准與國家行業排放標准不交叉執行的原則,造紙工業執行《造紙工業水污染物排放標准(GB3544-92)》,船舶執行《船舶污染物排放標准(GB3552-83)》,船舶工業執行《船舶工業污染物排放標准(GB4286-84)》,海洋石油開發工業執行《海洋石油開發工業含油污水排放標准(GB4914-85)》,紡織染整工業執行《紡織染整工業水污染物排放標准(GB4287-92)》,肉類加工工業執行《肉類加工工業水污染物排放標准(GB13457-92)》,合成氨工業執行《合成氨工業水污染物排放標准(GB13458-92)》,鋼鐵工業執行《鋼鐵工業水污染物排放標准(GB13456-92)》,航天推進劑使用執行《航天推進劑水污染物排放標准(GB14374-93)》,兵器工業執行《兵器工業水污染物排放標准(GB14470.1~14470.3-93和GB4274~4279-84)》,磷肥工業執行《磷肥工業水污染物排放標准(GB15580-95)》,燒鹼、聚氯乙烯工業執行《燒鹼、聚氯乙烯工業水污染物排放標准(GB15581-95)》,其他水污染物排放均執行本標准。
1.3 本標准頒布後,新增加國家行業水污染物排放標準的行業,按其適用范圍執行相應的國家水污染物行業標准,不再執行本標准。
2 引用標准
下列標准所包含的條文,通過在本標准中引用而構成為本標準的條文。
GB3097-82 海水水質標准
GB3838-88 地面水環境質量標准
GB8703-88 地面水環境質量標准
GB8703-88 輻射防護規定
3 定義
3.1 污水:指在生產與生活活動中排放的水的總稱。
3.2 排水量:指在生產過程中直接用於工藝生產的水的排放量。不包括間接冷卻水、廠區鍋爐、電站排水。
3.3 一切排污單位:指本標准適用范圍所包括的一切排污單位。
3.4 其他排污單位:指在某一控制項目中,除所列行業外的一切排污單位。
4 技術內容
4.1 標准分級
4.1.1 排入GB3838Ⅲ類水域(劃定的保護區和游泳區除外)和排入GB3097中二類海域的污水,執行一級標准。
4.1.2 排入GB 3838中Ⅳ、Ⅴ類水域和排入GB3097中三類海域的污水,執行二級標准。
4.1.3 排入設置二級污水處理廠的城鎮排水系統的污水,執行三級標准。
4.1.4 排入未設置二級污水處理廠的城鎮排水系統的污水,必須根據排水系統出水受納水域的功能要求,分別執行4.1.1和4.1.2的規定。
4.1.5 GB3838中Ⅰ、Ⅱ類水域和Ⅲ類水域中劃定的保護區,GB3097中一類海域,禁止新建排污口,現有排污口應按水體功能要求,實行污染物總量控制,以保證受納水體水質符合規定用途的水質標准。
4.2 標准值
4.2.1 本標准將排放的污染物按其性質及控制方式分為二類。
4.2.1.1 第一類污染物,不分行業和污水排放方式,也不分受納水體的功能類別,一律在車間或車間處理設施排放口采樣,其最高允許排放濃度必須達到本標准要求(采礦行業的尾礦壩出水口不得視為車間排放口)。
4.2.1.2 第二類污染物,在排污單位排放口采樣,其最高允許排放濃度必須達到本標准要求。
4.2.2 本標准按年限規定了第一類污染物和第二類污染物最高允許排放濃度及部分行業最高允許排水量,分別為:
4.2.2.1 1997年12月31日之前建設(包括改、擴建)的單位,水污染物的排放必須同時執行表1、表2、表3的規定。
4.2.2.2 1998年1月1日起建設(包括改、擴建)的單位,水污染物的排放必須同時執行表1、表4、表5的規定。
4.2.2.3 建設(包括改、擴建)單位的建設時間,以環境影響評價報告書(表)批准日期為准劃分。
4.3 其他規定
4.3.1 同一排放口排放兩種或兩種以上不同類別的污水,且每種污水的排放標准又不同時,其混合污水的排放標准按附錄A計算。
4.3.2 工業污水污染物的最高允許排放負荷量按附錄B計算。
4.3.3 污染物最高允許年排放總量按附錄C計算。4.3.4 對於排放含有放射性物質的污水,除執行本標准外,還須符合GB8703-88《輻射防護規定》。
表1 第一類污染物最高允許排放濃度 單位:mg/l
序號 污染物 最高允許排放濃度
1 總汞 0.05
2 烷基汞 不得檢出
3 總鎘 0.1
4 總鉻 1.5
5 六價鉻 0.5
6 總砷 0.5
7 總鉛 1.0
8 總鎳 1.0
9 苯並(a)芘 0.00003
10 總鈹 0.005
11 總銀 0.5
12 總α放射性 1Bq/L
13 總β放射性 10Bq/L
表2 第二類污染物最高允許排放濃度
(1997年12月31日之前建設的單位)
單位:mg/L
序號 污染物 適用范圍 一級標准 二級標准 三級標准
1 pH 一切排污單位 6~9 6~9 6~9
2 色度
(稀釋倍數) 染料工業 50 180 -
其他排污單位 50 80 -
3 懸浮物
(SS) 采礦、選礦、選煤工業 100 300 -
脈金選礦 100 500 -
邊遠地區砂金選礦 100 800 -
城鎮二級污水處理廠 20 30 -
其他排污單位 70 200 400
4 五日生化需氧量
(BOD5) 甘蔗製糖、薴麻脫膠、濕法纖維板工業 30 100 600
甜菜製糖、酒精、味精、皮革、化纖漿粕工業 30 150 600
城鎮二級污水處理廠 20 30 -
其他排污單位 30 60 300
5 化學需氧量
(COD) 甜菜製糖、焦化、合成脂肪酸、濕法纖維板、染料、洗毛、有機磷農葯工業 100 200 1000
味精、酒精、醫葯原料葯、生物制葯、薴麻脫膠、皮革、化纖漿粕工業 100 300 1000
石油化工工業(包括石油煉制) 100 150 500
城鎮二級污水處理廠 60 120 -
其他排污單位 100 150 500
6 石油類 一切排污單位 10 10 30
7 動植物油 一切排污單位 20 20 100
8 揮發酚 一切排污單位 0.5 0.5 2.0
9 總氰化合物 電影洗片(鐵氰化合物) 0.5 5.0 5.0
其他排污單位 0.5 0.5 1.0
10 硫化物 一切排污單位 1.0 1.0 2.0
11 氨氮 醫葯原料葯、染料、石油化工工業 15 50 -
其他排污單位 15 25 -
12 氟化物 黃磷工業 10 20 20
低氟地區(水體含氟量<0.5mg/L) 10 20 30
其它排污單位 10 10 20
13 磷酸鹽(以P計) 一切排污單位 0.5 1.0 -
14 甲醛 一切排污單位 1.0 2.0 5.0
15 苯胺類 一切排污單位 1.0 2.0 5.0
16 硝基苯類 一切排污單位 2.0 3.0 5.0
17 陰離子表面活性劑(LAS) 合成洗滌劑工業 5.0 15 20
其他排污單位 5.0 10 20
18 總銅 一切排污單位 0.5 1.0 2.0
19 總鋅 一切排污單位 2.0 5.0 5.0
20 總錳 合成脂肪酸工業 2.0 5.0 5.0
其他排污單位 2.0 2.0 5.0
21 彩色顯影劑 電影洗片 2.0 3.0 5.0
22 顯影劑及氧化物總量 電影洗片 3.0 6.0 6.0
23 元素磷 一切排污單位 0.1 0.3 0.3
24 有機磷農葯(以P計) 一切排污單位 不得檢出 0.5 0.5
25 糞大腸菌群數 醫院*、獸醫院及醫療機構含病原體污水 500個/L 1000個/L 5000個/L
傳染病、結核病醫院污水 100個/L 500個/L 1000個/L
26 總余氯
(採用氯化消毒的醫院污水) 醫院*、獸醫院及醫療機構含病原體污水 <0.5** >3(接觸時間 ≥1h) >2(接觸時間≥1h)
傳染病、結核病醫院污水 <0.5** >6.5(接觸時間≥1.5h >5(接觸時間≥1.5h)
註: * 指50個床位以上的醫院。
** 加氯消毒後須進行脫氯處理,達到本標准
表3 部分行業最高允許排水量
(1997年12月31日之前建設的單位)
序號 行業類別 最高允許排水量或
最低允許水重復利用率
1 礦 山 工 業 有色金屬系統選礦 水重復利用率75%
其他礦山工業采礦、選礦、選煤等 水重復利用率90%(選煤)
脈
金
選
礦 重選 16.0m3/t(礦石)
浮選 9.0m3/t(礦石)
氰化 8.0m3/t(礦石)
碳漿 8.0m3/t(礦石)
2 焦化企業(煤氣廠) 1.2m3/t(焦炭)
3 有色金屬冶煉及金屬加工 水重復利用率80%
4 石油煉制工業(不包括直排水煉油廠)
加工深度分類:
A. 燃料型煉油;
B. 燃料+潤滑油型煉油廠;
C. 燃料+潤滑油型+煉油化工型煉油廠; (包括加工高含硫原油頁岸油和石油添加劑生產基地的煉油廠), A >500萬t,1.0m3/t(原油)
250~500萬t,1.2m3/t(原油)
<250萬t,1.5m3/t(原油)
B >500萬t,1.5m3/t(原油)
250~500萬t,2.0m3/t(原油)
<250萬t,2.0m3/t(原油),
C >500萬t,2.0m3/t(原油)
250~500萬t,2.5m3/t(原油)
<250萬t,2.5m3/t(原油)
5 合成洗滌劑工業 氯化法生產烷基苯 200.0m3/t(烷基苯)
裂解法生產烷基苯 70.0m3/t(烷基苯)
烷基苯生產合成洗滌劑 10.0m3/t(產品)
6 合成脂肪酸工業 200.0m3/t(產品)
7 濕法生產纖維板工業 30.0m3/t(板)
8 製糖工業 某蔗製糖 10.0m3/t(甘蔗)
甜菜製糖 4.0m3/t(甜菜)
9 皮革工業 豬鹽濕皮 60.0m3/t(原皮)
牛干皮 100.0m3/t(原皮)
羊干皮 150.0m3/t(原皮)
10 發
酵
釀
造
工
業 酒精工業 以玉米為原料 150.0m3/t(酒精)
以薯類為原料 100m3/t(酒精)
以糖蜜為原料 80.0m3/t(酒)
味精工業 600.0m3/t(味精)
啤酒工業(排水量不包括麥芽水部分) 16.0m3/t(啤酒)
11 鉻鹽工業 5.0m3/t(產品)
12 硫酸工業(水洗法) 15.0m3/t(硫酸)
13 薴麻脫膠工業 500m3/t(原麻)或750m3/t(精幹麻)
14 化纖漿粕 本色: 150m3/t(漿)漂白: 240m3/t(漿)
15 粘膠纖維工業(單純纖維) 短纖維
(棉型中長纖維、毛型中長纖維) 300m3/t(纖維)
長纖維 800m3/t(纖維)
16 鐵路貨車洗刷 5.0m3/輛
17 電影洗片 5m3/1000m(35mm的膠片)
18 石油瀝青工業 冷卻池的水循環利用率95%
表4 第二類污染物最高允許排放濃度
(1998年1月1日後建設的單位)
單位:mg/L
序號
污染物
適用范圍 一級標准
二級標准
三級標准
1 pH
一切排污單位 6~9
6~9
6~9
2 色度(稀釋倍數)
一切排污單位 50
80
-
3 懸浮物
(SS)
采礦、選礦、選煤工業 70
300
-
脈金選礦 70
400
-
邊遠地區砂金選礦 70
800
-
城鎮二級污水處理廠 20
30
-
其他排污單位 70
150
400
4
五日生化需氧量
(BOD5)
甘蔗製糖、薴麻脫膠、濕法纖維板、染料、洗毛工業 20
60
600
甜菜製糖、酒精、味精、皮革、化纖漿粕工業 20
100
600
城鎮二級污水處理廠 20
30
-
其他排污單位 20
30
300
5
化學需氧量(COD)
甜菜製糖、合成脂肪酸、濕法纖維板、染料、洗毛、有機磷農葯工業 100
200
1000
味精、酒精、醫葯原料葯、生物制葯、薴麻脫膠、皮革、化纖漿粕工業 100
300
1000
石油化工工業(包括石油煉制) 60
120
-
城鎮二級污水處理廠 60
120
500
其他排污單位 100
150
500
6
石油類
一切排污單位 5
10
20
7
動植物油
一切排污單位 10
15
100
8
揮發酚
一切排污單位 0.5
0.5
2.0
9
總氰化合物
一切排污單位 0.5
0.5
1.0
10
硫化物
一切排污單位 1.0
1.0
1.0
11
氨氮 醫葯原料葯、染料、石油化工工業 15
50
-
其它排污單位 15
25
-
12
氟化物
黃磷工業 10
15
20
低氟地區
(水體含氟量<0.5mg/L) 10
20
30
其它排污單位 10
10
20
13
磷酸鹽(以P計)
一切排污單位 0.5
1.0
-
14
甲醛
一切排污單位 1.0
2.0
5.0
15
苯胺類
一切排污單位 1.0
2.0
5.0
16
硝基苯類
一切排污單位 2.0
3.0
5.0
17
陰離子表面活性劑(LAS)
一切排污單位 5.0
10
20
18
總銅
一切排污單位 0.5
1.0
2.0
19
總鋅
一切排污單位 2.0
5.0
5.0
20
總錳
合成脂肪酸工業 2.0
5.0
5.0
其他排污單位 2.0
2.0
5.0
21
彩色顯影劑
電影洗片 1.0
2.0
3.0
22
顯影劑及氧化物總量
電影洗片 3.0
3.0
6.0
23
元素磷
一切排污單位 0.1
0.1
0.3
24
有機磷農葯(以P計)
一切排污單位 不得檢出
0.5
0.5
25
樂果
一切排污單位 不得檢出
1.0
2.0
26
對硫磷
一切排污單位 不得檢出
1.0
2.0
27
甲基對硫磷
一切排污單位 不得檢出
1.0
2.0
28
馬拉硫磷
一切排污單位 不得檢出
5.0
10
29
五氯酚及五氯酚鈉(以五氯酚計)
一切排污單位 5.0
8.0
10
30
可吸附有機鹵化物(AOX)(以Cl計)
一切排污單位 1.0
5.0
8.0
31
三氯甲烷
一切排污單位 0.3
0.6
1.0
32
四氯化碳
一切排污單位 0.03
0.06
0.5
33
三氯乙烯
一切排污單位 0.3
0.6
1.0
34
四氯乙烯
一切排污單位 0.1
0.2
0.5
35
苯
一切排污單位 0.1
0.2
0.5
36
甲苯
一切排污單位 0.1
0.2
0.5
37
乙苯
一切排污單位 0.4
0.6
1.0
38
鄰-二甲苯
一切排污單位 0.4
0.6
1.0
39
對-二甲苯
一切排污單位 0.4
0.6
1.0
40
間-二甲苯
一切排污單位 0.4
0.6
1.0
41
氯苯
一切排污單位 0.2
0.4
1.0
42
鄰-二氯苯
一切排污單位 0.4
0.6
1.0
43
對-二氯苯
一切排污單位 0.4
0.6
1.0
44
對-硝基氯苯
一切排污單位 0.5
1.0
5.0
45
2,4-二硝基氯苯
一切排污單位 0.5
1.0
5.0
46
苯酚
一切排污單位 0.3
0.4
1.0
47
間-甲酚
一切排污單位 0.1
0.2
0.5
48
2,4-二氯酚
一切排污單位 0.6
0.8
1.0
49
2,4,6-三氯酚
一切排污單位 0.6
0.8
1.0
50
鄰苯二甲酸二丁脂
一切排污單位 0.2
0.4
2.0
51
鄰苯二甲酸二辛脂
一切排污單位 0.3
0.6
2.0
52
丙烯腈
一切排污單位 2.0
5.0
5.0
53
總硒
一切排污單位 0.1
0.2
0.5
54 糞大腸菌群數 醫院*、獸醫院及醫療機構含病原體污水 500個/L
1000個/L
5000個/L
傳染病、結核病醫院污水 100個/L
500個/L
1000個/L
55
總余氯(採用氯化消毒的醫院污水)
醫院*、獸醫院及醫療機構含病原體污水 <0.5**
>3(接觸時間 ≥1h)
>2(接觸時間 ≥1h)
傳染病、結核病醫院污水 <0.5**
>6.5(接觸時間
≥1.5h)
>5(接觸時間
≥1.5h)
56
總有機碳
(TOC)
合成脂肪酸工業 20
40
-
薴麻脫膠工業 20
60
-
其他排污單位 20
30
-
註:其他排污單位:指除在該控制項目中所列行業以外的一切排污單位。
* 指50個床位以上的醫院。
** 加氯消毒後須進行脫氯處理,達到本標准。
表5 部分行業最高允許排水量
(1998年1月1日後建設的單位)
序號
行業類別 最高允許排水量或最低允許排水重復利用率
1
礦山工業 有色金屬系統選礦 水重復利用率75%
其他礦山工業采礦、選礦、選煤等 水重復利用率90%(選煤)
脈
金
選
礦
重選 16.0m3/t(礦石)
浮選 9.0m3/t(礦石)
氰化 8.0m3/t(礦石)
碳漿 8.0m3/t(礦石)
2
焦化企業(煤氣廠) 1.2m3/t(焦炭)
3
有色金屬冶煉及金屬加工 水重復利用率80%
4
石油煉制工業(不包括直排水煉油廠)
加工深度分類:
A。燃料型煉油廠
B。燃料+潤滑油型煉油廠
C。燃料+潤滑油型+煉油化工型煉油廠 (包括加工高含硫原油頁岩油和石油添加劑生產基地的煉油廠) A
>500萬t,1.0m3/t(原油)
250~500萬t,,1.2m3/t(原油)
<250萬t,,1.5m3/t(原油)
B
>500萬t,1.5m3/t(原油)
250~500萬t,,2.0m3/t(原油)
<250萬t,,2.0m3/t(原油)
C
>500萬t,2.0m3/t(原油)
250~500萬t,,2.5 m3/t(原油)
<250萬t,,2.5m3/t(原油)
5
合成洗滌劑工業
氯化法生產烷基苯 200.0 m3/t (烷基苯)
裂解法生產烷基苯 70.0 m3/t (烷基苯)
烷基苯生產合成洗滌劑 10.0 m3/t(產品)
6
合成脂肪酸工業 200.0m3/t(產品)
7
濕法生產纖維板工業 30.0 m3/t (板)
8 製糖工業 甘蔗製糖 10.0 m3/t
甜菜製糖 4.0 m3/t
9
皮革工業 豬鹽濕皮 60.0 m3/t
牛干皮 100.0 m3/t
羊干皮 150.0 m3/t
10 發酵、
釀造
工業 酒精工業
以玉米為原料 100.0 m3/t
以薯類為原料 80.0 m3/t
以糖蜜為原料 70.0 m3/t
味精工業 600.0 m3/t
啤酒行業
(排水量不包括麥芽水部分) 16.0 m3/t
11
鉻鹽工業 5.0 m3/t (產品)
12
硫酸工業(水洗法) 15.0 m3/t (硫酸)
13
薴麻脫膠工業 500 m3/t (原麻)
750 m3/t (精幹麻)
14
粘膠纖維工業
單純纖維 短纖維
(棉型中長纖維、毛型中長纖維) 300.0 m3/t (纖維)
長纖維 800.0 m3/t(纖維)
15
化纖漿粕 本色: 150 m3/t(漿);
漂白:240 m3/t(漿)
16
制
葯
工
業
醫
葯
原
料
葯
青黴素 4700m3/t(氰黴素)
鏈黴素 1450m3/t(鏈黴素)
土黴素 1300m3/t(土黴素)
四環素 1900m3/t(四環素)
潔黴素 9200m3/t(潔黴素)
金黴素 3000m3/t(金黴素)
慶大黴素 20400m3/t(慶大黴素)
維生素C 1200m3/t(維生素C)
氯黴素 2700m3/t(氯黴素)
新諾明 2000m3/t(新諾明)
維生素B1 3400m3/t(維生素B1)
安乃近 180m3/t(安乃近)
非那西汀 750m3/t(非那西汀)
呋喃唑酮 2400m3/t(呋喃唑酮)
咖啡因 1200m3/t(咖啡因)
17
有
機
磷
農
葯
工
業
樂果** 700m3/t(產品)
甲基對硫磷(水相法)** 300m3/t(產品)
對硫磷(P2S5法)** 500m3/t(產品)
對硫磷(PSCl3法)** 550m3/t(產品)
敵敵畏(敵百蟲鹼解法) 200m3/t(產品)
敵百蟲 40m3/t(產品)
(不包括三氯乙醛生產廢水)
馬拉硫磷 700m3/t(產品)
18
除
草
劑
工
業 除草醚 5m3/t(產品)
五氯酚鈉 2m3/t(產品)
五氯酚 4m3/t(產品)
2甲4氯 14m3/t(產品)
2,4-D 4m3/t(產品)
丁草胺 4.5m3/t(產品)
綠麥隆(以Fe粉還原) 2m3/t(產品)
綠麥隆(以Na2S還原) 3m3/t(產品)
19 火力發電工業 3.5m3(MW·h)
20 鐵路貨車洗刷 5.0m3/輛
21 電影洗片 5m3/1000m(35mm膠片)
22 石油瀝青工業 冷卻池的水循環利用率95%
註:
* 產品按100%濃度計。
** 不包括P2S5、PSCl3、PC13原料生產廢水
Ⅵ 次氯酸鈣在處理生活污水時起的作用
<u>1.超濾法 由於漂度廢液中含有高分子量部分,不易為微生物所分解.因此考慮在生物處理前進行超濾處理。超濾可以去處E段廢水中的有機氯化物或AOX的50%-90%.但低分子量的氯苯酚類化合物是AOX中最毒組分,超濾的效率就很低,但接著進行生物處理則可除去62%-90%的AOX。
2. 化學沉降法 鐵鹽或鋁鹽能使有機氯化物沉降而得以除去AOX。使用聚乙烯亞胺(Polyethyleneiminc)也能使氯化和鹼處理階段的有機物沉降下來,氯化段的AOX去除率為54%-84%。鹼處理階段為50%-73。
3. 氧化法
1) 超聲氧化 在曝氣時,同時進行超聲處理1h,可除去10%-60%的一氯苯酚、二氯苯酚、三氯苯酚等低分子量的氯化有機物。
2)臭氧、紫外線照射和粉狀活性炭單獨或結合進行氧化。 單獨使用活性炭處理C段廢水、E段廢水和混合廢水,其低分子量TOX的去除率分別為32.2%--43.7%、 18.7%-78.7%和10.2%-53.0%,總TOX的去除率分別為:82%-86%、47%-48%和73%-74%,去除率的范圍與所用粉狀活性炭的選擇有關。單獨用紫外線照射的氧化可以叫光解,光解主要是高分子量的AOX在UV作用下分解出C1-。
3)氧氣氧化 E段漂白廢水用氧氣氧化可以顯著的去除TOCL和色質,氯化木素的降解主要是在氧處理初期最強烈,這對TOCL和色質的除去是起著重要作用的。
4.鹼性水解法 鹼性水解法是利用各種鹼性化合物與氯化木素反應。促進廢液中AOX降低的方法,由於鹼性化合物的不同或不同的組合。其降低廢液中的AOX能力也不同,通常用NaOH/Ca(OH)2或用Na2S、Na0H和Ca(0H)2組合降低AOX.在處理中,處理時間、溫度、PH值、濃度對其效果有影響,一般PH值一定,反應時間長好;反應時間一定,PH值高.混合液中AOX去除率高。
5.非傳統的生物降解法 廢液非傳統的生物降解法。目前基本上是用真菌,特別是分解木素的真菌,常用白腐茵,它能降解氯化木素,但需要加碳源以產生過氧化物酶,從而降解木素的PH值、營養鹽、溶解氧、接觸停留時間都影響其效果。
6. 電解處理法 電解處理法是利用不同組成的電極進行不同時間的電解以獲得所需的AOX去除率、AOX去除率最高時可達99%以上,但這種情況能耗高、得不償失。</u>
Ⅶ 國家廢氣,廢物,廢水的最新排放標准
污水綜合排放標准污水綜合排放標准
GB 8978-1996
批准日期1996-10-04 實施日期1998-01-01
中華人民共和國國家標准
GB 8978-1996
代替 GB 8978-88 污水綜合排放標准
Integrated wastewater discharge standard
為貫徹《中華人民共和國環境保護法》、《中華人民共和國水污染防治法》和《中華人民共和國海洋環境保護法》,控制水污染,保護江河、湖泊、運河、渠道、水庫和海洋等地面水以及地下水水質的良好狀態,保障人體健康,維護生態平衡,促進國民經濟和城鄉建設的發展,特製定本標准。
1 主題內容與適用范圍
1.1 主題內容
本標准按照污水排放去向,分年限規定了69種水污染物最高允許排放濃度及部分行業最高允許排水量。
1.2 適用范圍
本標准適用於現有單位水污染物的排放管理,以及建設項目的環境影響評價、建設項目環境保護設施設計、竣工驗收及其投產後的排放管理。
按照國家綜合排放標准與國家行業排放標准不交叉執行的原則,造紙工業執行《造紙工業水污染物排放標准(GB3544-92)》,船舶執行《船舶污染物排放標准(GB3552-83)》,船舶工業執行《船舶工業污染物排放標准(GB4286-84)》,海洋石油開發工業執行《海洋石油開發工業含油污水排放標准(GB4914-85)》,紡織染整工業執行《紡織染整工業水污染物排放標准(GB4287-92)》,肉類加工工業執行《肉類加工工業水污染物排放標准(GB13457-92)》,合成氨工業執行《合成氨工業水污染物排放標准(GB13458-92)》,鋼鐵工業執行《鋼鐵工業水污染物排放標准(GB13456-92)》,航天推進劑使用執行《航天推進劑水污染物排放標准(GB14374-93)》,兵器工業執行《兵器工業水污染物排放標准(GB14470.1~14470.3-93和GB4274~4279-84)》,磷肥工業執行《磷肥工業水污染物排放標准(GB15580-95)》,燒鹼、聚氯乙烯工業執行《燒鹼、聚氯乙烯工業水污染物排放標准(GB15581-95)》,其他水污染物排放均執行本標准。
1.3 本標准頒布後,新增加國家行業水污染物排放標準的行業,按其適用范圍執行相應的國家水污染物行業標准,不再執行本標准。
2 引用標准
下列標准所包含的條文,通過在本標准中引用而構成為本標準的條文。
GB3097-82 海水水質標准
GB3838-88 地面水環境質量標准
GB8703-88 地面水環境質量標准
GB8703-88 輻射防護規定
3 定義
3.1 污水:指在生產與生活活動中排放的水的總稱。
3.2 排水量:指在生產過程中直接用於工藝生產的水的排放量。不包括間接冷卻水、廠區鍋爐、電站排水。
3.3 一切排污單位:指本標准適用范圍所包括的一切排污單位。
3.4 其他排污單位:指在某一控制項目中,除所列行業外的一切排污單位。
4 技術內容
4.1 標准分級
4.1.1 排入GB3838Ⅲ類水域(劃定的保護區和游泳區除外)和排入GB3097中二類海域的污水,執行一級標准。
4.1.2 排入GB 3838中Ⅳ、Ⅴ類水域和排入GB3097中三類海域的污水,執行二級標准。
4.1.3 排入設置二級污水處理廠的城鎮排水系統的污水,執行三級標准。
4.1.4 排入未設置二級污水處理廠的城鎮排水系統的污水,必須根據排水系統出水受納水域的功能要求,分別執行4.1.1和4.1.2的規定。
4.1.5 GB3838中Ⅰ、Ⅱ類水域和Ⅲ類水域中劃定的保護區,GB3097中一類海域,禁止新建排污口,現有排污口應按水體功能要求,實行污染物總量控制,以保證受納水體水質符合規定用途的水質標准。
4.2 標准值
4.2.1 本標准將排放的污染物按其性質及控制方式分為二類。
4.2.1.1 第一類污染物,不分行業和污水排放方式,也不分受納水體的功能類別,一律在車間或車間處理設施排放口采樣,其最高允許排放濃度必須達到本標准要求(采礦行業的尾礦壩出水口不得視為車間排放口)。
4.2.1.2 第二類污染物,在排污單位排放口采樣,其最高允許排放濃度必須達到本標准要求。
4.2.2 本標准按年限規定了第一類污染物和第二類污染物最高允許排放濃度及部分行業最高允許排水量,分別為:
4.2.2.1 1997年12月31日之前建設(包括改、擴建)的單位,水污染物的排放必須同時執行表1、表2、表3的規定。
4.2.2.2 1998年1月1日起建設(包括改、擴建)的單位,水污染物的排放必須同時執行表1、表4、表5的規定。
4.2.2.3 建設(包括改、擴建)單位的建設時間,以環境影響評價報告書(表)批准日期為准劃分。
4.3 其他規定
4.3.1 同一排放口排放兩種或兩種以上不同類別的污水,且每種污水的排放標准又不同時,其混合污水的排放標准按附錄A計算。
4.3.2 工業污水污染物的最高允許排放負荷量按附錄B計算。
4.3.3 污染物最高允許年排放總量按附錄C計算。4.3.4 對於排放含有放射性物質的污水,除執行本標准外,還須符合GB8703-88《輻射防護規定》。
表1 第一類污染物最高允許排放濃度 單位:mg/l
序號 污染物 最高允許排放濃度
1 總汞 0.05
2 烷基汞 不得檢出
3 總鎘 0.1
4 總鉻 1.5
5 六價鉻 0.5
6 總砷 0.5
7 總鉛 1.0
8 總鎳 1.0
9 苯並(a)芘 0.00003
10 總鈹 0.005
11 總銀 0.5
12 總α放射性 1Bq/L
13 總β放射性 10Bq/L
表2 第二類污染物最高允許排放濃度
(1997年12月31日之前建設的單位)
單位:mg/L
序號 污染物 適用范圍 一級標准 二級標准 三級標准
1 pH 一切排污單位 6~9 6~9 6~9
2 色度
(稀釋倍數) 染料工業 50 180 -
其他排污單位 50 80 -
3 懸浮物
(SS) 采礦、選礦、選煤工業 100 300 -
脈金選礦 100 500 -
邊遠地區砂金選礦 100 800 -
城鎮二級污水處理廠 20 30 -
其他排污單位 70 200 400
4 五日生化需氧量
(BOD5) 甘蔗製糖、薴麻脫膠、濕法纖維板工業 30 100 600
甜菜製糖、酒精、味精、皮革、化纖漿粕工業 30 150 600
城鎮二級污水處理廠 20 30 -
其他排污單位 30 60 300
5 化學需氧量
(COD) 甜菜製糖、焦化、合成脂肪酸、濕法纖維板、染料、洗毛、有機磷農葯工業 100 200 1000
味精、酒精、醫葯原料葯、生物制葯、薴麻脫膠、皮革、化纖漿粕工業 100 300 1000
石油化工工業(包括石油煉制) 100 150 500
城鎮二級污水處理廠 60 120 -
其他排污單位 100 150 500
6 石油類 一切排污單位 10 10 30
7 動植物油 一切排污單位 20 20 100
8 揮發酚 一切排污單位 0.5 0.5 2.0
9 總氰化合物 電影洗片(鐵氰化合物) 0.5 5.0 5.0
其他排污單位 0.5 0.5 1.0
10 硫化物 一切排污單位 1.0 1.0 2.0
11 氨氮 醫葯原料葯、染料、石油化工工業 15 50 -
其他排污單位 15 25 -
12 氟化物 黃磷工業 10 20 20
低氟地區(水體含氟量<0.5mg/L) 10 20 30
其它排污單位 10 10 20
13 磷酸鹽(以P計) 一切排污單位 0.5 1.0 -
14 甲醛 一切排污單位 1.0 2.0 5.0
15 苯胺類 一切排污單位 1.0 2.0 5.0
16 硝基苯類 一切排污單位 2.0 3.0 5.0
17 陰離子表面活性劑(LAS)合成洗滌劑工業 5.0 15 20
其他排污單位 5.0 10 20
18 總銅 一切排污單位 0.5 1.0 2.0
19 總鋅 一切排污單位 2.0 5.0 5.0
20 總錳 合成脂肪酸工業 2.0 5.0 5.0
其他排污單位 2.0 2.0 5.0
21 彩色顯影劑 電影洗片 2.0 3.0 5.0
22 顯影劑及氧化物總量 電影洗片 3.0 6.0 6.0
23 元素磷 一切排污單位 0.1 0.3 0.3
24 有機磷農葯(以P計) 一切排污單位 不得檢出 0.5 0.5
25 糞大腸菌群數 醫院*、獸醫院及醫療機構含病原體污水 500個/L 1000個/L 5000個/L
傳染病、結核病醫院污水 100個/L 500個/L 1000個/L
26 總余氯
(採用氯化消毒的醫院污水) 醫院*、獸醫院及醫療機構含病原體污水 <0.5** >3(接觸時間 ≥1h) >2(接觸時間≥1h)
傳染病、結核病醫院污水 <0.5** >6.5(接觸時間≥1.5h >5(接觸時間≥1.5h)
註: * 指50個床位以上的醫院。
** 加氯消毒後須進行脫氯處理,達到本標准
表3 部分行業最高允許排水量
(1997年12月31日之前建設的單位)
序號 行業類別 最高允許排水量或
最低允許水重復利用率
1 礦 山 工 業 有色金屬系統選礦 水重復利用率75%
其他礦山工業采礦、選礦、選煤等 水重復利用率90%(選煤)
脈
金
選
礦 重選 16.0m3/t(礦石)
浮選 9.0m3/t(礦石)
氰化 8.0m3/t(礦石)
碳漿 8.0m3/t(礦石)
2 焦化企業(煤氣廠) 1.2m3/t(焦炭)
3 有色金屬冶煉及金屬加工 水重復利用率80%
4石油煉制工業(不包括直排水煉油廠)
加工深度分類:
A. 燃料型煉油;
B. 燃料+潤滑油型煉油廠;
C. 燃料+潤滑油型+煉油化工型煉油廠; (包括加工高含硫原油頁岸油和石油添加劑生產基地的煉油廠), A >500萬t,1.0m3/t(原油)
250~500萬t,1.2m3/t(原油)
<250萬t,1.5m3/t(原油)
B >500萬t,1.5m3/t(原油)
250~500萬t,2.0m3/t(原油)
<250萬t,2.0m3/t(原油),
C >500萬t,2.0m3/t(原油)
250~500萬t,2.5m3/t(原油)
<250萬t,2.5m3/t(原油)
5 合成洗滌劑工業 氯化法生產烷基苯 200.0m3/t(烷基苯)
裂解法生產烷基苯 70.0m3/t(烷基苯)
烷基苯生產合成洗滌劑 10.0m3/t(產品)
6 合成脂肪酸工業 200.0m3/t(產品)
7 濕法生產纖維板工業 30.0m3/t(板)
8 製糖工業 某蔗製糖 10.0m3/t(甘蔗)
甜菜製糖 4.0m3/t(甜菜)
9 皮革工業 豬鹽濕皮 60.0m3/t(原皮)
牛干皮 100.0m3/t(原皮)
羊干皮 150.0m3/t(原皮)
10發
酵
釀
造
工
業 酒精工業 以玉米為原料 150.0m3/t(酒精)
以薯類為原料 100m3/t(酒精)
以糖蜜為原料 80.0m3/t(酒)
味精工業 600.0m3/t(味精)
啤酒工業(排水量不包括麥芽水部分) 16.0m3/t(啤酒)
11 鉻鹽工業 5.0m3/t(產品)
12 硫酸工業(水洗法) 15.0m3/t(硫酸)
13 薴麻脫膠工業 500m3/t(原麻)或750m3/t(精幹麻)
14 化纖漿粕 本色: 150m3/t(漿)漂白: 240m3/t(漿)
15 粘膠纖維工業(單純纖維) 短纖維
(棉型中長纖維、毛型中長纖維) 300m3/t(纖維)
長纖維 800m3/t(纖維)
16 鐵路貨車洗刷 5.0m3/輛
17 電影洗片 5m3/1000m(35mm的膠片)
18 石油瀝青工業 冷卻池的水循環利用率95%
表4 第二類污染物最高允許排放濃度
(1998年1月1日後建設的單位)
單位:mg/L
序號
污染物
適用范圍 一級標准
二級標准
三級標准
1 pH
一切排污單位 6~9
6~9
6~9
2 色度(稀釋倍數)
一切排污單位 50
80
-
3 懸浮物
(SS)
采礦、選礦、選煤工業 70
300
-
脈金選礦 70
400
-
邊遠地區砂金選礦 70
800
-
城鎮二級污水處理廠 20
30
-
其他排污單位 70
150
400
4
五日生化需氧量
(BOD5)
甘蔗製糖、薴麻脫膠、濕法纖維板、染料、洗毛工業 20
60
600
甜菜製糖、酒精、味精、皮革、化纖漿粕工業 20
100
600
城鎮二級污水處理廠 20
30
-
其他排污單位 20
30
300
5
化學需氧量(COD)
甜菜製糖、合成脂肪酸、濕法纖維板、染料、洗毛、有機磷農葯工業 100
200
1000
味精、酒精、醫葯原料葯、生物制葯、薴麻脫膠、皮革、化纖漿粕工業 100
300
1000
石油化工工業(包括石油煉制) 60
120
-
城鎮二級污水處理廠 60
120
500
其他排污單位 100
150
500
6
石油類
一切排污單位 5
10
20
7
動植物油
一切排污單位 10
15
100
8
揮發酚
一切排污單位 0.5
0.5
2.0
9
總氰化合物
一切排污單位 0.5
0.5
1.0
10
硫化物
一切排污單位 1.0
1.0
1.0
11
氨氮 醫葯原料葯、染料、石油化工工業 15
50
-
其它排污單位 15
25
-
12
氟化物
黃磷工業 10
15
20
低氟地區
(水體含氟量<0.5mg/L) 10
20
30
其它排污單位 10
10
20
13
磷酸鹽(以P計)
一切排污單位 0.5
1.0
-
14
甲醛
一切排污單位 1.0
2.0
5.0
15
苯胺類
一切排污單位 1.0
2.0
5.0
16
硝基苯類
一切排污單位 2.0
3.0
5.0
17
陰離子表面活性劑(LAS)
一切排污單位 5.0
10
20
18
總銅
一切排污單位 0.5
1.0
2.0
19
總鋅
一切排污單位 2.0
5.0
5.0
20
總錳
合成脂肪酸工業 2.0
5.0
5.0
其他排污單位 2.0
2.0
5.0
21
彩色顯影劑
電影洗片 1.0
2.0
3.0
22
顯影劑及氧化物總量
電影洗片 3.0
3.0
6.0
23
元素磷
一切排污單位 0.1
0.1
0.3
24
有機磷農葯(以P計)
一切排污單位 不得檢出
0.5
0.5
25
樂果
一切排污單位 不得檢出
1.0
2.0
26
對硫磷
一切排污單位 不得檢出
1.0
2.0
27
甲基對硫磷
一切排污單位 不得檢出
1.0
2.0
28
馬拉硫磷
一切排污單位 不得檢出
5.0
10
29
五氯酚及五氯酚鈉(以五氯酚計)
一切排污單位 5.0
8.0
10
30
可吸附有機鹵化物(AOX)(以Cl計)
一切排污單位 1.0
5.0
8.0
31
三氯甲烷
一切排污單位 0.3
0.6
1.0
32
四氯化碳
一切排污單位 0.03
0.06
0.5
33
三氯乙烯
一切排污單位 0.3
0.6
1.0
34
四氯乙烯
一切排污單位 0.1
0.2
0.5
35
苯
一切排污單位 0.1
0.2
0.5
36
甲苯
一切排污單位 0.1
0.2
0.5
37
乙苯
一切排污單位 0.4
0.6
1.0
38
鄰-二甲苯
一切排污單位 0.4
0.6
1.0
39
對-二甲苯
一切排污單位 0.4
0.6
1.0
40
間-二甲苯
一切排污單位 0.4
0.6
1.0
41
氯苯
一切排污單位 0.2
0.4
1.0
42
鄰-二氯苯
一切排污單位 0.4
0.6
1.0
43
對-二氯苯
一切排污單位 0.4
0.6
1.0
44
對-硝基氯苯
一切排污單位 0.5
1.0
5.0
45
2,4-二硝基氯苯
一切排污單位 0.5
1.0
5.0
46
苯酚
一切排污單位 0.3
0.4
1.0
47
間-甲酚
一切排污單位 0.1
0.2
0.5
48
2,4-二氯酚
一切排污單位 0.6
0.8
1.0
49
2,4,6-三氯酚
一切排污單位 0.6
0.8
1.0
50
鄰苯二甲酸二丁脂
一切排污單位 0.2
0.4
2.0
51
鄰苯二甲酸二辛脂
一切排污單位 0.3
0.6
2.0
52
丙烯腈
一切排污單位 2.0
5.0
5.0
53
總硒
一切排污單位 0.1
0.2
0.5
54 糞大腸菌群數 醫院*、獸醫院及醫療機構含病原體污水 500個/L
1000個/L
5000個/L
傳染病、結核病醫院污水 100個/L
500個/L
1000個/L
55
總余氯(採用氯化消毒的醫院污水)
醫院*、獸醫院及醫療機構含病原體污水 <0.5**
>3(接觸時間 ≥1h)
>2(接觸時間 ≥1h)
傳染病、結核病醫院污水 <0.5**
>6.5(接觸時間
≥1.5h)
>5(接觸時間
≥1.5h)
56
總有機碳
(TOC)
合成脂肪酸工業 20
40
-
薴麻脫膠工業 20
60
-
其他排污單位 20
30
-
註:其他排污單位:指除在該控制項目中所列行業以外的一切排污單位。
* 指50個床位以上的醫院。
** 加氯消毒後須進行脫氯處理,達到本標准。
表5 部分行業最高允許排水量
(1998年1月1日後建設的單位)
序號
行業類別 最高允許排水量或最低允許排水重復利用率
1
礦山工業 有色金屬系統選礦 水重復利用率75%
其他礦山工業采礦、選礦、選煤等 水重復利用率90%(選煤)
脈
金
選
礦
重選 16.0m3/t(礦石)
浮選 9.0m3/t(礦石)
氰化 8.0m3/t(礦石)
碳漿 8.0m3/t(礦石)
2
焦化企業(煤氣廠) 1.2m3/t(焦炭)
3
有色金屬冶煉及金屬加工 水重復利用率80%
4
石油煉制工業(不包括直排水煉油廠)
加工深度分類:
A。燃料型煉油廠
B。燃料+潤滑油型煉油廠
C。燃料+潤滑油型+煉油化工型煉油廠 (包括加工高含硫原油頁岩油和石油添加劑生產基地的煉油廠) A
>500萬t,1.0m3/t(原油)
250~500萬t,,1.2m3/t(原油)
<250萬t,,1.5m3/t(原油)
B
>500萬t,1.5m3/t(原油)
250~500萬t,,2.0m3/t(原油)
<250萬t,,2.0m3/t(原油)
C
>500萬t,2.0m3/t(原油)
250~500萬t,,2.5 m3/t(原油)
<250萬t,,2.5m3/t(原油)
5
合成洗滌劑工業
氯化法生產烷基苯 200.0 m3/t (烷基苯)
裂解法生產烷基苯 70.0 m3/t (烷基苯)
烷基苯生產合成洗滌劑 10.0 m3/t(產品)
6
合成脂肪酸工業 200.0m3/t(產品)
7
濕法生產纖維板工業 30.0 m3/t (板)
8 製糖工業 甘蔗製糖 10.0 m3/t
甜菜製糖 4.0 m3/t
9
皮革工業 豬鹽濕皮 60.0 m3/t
牛干皮 100.0 m3/t
羊干皮 150.0 m3/t
10 發酵、
釀造
工業 酒精工業
以玉米為原料 100.0 m3/t
以薯類為原料 80.0 m3/t
以糖蜜為原料 70.0 m3/t
味精工業 600.0 m3/t
啤酒行業
(排水量不包括麥芽水部分) 16.0 m3/t
11
鉻鹽工業 5.0 m3/t (產品)
12
硫酸工業(水洗法) 15.0 m3/t (硫酸)
13
薴麻脫膠工業 500 m3/t (原麻)
750 m3/t (精幹麻)
14
粘膠纖維工業
單純纖維 短纖維
(棉型中長纖維、毛型中長纖維) 300.0 m3/t (纖維)
長纖維 800.0 m3/t(纖維)
15
化纖漿粕 本色: 150 m3/t(漿);
漂白:240 m3/t(漿)
16
制
葯
工
業
醫
葯
原
料
葯
青黴素 4700m3/t(氰黴素)
鏈黴素 1450m3/t(鏈黴素)
土黴素 1300m3/t(土黴素)
四環素 1900m3/t(四環素)
潔黴素 9200m3/t(潔黴素)
金黴素 3000m3/t(金黴素)
慶大黴素 20400m3/t(慶大黴素)
維生素C 1200m3/t(維生素C)
氯黴素 2700m3/t(氯黴素)
新諾明 2000m3/t(新諾明)
維生素B1 3400m3/t(維生素B1)
安乃近 180m3/t(安乃近)
非那西汀 750m3/t(非那西汀)
呋喃唑酮 2400m3/t(呋喃唑酮)
咖啡因 1200m3/t(咖啡因)
17
有
機
磷
農
葯
工
業
樂果** 700m3/t(產品)
甲基對硫磷(水相法)** 300m3/t(產品)
對硫磷(P2S5法)** 500m3/t(產品)
對硫磷(PSCl3法)** 550m3/t(產品)
敵敵畏(敵百蟲鹼解法) 200m3/t(產品)
敵百蟲 40m3/t(產品)
(不包括三氯乙醛生產廢水)
馬拉硫磷 700m3/t(產品)
18
除
草
劑
工
業 除草醚 5m3/t(產品)
五氯酚鈉 2m3/t(產品)
五氯酚 4m3/t(產品)
2甲4氯 14m3/t(產品)
2,4-D 4m3/t(產品)
丁草胺 4.5m3/t(產品)
綠麥隆(以Fe粉還原) 2m3/t(產品)
綠麥隆(以Na2S還原) 3m3/t(產品)
19 火力發電工業 3.5m3(MW·h)
20 鐵路貨車洗刷 5.0m3/輛
21 電影洗片 5m3/1000m(35mm膠片)
22 石油瀝青工業 冷卻池的水循環利用率95%
註:
* 產品按100%濃度計。
** 不包括P2S5、PSCl3、PC13原料生產廢水
Ⅷ 上海市污水綜合排放標準的地方標准
污水綜合排放標准
DB31/199-1997
1 范圍
本標准規定了污染物類別、污染監測及實施監督。
本標准適用於上海市范圍內所有排放污水的單位和個體經營者。
2 引用標准
下列標准所包含的條文,通過在本標准中引用而構成為本標準的條文。本標准出版時,所示版本均為有效。所有標准都會被修訂,使用本標準的各方應探討、使用下列標准最新版本的可能性。
GB3552-83 船舶污染物排放標准
GB8703-88 輻射防護規定
GB12997-91 采樣方案設計
GB12998-91 采樣技術指導
GB12999-91 樣品的保存和管理技術規定
3 定義
3.1 污水:指所有排污單位排放的工業廢水和生活污水的總稱。
3.2 排水量:指在生產過程中直接用於工藝生產的水的排放量,不包括間接冷卻水、廠區鍋爐及電站排水;以及生活污水排放量。
4 污染物在別內容
4.1 污染物分類
根據污染物的危害特性,按照國家標准將污染物分成二類,第一類17項,第二類63項。
4.2 污染物排放去向分類
4.2.1 特殊保護水域
特殊保護水域指:經國家、市人民政府批準的自然保護區范圍內水域;黃浦江上游水源保護區水域;由本市各區、縣人民政府規定的郊縣居民集中生活飲用水取水口的衛生防護帶。
4.2.2 保護水域
保護水域指:黃浦江上游准水源保護區;本市各區、縣人民政府規定的居民集中生活飲用水源保護區;淡水養殖水域。
4.2.3 一般水域
一般水域指:除以上特殊保護水域和保護水域以外的其他內河水域。
4.2.4 長江口、杭州灣
4.2.5 污水總管
4.2.6 污水處理廠
4.3 標准分級
4.3.1 標准分級原則
第一類污染物實施統一的排放濃度標准。
第二類污染物按污水排放去向實施三個級別的排放濃度標准,不同時段的排污單位實施不同的排放標准。
特殊保護水域和黃浦江上游准水源保護區實施特殊要求。
4.3.2 分級
4.3.2.1 特殊保護水域內不準新建排污口。原有排污口執行《上海市黃浦江上游水源保護條例實施細則》中規定的污水排放濃度,即表1中的標准A,並實行濃度控制和排污總量控制相結合的管理辦法。
4.3.2.2 黃浦江上游准水源保護區內的排污口,執行表1中的標准B(30項),30項以外污染物執行表2、表3及表4中的一級標准。
4.3.2.3 排入除黃浦江上游准水源保護區以外的保護水域的污水,執行一級標准。
4.3.2.4 排入一般水域的污水,執行二級標准。
4.3.2.5 接入南區、西區污水干管的污水,執行二級標准。
4.3.2.6 排入設置二級污水處理廠的排水系統的污水,執行三級標准。
4.3.2.7 接入蘇州河合流污水截流管,以及向長江口與杭州灣深水擴散排放的截流污水,如截流總管末端設置二級處理設施,執行三級標准;未設置處理設施,則執行二級標准。
4.3.2.8 排入未設置二級污水處理廠的排水系統的污水,必須根據下水道出水受納水域的功能要求,執行4.3.2.1、4.3.2.2、4.3.2.3與4.3.2.4的規定。
4.4 標准值
4.4.1 本標准將污染物按其性質及控制方式分為二類。4.4.1.1 第一類污染物,應在車間或車間處理設施排出口取樣,達到本標准要求。
4.4.1.2 第二類污染物,在排放單位排放口采樣,達到本標准要求。
4.4.2 本標准規定了第一類污染物、第二類污染物(按不同年限)最高允許排放濃度,標准值分別規定為:
4.4.2.1 在1998年1月1日以前建設(包括改、擴建)的單位,結合總量控制要求,水污染物的排放濃度必須符合表2和表3的規定。
4.4.2.2 在1998年1月1日起建設(包括改、擴建)的單位,結合總量控制要求,水污染物的排放濃度必須符合表2和表4的規定。
4.4.2.3 建設(包括改、擴建)單位的建設時間,以環境影響報告書(表)批准日期為准劃分。
4.5 其他規定
4.5.1 對於排放含有放射性物質的污水,除執行本標准外,還須符合GB8708-88的規定。
4.5.2 嚴禁船舶向特殊保護水域排放污水。向其他水域排放污水須執行國家GB3552-83標准。
5 污染監測
5.1 采樣點
采樣點應按本標准4.4.1.1及4.4.1.2的規定設置,並設置排放標志。在排放口應設置污水水量計量裝置。
5.2 采樣頻率
5.2.1 污水樣品採集應符合GB12997GB12998和GB12999的規定。
5.2.2 工廠對工業廢水的自身監測,按生產周期確定監測頻率。生產周期在8小時以內的,每2小時采樣一次;生產周期大於8小時的,每4小時采樣一次。其他污水采樣:24小時不少於2次。環保部門的監督監測,按《環境監測技術規范》執行。最高允許排放濃度以日均值計算。
5.3 測定方法
本標准採用的測定方法見表5。
6 標准實施監督
6.1 本標准由市和區、縣政府環境保護主管部門負責監督實施。
6.2 郊縣地區執行本標准時,若某些污染物控制項目不能滿足本地區飲用水源的水質要求時,區、縣環境保護管理部門應根據受納水體的允許納污量,規定污染物排放總量控制指標,報市環境保護局批准並實施。
表1 黃浦江上游水源保護區域污水排放標准 (mg/l) 類別 序號 污染物 澱山湖元盪湖沿湖縱深2公里至5公里以及其他黃浦江上游水源保護區 A 黃浦江上游准水源保護區 B 1 總汞 0.005 0.005 2 烷基汞 不得檢出 不得檢出 3 總鎘 0.01 0.01 4 總鉻 0.15 0.15 5 六價鉻 0.05 0.05 一類 6 總砷 0.05 0.05 7 總鉛 0.1 0.1 8 總鎳 0.1 0.1 9 苯並(a)芘 0.00003 0.00003 10 pH 6~9 6~9 11 色度 40 50 12 懸浮物 70 70 13 生化需氧量(BOD5) 15 20 14 化學需氧量(CODcr) 60 80 15 氨氮 8 12 二類 16 石油類 3 5 17 動植物油 5 10 18 揮發酚 0.2 0.5 19 總氰化物 0.2 0.5 20 硫化物 0.5 1.0 21 氟化物(以F計) 8 10 22 總磷(以P計) 0.2 0.5 23 總銅 0.2 0.5 24 總鋅 1.0 2.0 25 總錳 1.0 2.0 26 甲醛 0.5 1.0 27 苯胺類 0.5 1.0 28 硝基苯類 1.0 2.0 29 陰離子合成洗滌劑(LAS) 3 5 30 大腸桿菌 3000個 10000個 註:含有一類污染物朱志水,不分行業、排放方式、受納水體功能類別,應在車間或處理設施排出口取樣測定。
表2 第一類污染物最高允許排放濃度 (mg/l) 序號 污染物 最高允許排放濃度 1 總汞(按Hg計) 0.02 2 烷基汞(按Hg計) 不得檢出 3 總鎘(按Cd計) 0.1 4 總鉻(按Cr計) 1.5 5 六價鉻(按Cr計) 0.5 6 總砷(按As計) 0.5 7 總鉛(按Pb計) 1.0 8 總鎳(按Ni計) 1.0 9 苯並(a)芘 0.00003 10 總鈹(按Be計) 0.005 11 總銀(按Ag計) 0.5 12 總α放射性 1Bq/L 13 總β放射性 10Bq/L 14 總釩(按Va計) 2.0 15 總硒(按Se計) 0.1 16 總鈷(按Co計) 1.0 17 總錫(按Sn計) 5.0 表3 第二類污染物最高允許排放濃度(1998年1月1日前建設) (mg/L) 序號 污染物 一級標准 二級標准 三級標准 1 pH 6~9 6~9 6~9 2 色度(稀釋倍數) 50 50 — 3 懸浮物(SS) 70 200 400 城鎮二級污水處理廠 20 30 — 4 五日生化需氧量(BOD5) 25 30 150 城鎮二級污水處理廠 20 30 — 5 化學需氧量(CODCr) 100 100 300 城鎮二級污水處理廠 60 120 — 6 石油類 10 10 20 7 動植物油 15 20 30 8 揮發酚 0.5 0.5 2.0 9 總氰化物(按CN-計) 0.5 0.5 0.5 10 硫化物(按S計) 1.0 1.0 1.0 11 氨氮 15 15 25 城鎮二級污水處理廠 10 15 — 12 氟化物(按F計) 10 10 20 13 磷酸鹽(排入蓄水性河流和封閉性水域的控制指標) 0.5 1.0 — 14 甲醛 1.0 2.0 5.0 15 苯胺類 1.0 2.0 5.0 16 硝基苯類(按硝基苯計) 2.0 3.0 5.0 17 陰離子表面活性劑(LAS) 5.0 10 15 18 總銅(按Cu計) 0.5 1.0 1.0 19 總鋅(按Zn計) 2.0 4.0 5.0 20 總錳(按Mn計) 2.0 2.0 5.0 21 彩色顯影劑 2.0 3.0 5.0 22 顯影劑及氧化物總量 3.0 6.0 6.0 23 元素磷(按P4計,黃磷工業) 0.1 0.1 0.1 24 有機磷農葯(按P計) 不得檢出 0.5 0.5 25 苯 0.1 0.2 0.5 26 甲苯 0.1 0.2 0.5 27 乙苯 0.4 0.6 1.0 28 鄰-二甲苯 0.4 0.6 1.0 29 對-二甲苯 0.4 0.6 1.0 30 間-二甲苯 0.4 0.6 1.0 31 氯苯 0.2 0.4 1.0 續表(1) 表3 第二類污染物最高允許排放濃度(1998年1月1日前建設) (mg/L) 序號 污染物 一級標准 二級標准 三級標准 32 鄰-二氯苯 0.4 0.6 1.0 33 對-二氯苯 0.4 0.6 1.0 34 甲醇 8.0 10 15 35 水合肼 2.0 2.0 5.0 36 吡啶 2.0 2.0 5.0 37 二硫化碳 4.0 8.0 10 38 可溶性鋇(按Ba計) 15 20 - 39 四氯化碳 0.03 0.06 0.50 40 乙腈 3.0 3.0 5.0 41 丙烯腈 2.0 5.0 5.0 42 丙烯醛 0.5 1.0 3.0 43 硼 5.0 5.0 10 44 大腸菌群數
醫院1)、獸醫院及醫療機構含病原體污水傳染病、結核病醫院污水 500個/L
100個/L 1000個/L
500個/L 5000個/L
1000個/L 45 總余氯(採用氯化消毒的醫院污水)
醫生1)、獸醫院及醫療機構含病原體污水
傳染病、結核病醫院污水 <0.5 2) <0.5 2) >3(接觸時間 ≥1h) >6.5(接觸時間 ≥1h) >2(接觸時間 ≥1h) >5(接觸時間≥1.5h) 註:
1) 指20個床位以上的醫院。
2) 加氯消毒後須進行脫氯處理,達到本標准。
表4 第二類污染物最高允許排放濃度(1998年1月1日後建設) (mg/L) 序號 污染物 一級標准 二級標准 三級標准 1 pH 6~9 6~9 6~9 2 色度(稀釋倍數) 50 50 - 3 懸浮物 70 150 350 城鎮二級污水處理廠 20 30 - 4 五日生化需量(BOD5) 20 30 150 城鎮二級污水處理廠 20 30 - 5 化學需氧量(CODcr) 100 100 300 城鎮二級污水處理廠 60 120 - 6 石油類 5.0 10 20 7 動植物油 10 15 30 8 揮發酚 0.5 0.5 2.0 9 總氰化物(按CN-計) 0.5 0.5 0.5 10 硫化物(按S計) 1.0 1.0 1.0 11 氨氮 10 15 25 城鎮二級污水處理廠 10 10 - 12 氟化物(按F計) 10 10 20 13 磷酸鹽(排入蓄水性河流和封閉性水域的控制指標) 0.5 1.0 - 14 甲醛 1.0 2.0 5.0 15 苯胺類 1.0 2.0 5.0 16 硝基苯類(按硝基苯計)2.0 3.0 5.0 17 陰離子表面活性劑(LAS) 5.0 10 15 18 總銅(按Cu計) 0.5 1.0 1.0 19 總鋅(按Zn計) 2.0 4.0 5.0 20 總錳(按Mn計) 2.0 2.0 5.0 21 彩色顯影劑 1.0 2.0 3.0 22 顯影劑及氧化物總量 3.0 3.0 6.0 23 元素磷(按P4計,黃磷工業) 0.1 0.1 0.1 24 有機磷農葯(按P計) 不得檢出 0.5 0.5 25 樂果 不得檢出 1.0 2.0 26 對硫磷 不得檢出 1.0 2.0 27 甲基對硫磷 不得檢出 1.0 2.0 28 馬拉硫磷 不得檢出 5.0 10 29 五氯酚及五氯酚鈉(按五氯酚計) 5.0 8.0 10 30 可吸附有機鹵化物(AOX)(按Cl計) 1.0 5.0 8.0 續表(1) 表4 第二類污染物最高允許排放濃度(1998年1月1日後建設) (mg/L) 序號 污染物 一級標准 二級標准 三級標准 31 三氯甲烷 0.3 0.6 1.0 32 四氯化碳 0.03 0.06 0.50 33 三氯乙烯 0.3 0.6 1.0 34 四氯乙烯 0.1 0.2 0.5 35 苯 0.1 0.2 0.5 36 甲苯 0.1 0.2 0.5 37 乙苯 0.4 0.6 1.0 38 鄰-二甲苯 0.4 0.6 1.0 39 對-二甲苯 0.4 0.6 1.0 40 間-二甲苯 0.4 0.6 1.0 41 氯苯 0.2 0.4 1.0 42 鄰-二氯苯 0.4 0.6 1.0 43 對-二氯苯 0.4 0.6 1.0 44 對硝基氯苯 0.5 1.0 5.0 45 2,4-二硝基氯苯 0.5 1.0 5.0 46 苯酚 0.3 0.4 1.0 47 間-甲酚 0.1 0.2 0.5 48 2,4-二氯酚 0.6 0.8 1.0 49 2,46-三氯酚 0.6 0.8 1.0 50 鄰苯二甲酸二丁脂 0.2 0.4 2.0 51 鄰苯二甲酸二辛脂 0.3 0.6 2.0 52 丙烯腈 2.0 5.0 5.0 53 甲醇 8.0 10 15 54 水合肼 2.0 5.0 5.0 55 吡啶 2.0 2.0 5.0 56 二硫化碳 4.0 8.0 10 57 可溶性鋇(按Ba計) 15 20 - 58 乙腈 3.0 3.0 5.0 59 丙烯醛 0.5 1.0 3.0 60 硼 5.0 5.0 10 61 大腸菌群數
醫院1)、獸醫院及醫療機構含病原體污水
傳染病、結核病醫院污水 500個/L 100個/L 1000個/L 500個/L 5000個/L 1000個/L 62 總余氯(採用氯化消毒的醫院污水)
醫院1)、獸醫院及醫療機構含病原體污水
傳染病、結核病醫院污水 <0.52) <0.52) >3(接觸時間 ≥1h) >6.5(接觸時間≥1.5h) >2(接觸時間≥1h) >5(接觸時間≥1.5h) 63 總有機碳(TOC) 20 30 - 註:1) 指20個床位以上的醫院。
2) 加氯消毒後須進行脫氯處理,達到本標准。
表5 測定方法 序號 項目 測定方法 標准號 1 總汞 冷原子吸收光度法 GB7468-87 2 烷基汞 氣相色譜法 GB/T 14204-93 3 總鎘 原子吸收分光光度法 GB 7475-87 4 總鉻 高錳酸鉀氧化-二苯碳醯二肼分光光度法 GB7466-87 5 六價鉻 二苯碳醯二肼分光光度法 GB 7467-87 6 總砷 二乙基二硫代氨基甲酸銀分光光度法 GB 7485-87 7 總鉛 原子吸收分光光度法 GB 7485-87 8 總鎳 (1)火焰原子吸收分光光度法 GB 11912-89 (2)丁二酮肟分光光度法 GB 19910-89 9 苯並(a)芘 (1)紙層析-熒光分光光度法 GB5750-85 (2)乙醯化濾紙層析熒光分光光度法 GB11895-89 10 總鈹 活性炭吸附-鉻天菁S光度法1) - 11 總銀 火焰原子吸收分光光度法 GB11907-89 12 總α 物理法2) - 13 總β 物理法2) - 14 pH值 玻璃電極法 GB6920-86 15 色度 稀釋倍數法 GB 11903-89 16 懸浮物 重量法 GB11901-89 17 生化需氧量(BOD5) 稀釋與接種法 GB7488-87 重鉻酸鉀紫外分光光度法 待國家頒布 18 化學需氧量(CODcr) 重鉻酸鉀法 GB 11914-89 19 石油類 紅外光度法 GB/T16488-1996 20 動植物油 紅外光度法 GB/T16488-1996 21 揮發酚 蒸餾後用4-氨基安替比林分光光度法 GB7490-87 22 氰化物 硝酸銀滴定法 GB7486-87 23 硫化物 亞甲基藍分光光度法 GB/T16489-1996
Ⅸ 印染廢水,是染漿廢水來的,脫色效果不好,怎麼辦
不知到你用的什麼工藝,一般生物處理不易脫色的話,可以考慮加點絮凝劑,另外氧化法也比較常用,下面一個參考文摘不錯的:
由於染料生產品種多,並朝著抗光解、抗氧化、抗生物氧化方向發展,從而使染料廢水處理難度加大.染料廢水處理難點:一是COD高,而BOD/COD值小,可生化性差;二是色度高,而成分復雜.三是水質水量不穩定,排放具有間歇性.印染廢水的處理目標一般是COD的去除與脫色,但脫色問題難度更大.
3. 脫色處理方法
3.1 物理方法
3.1.1吸附法
吸附法是利用多孔性的固體物質,使廢水中的一種或多種物質被吸附在固體表面而去除的方法.吸附脫色技術是依靠吸附劑的吸附作用來脫除染料分子的.吸附按其作用力可分為物理吸附、化學吸附和離子交換吸附三種.目前用於吸附脫色的吸附劑主要是靠物理吸附, 但離子交換纖維、改性膨潤土等也有化學吸附作用.
常用的吸附劑包括可再生吸附劑如活性炭、離子交換纖維等和不可再生吸附劑如各種天然礦物(膨潤土、硅藻土)、工業廢料(煤渣、粉煤灰) 及天然廢料(木炭、鋸屑) 等.傳統的吸附劑是活性碳,活性炭具有較高的比表面積(500- 600 m2/g),它只對陽離子染料、直接染料、酸性染料、活性染料等水溶性染料具有較好的吸附性能.活性炭去除水中溶解性有機物(分子量不超過400)非常有效,但它不能去除水中的膠體疏水性染料.若廢水BOD5> 500mg/L,則採用吸附法是不經濟的.膨潤土作為水處理中的吸附劑和絮凝劑,已被廣泛用於印染廢水脫色領域,近年來製成多種復合膨潤土、VS型纖維和聚苯乙烯基陽離子交換纖維等,具有物理吸附和離子交換功能,且比表面大、離子交換速度快,易再生,對難處理的陽離子染料廢水有很好的脫色效果,有些改性的膨潤土的脫色效果甚至高於活性炭[4];某些集吸附與絮凝性能為一體的吸附劑如硅藻土復合凈水劑也已開發;用電廠粉煤灰製成具有絮凝性能的改性粉煤灰,對疏水性和親水性染料廢水均具有很高的脫色率;另外工業廢料(如煤渣、粉煤灰等)、天然廢料(如木炭、木屑等)、植物秸稈(如玉米棒等)均對印染廢水具有一定的吸附作用.
吸附法尤其適合難生化降解的紡織印染廢水脫色處理,印染廢水的吸附脫色技術是一項非常有效而又比較經濟的方法.活性炭吸附脫色技術不適合印染廢水一級處理,只能用於深度脫色處理,活性炭處理成本高,再生困難,所以活性炭的再生技術是正在研究的課題,其中生物再生是研究的重點方向.煤、爐渣吸附劑,原料來源廣,成本低,但在處理印染廢水之後存在二次污染,所以只適合與生化法或砂過濾等方法聯合使用.離子交換樹脂對水溶性染料離子吸附特別有效,離子交換吸附劑的開發研製是今後的主要發展方向之一.廉價、高效、因地制宜新型吸附材料的開發是一項很有前途的技術.吸附法與其它處理方法的優化組合處理印染廢水,脫色效果更佳.[5]
綜上所述,吸附脫色的發展方向體現在兩個方面: ①根據吸附機制開發、尋找新的吸附劑; ②對現有吸附劑的改性與活化, 以提高脫色效果和再生能力.
3.1.2超濾法脫色
超濾是利用一定的流體壓力推動力和孔徑在20~200üA 的半透膜實現高分子和低分子的分離.超濾過程的本質是一種篩濾過程,膜表面的孔隙大小是主要的控制因素.該法的優點是不會產生副作用,可以使水循環使用.早在70 年代初期, 膜分離技術就嘗試用來處理印染廢水.目前, 該方法可用於去除各種染料和添加劑.但由於分離染料混合物的困難, 並未達到完美的程度.
在這種技術中,半透膜的性質起著決定性的作用.就材料而言,膜有動態膜,纖維素類膜,聚碸超濾膜,荷電超濾膜或疏鬆反滲透膜.[6]
(1)動態膜從處理效果和經濟上講,ZrO-PAA 動態膜是可行的.但能耗較大,其滲透水及化學物質的再利用率可達88% 到96%.
(2) 纖維素類膜.CA 膜的選擇性隨膜表面與各種染料互變異構體相互作用而發生變化,但膜材料本身在耐pH、耐溫等方面仍然有所不足.纖維素類膜在耐pH值、耐壓、耐溫度等方面優於CA ,用纖維素超濾膜反滲透處理染色廢液, 染料去除率97% 以上可實現水的循環使用,但反滲透所需的高壓操作仍是它的不足.
(3) 聚碸超濾膜由於其良好的物理化學穩定性,有較大的應用前景.使用聚碸超濾膜代替纖維素膜可實現高溫操作, 回收染料減輕污染, 但仍未達到國家排放的標准.
(4) 荷電超濾膜或疏鬆反滲透膜是用來描述其分離性能介於反滲透和超濾之間的一種膜.荷電超濾膜是以其化學結構含有荷電基團而定義的, 疏鬆反滲透膜是以其物理結構而命名, 它們往往指的一種膜.對鹽NaCl 截留只有2%~ 3% , 而對於500~2 000 分子量的物質,具有較高的分離率, 同時保持高的水通量.一般染料的分子量正好在這種膜的截留范圍, 特別是離子型染料.該膜在低壓下操作(10 kg/cm 2) 耐pH值、耐壓密、耐污染、耐溫等方面都比較突出,前景廣闊[7].
3.1.3輻射降解法
電離輻射可有效地降解染料水溶液,輻射技術和其它技術有很好的協同作用.與常規污染物處理技術相比,輻射技術在常溫常壓下進行,具有工藝簡單、無二次污染等特點,對難降解有機污染物的處理更有其獨特長處.[8]
用60Co γ射線輻照甲基橙和活性艷藍KNR水溶液,輻照後染料水溶液的可見光區和紫外區的特徵吸收峰隨吸收劑量的增加而漸漸下降至接近零,說明輻射降解反應既破壞了染料分子的發色基團,同時也破壞了染料的有機分子結構.脫色率和COD去除率均隨吸收劑量的增加而增加.過氧化氫與輻射有協同作用,在相同的吸收劑量下,脫色率和COD去除率均隨過氧化氫的濃度增加而增加.另外,該法pH值適用范圍很廣;溶液的初始濃度越大,COD去除和脫色效果越差;氧的存在可以促進染料分子的降解.在同樣輻照條件下,染料的輻射降解效果因染料分子的結構不同而略有不同[9].
輻射法處理印染等難降解污水時雖然有機物的去除率高、設備佔地小、操作簡便,但用來產生高能粒子的裝置價格昂貴,技術要求高,而且該方法能耗較大,能量利用率不高,若要真正投入實際運行,還需進行大量的研究工作.
3.2 物理化學法
3.2.1絮凝法
印染廢水的絮凝脫色技術, 投資費用低, 設備佔地少, 處理量大, 是一種被普遍採用的脫色技術.某印染廠採用混凝脫色- 懸浮曝氣生物濾池工藝處理主要含活性染料的廢水,原水CODCr, SS的平均質量濃度分別為296,285 mg/L 和平均色度為550倍, 處理後出水水質相應各項指標分別為40, 20 mg/L 和10 倍, 其去除率分別為87%, 92%和98%.[10]
在印染廢水中使用的絮凝劑很多,大致可分為無機絮凝劑、有機絮凝劑和微生物絮凝劑三類,其中,有機絮凝劑還分為天然有機高分子絮凝劑、合成有機高分子絮凝劑.由於印染廢水水質比較復雜,無機單鹽絮凝劑在水解絮凝過程中,未能完成具有優勢絮凝效果的形態,投葯量大,絮凝效果差;無機高分子絮凝劑可以較好地除去廢水中大部分懸浮態染料,但對於水溶性染料中分子量小、不容易形成膠體的廢水則難以處理;有機高分子絮凝劑對於水溶性染料等廢水具有很好的脫色性能,但單獨使用效果差,而且易於產生有毒物質;因此,開發研製價廉、無毒、高效的新型有機絮凝劑,已成為目前絮凝法的主要研究方向之一.
復合絮凝劑則能同時發揮幾種絮凝劑的優點,使絮凝法用於印染廢水處理既經濟,又適用.如將有機絮凝劑與無機絮凝劑復配使用,充分發揮有機高分子絮凝劑的吸咐架橋性能和無機絮凝劑的電性中和能力,可以使處理出水達到較好的效果.此外,澱粉衍生物、木質素衍生物、羧甲基殼聚糖[11]等天然高分子具有無毒、原料廣、價廉和可生物降解等優點,也得到科研工作者的高度重視.另外,微生物絮凝劑是利用生物技術,從微生物體或其分泌物提取、純化而獲得的一種安全、高效,且能自然降解的新型水處理劑.與普通的絮凝劑相比,有固液易於分離,沉澱少,適用性廣等優點,因此微生物絮凝劑的研究正成為當今世界絮凝劑方面研究的重要課題[12].總之,高效、無毒、無害的環境友好性絮凝即將在印染廢水處理中有廣闊的應用前景.
絮凝法雖然是含染料廢水處理的常用方法,但對於許多可溶性好的染料, 處理效果往往不佳.因此, 復合絮凝法將成為工業廢水處理工藝研究的主要內容和發展方向.根據實際出水要求,採用適當的預處理和後處理手段,發揮絮凝工藝與其它工藝的協同工作的優勢,以達綜合治理的目的,這對於提高印染廢水的處理效果,降低處理成本具有極其重要的意義.
然而,用絮凝法進行廢水脫色依然存在以下幾個方面的問題:產生大量的淤泥;由於廢水水質變化大,每批廢水脫色前均需要進行預試驗,以確定最佳條件,提高了成本,又費時.過量的陽離子絮凝劑會在廢水中產生大量氮的化合物,它們對魚類有毒且難以生物降解和硝酸化抑制,絮凝劑過量也可能導致沉澱重新溶解.脫色效率低,不符合排放標准.因此,實際生產中,應根據實際出水要求,採用適當的預處理和後處理手段,發揮混凝工藝與其它工藝的協同工作的優勢,以達綜合治理的目的,這對於提高印染廢水的處理效果,降低處理成本具有極其重要的意義.
3.3 化學方法
3.3.1電化學法
電化學法是處理印染廢水的另一種有效的處理方法.電化學法通過可溶性電極在陽極和陰極上發生電絮凝、電氣浮和H的間接還原作用從而達到處理廢水的目的.電化學法處理印染廢水具有設備小、佔地少、運行管理簡單、COD去除率高和脫色好等優點,但同時電化學法存在著能耗大、成本高和析氧析氫副反應等缺點.近年來,隨著電化學和電力工業的發展以及許多新型高析氧析氫過電位電極的發明,電化學法又重新引起人們的重視.根據電極反應方式劃分, 傳統電化學方法可細分為內電解法、電絮凝和電氣浮法、電氧化學.
內電解法是利用廢水中有些組分易被氧化,有些組分易被還原,在有導電介質存在時,電化學反應便會自發進行,同時兼有絮凝、吸附、共沉澱等綜合作用的一種廢水處理方法[13].最著名的內電解法是鐵屑法, 即將鑄鐵作為濾料, 使印染廢水浸沒或通過, 利用Fe 和FeC 與溶液的電位差, 發生電極反應, 產生較高化學活性新生態H, 能與印染廢水多種組分發生氧化還原反應, 破壞染料發色結構, 而陽極產生的新生態Fe2+, 其水解產物有較強的吸附和絮凝作用.該法不需要外加電源,操作簡單,成本低廉,是種很有前途的處理方法.
電氣浮法是以Fe、AL作陽極產生的H2將絮體浮起;而電絮法則是利用電極反應產生的Fe2+ 、Al3+實現絮凝脫色.採用石墨、鈦板等作極板, 對染料廢水通電電解, 陽極產生O2或Cl2, 陰極產生H2.通過O的氧化作用及H的還原作用破壞染料分子而使印染廢水脫色, 脫色率可達98% 以上,COD去除率達80%以上.
國內重點研究的是電化學與其它方法相結合,其中較為有成就的是用絮凝復合床新技術處理高色度印染廢水,對色度>10000倍的印染廢水處理後,脫色率可達99%以上,CODCr去除率達75%.國外在新型電極方面研究較多,如:Sb/SnO2、Ti/SnO2、Ti/RnO2、Ti/Pt等電極.
電催化高級氧化技術(Advanced Electro catalysis Oxidation Processes , AEOP) 是最近發展起來的新型AOPs ,因其處理效率高、操作簡便、與環境兼容等優點引起了研究者的注意.它能在常溫常壓下,通過有催化活性的電極反應直接或間接產生輕基自由基, 從而有效降解難生化污染物.陳武等進行了三維電極電化學方法處理印染廢水實驗, COD去除率達74.7% ,色度去除率達93.3%[14].
3.3.2氧化法
氧化法是使染料分子中發色基團的不飽和雙鍵被氧化斷開,形成分子量較小的有機物或無機物,從而使染料失去發色能力的一種印染廢水處理方法.氧化法主要有:高溫深度氧化法、化學氧化法和光催化氧化降解法等.
高溫深度氧化法主要是焚燒法.
化學氧化法是印染廢水脫色處理的主要方法,其機理是利用氧化劑將染料不飽和的發色基團打破而脫色.Fenton試劑(Fe2+-H2O2)、臭氧、氯氣、次氯酸鈉等是一般採用的氧化劑.常見的有組合法和催化氧化法等.如採用混凝- 二氧化氯組合法的優點在於ClO2氧化能力強,是HClO的9倍多,且無氯氣氧化法處理廢水時可能與水中有機物結合生成氯代有機物(AOX)[15].
化學氧化法能有效地去除印染廢水中的色度,但不能很好地去除廢水中的COD,對此有人提出了不完全氧化的方法,即只部分氧化,使有機物通過自由基耦合降低水溶性而絮凝去除.陳玉峰[16]等通過實驗發現,電生成Fenton試劑處理實際工業印染廢水,CODCr去除率在80 %以上, 脫色率達到95% ,處理費用1117元/m3,具有很好的實際應用價值和市場前景.盛翼春[17]通過研究發現,採用新型電催化氧化對染料濃度高達0.3g/l的水溶性染料廢水在2分鍾內脫色率高達95%以上.
同時,隨著太陽能技術的發展進步,光催化氧化也越來越受到人們的重視.夏金虹[18]用納米TiO2粉體光催化降解印染廢水,脫色率為96% , CODCr去除率為86%,TiO2催化性能比較穩定,可重復使用.光催化氧化技術具有工藝設備簡單、操作條件易控制、處理成本較低、氧化能力強、無二次污染等突出優點,在有機廢水處理中有著廣闊的應用前景.但懸浮體系的納米TiO2顆粒由於粒徑極為細小,存在著難以回收、容易中毒、不易分散等缺點,需通過先進的負載技術或光化學反應器,甚才會獲得更高催化效率.因此,納米TiO2光催化劑的負載技術對其實現大規模實用化、商品化和工業化具有重大的實際意義,是今後TiO2研究的主要方向[19].
總之, 氧化法是一種優良的印染廢水脫色方法,但也有其自身的缺憾.如果氧化程度不足, 染料分子的發色基團可能被破壞而脫色, 但其中的COD仍未除盡; 若將染料分子充分氧化, 能量、葯劑量消耗可能會過大, 成本太高, 所以氧化法一般用於氧化- 絮凝或絮凝- 氧化工藝.採用氧化- 絮凝工藝, 目的是通過氧化法將水溶性染料分子變為疏水性或使陽離子染料分子轉變為中性, 陰性分子, 以利絮凝除去.反之, 採用絮凝- 氧化工藝則是將氧化作為後處理步驟, 對印染廢水做深度處理經進一步去除殘余色度及COD[20].
3.3.3還原法
還原法式使用還原型脫色劑對直接染料廢水進行脫色處理的方法,使用的原料主要是鐵屑.鐵屑是機械加工過程中的廢料, 用於處理印染廢水,不僅成本低廉、操作簡單, 而且能夠獲得以廢治廢的效果.該方法主要基於電化學反應.鐵屑是鐵-碳合金, 浸入廢液後形成無數微小原電池.電極反應產物為Fe2+, H2,OH-, 均具有較高的化學活性, 可有效地脫除廢水中的染料分子.其它還原劑有保險粉(+ 活性炭)、亞硫酸及其鹽.洪俊明等[21]通過鐵屑內電解的強化A/ O MBR 工藝處理印染廢水, 出水的水質中色度的去除率超過90.0 %和COD的去除率達到94.9 %.董永春[22]等採用以含硫還原劑和氫化物引發劑為基礎的穩定雙組分還原反應系統,處理直接染料染色廢水,使之與其中的直接染料發生還原脫色反應,其優點是脫色劑用量少,反應快速,脫色率高.還原法的主要缺點是還原降解產物具有毒性, 必須經過二次處理.如活性炭吸附等, 處理費用增大.
3.3.4高級氧化法
高級氧化法(Advanced Oxidation Processes ,AOPs)脫色被認為是一種很有前途的方法.所謂高級氧化法如UV + H2O2、UV + O3, 因為在氧化過程中產生羥基自由基(·OH), 其強氧化性使染料廢水脫色.經研究發現它對偶氮染料的脫色很有效, 高級氧化反應隨O3和H2O2加入量的增加,其反應速率也隨之增加[23]. 在實際生產中與某些化學輔助劑會提高脫色效果, 而且UV + H2O2方法處理偶氮型活性染料產生的降解產物對環境完全無害.最近的研究發現二氯三嗪基型偶氮類活性染料使用UV + H2O2方法脫色也有很好的效果[24].
氧化劑O3對絕大多數染料的脫色效果較好, 無二次污染, 引入紫外光(UV) 等可加快氧化和提高脫色率.有學者指出O3/UV 對偶氮染料脫色效果好,UV 的引入促使O3在溶液中產生氧化性強的羥自由基.胡文容[25]等指出, 雖超聲波幾乎不能降解偶氮腫I , 但對O3氧化有明顯的強化作用, 當O3濃度為7107mg/ L , 加80w 超聲波是超聲波協同O3處理偶氮腫的最佳組合, 既可滿足90 %脫色率, 又可節省48%的O3.但是目前用O3處理染廢水費用較高, 開發新型臭氧發生器並和UV 或超聲波連用以提高效率、降低費用是O3在染料廢水處理中推廣的前提, O3對COD的去除不理想.
高級氧化法的對環境污染極小,效果較好,但有一個嚴重不足之處是處理費用較高, 從而限制了它的廣泛使用.
3.3.5超聲波氧化
超聲波處理印染廢水是基於超聲波能在液體中產生局部高溫、高壓、高剪切力,誘使水分子及染料分子裂解產生活性非常強的氫氧自由基, 對大部分有機污染物有氧化作用並可並促進絮凝;同時,在超聲波作用下傳質加強,超聲空化產生局部高溫高壓,可大大強化氫氧自由基對有機物的氧化速度,提高降解效率.
用超聲波可以強化臭氧氧化處理偶氮類染料廢水,這是因為超聲波空化效應產生高能條件促使臭氧快速分解,產生大量的自由基,從而使氮類染料脫色.張家港市九州精細化工廠用根據超聲波氣振技術設計的FBZ 廢水處理設備處理染料廢水[26],色度平均去除率為97.0 % ,CODCr去除率為90.6% ,總污染負荷削減率為85.9 %.符德學[27]等使用該法處理含鹼性湖藍-5B的印染廢水,COD去除率達90.2%,脫色率達到98.3%.劉靜[28]等的實驗結果表明,超聲波與微電場的協同作用大大提高了脫色率,在最佳條件下處理60min,色度去除率可達96.6%.
3.3.6萃取法
萃取是採用與水互不相溶,但能很好溶解污染物的萃取劑,使其與廢水充分混合接觸後,利用污染物在水中和溶劑中不同的分配比分離和提取污染物,從而凈化廢水.廢水中的酸性染料可用混合胺進行萃取回收,陰離子染料可用離子對萃取法用長碳鏈去除,萃取劑可用氫氧化鈉再生.由鄰苯二甲酸與間苯二酚為原料制備熒光黃的生產廢水可用N235/煤油系統萃取,其COD去除率可達91-98%,色度去除率為99.8%[29].
離子對萃取法是一種新的廢水脫色方法.該法是將染色殘液與一非水溶性有機溶劑一同振盪,當兩相分離時,水相中便呈現無色,染料聚積於上層有機相中.只要燃料含有至少一個磺酸基團或者是染料必須是酸性的,那麼任何深濃的染色廢液均可用此法脫色.該有機相可反復使用數次[30].離子對萃取法的優點有:液/液相分離工藝簡單,能耗低.對於活性染料來說,僅鈉鹽和鈣鹽形成的水解產物需處理.萃取劑無需再生就可重復使用[31].
3.4 生物處理方法
生物法是利用微生物酶來氧化或還原染料分子,破壞其不飽和鍵及發色基團,從而達到處理目的的一種印染廢水處理方法.生物法目前仍是國內外主要的印染廢水處理方法.
生物法的缺點在於微生物對營養物質、PH、溫度等條件有一定的要求,難以適應印染廢水水質波動大、染料種類多、毒性高的特點;同時還存在佔地面積大、管理復雜、對色度和COD去除率低等缺點.生物法處理印染廢水的脫色率和COD去除率不高,一般不適宜單獨應用,可作為預處理或深度處理.
3.4.1傳統生物處理技術
生物法處理印染廢水中,以活性污泥法最為普遍,這是因為活性污泥法具有可分解大量有機物、能去除部分色素、可調節pH值、運轉效率高且費用低等優點,但對色度的去除往往不夠理想,因此組合式生物處理技術是目前印染廢水的常用方法.我國生物法中以表面活性污泥法和接觸氧化法佔多數,此外,鼓風曝氣活性污泥法、射流曝氣活性污泥法、生物轉盤法等也有應用,生物流化床尚處於試驗性應用階段.
在印染廢水處理中,厭氧- 好氧工藝具有的這種獨特降解機理引起國內的廣泛關注,並得到了深入的研究和應用,取得了明顯的效果[32].婁金生等在印染廢水的處理過程中採用了厭氧- 好氧工藝,取得了良好效果,COD總去除率大於90 % ,脫色率大於95%.
3.4.2微生物強化處理技術
隨著紡織工業新產品和新技術的開發,印染廢水中水溶性染料、活性染料和化學漿料的數量和種類的不斷增加,從而導致印染廢水可生物降解性下降,如大量的聚乙烯醇(PVA)等,因此選育及應用優化脫色菌和PVA降解菌開始引起人們的關注.選育和培養出各種優良脫色菌株或菌群是生物法一個重要的發展方向.白腐真菌不但對活性艷紅X3B染料有較好的脫色作用,而且對難處理的成分復雜的實際染料廢水也有較好的降解作用,能有效去除印染廢水的COD和BOD5.雖然不能徹底生化降解染料廢水,但給後續的深度處理帶來極大方便[33].
黃建岷[34]在實驗中採用富集法分離菌株,所得脫色菌處理印染廢水有明顯的脫色效果,脫色率可達70 %以上.與活性炭吸附脫色相比差異不大,證明利用微生物處理印染廢水的色度問題是可行的, 但在菌種篩選方面仍有大量工作可做.
3.4.3膜生物反應器處理技術
膜生物反應器處理技術作為一種新型的污水處理工藝,是傳統活性污泥法和膜分離技術的有機結合,可通過膜片提高某些專性菌的濃度和活性,還可以截留許多分解速度較慢的大分子難降解物質,通過延長其停留時間而提高對它的降解效率.但由於膜易堵塞且製造費用較高,對膜技術在水處理領域全面推廣產生一定阻力.不過,隨著材料科學的發展、膜製造技術的進步、膜質量的提高、膜製造成本的降低以及工藝的改進,膜生物反應器的應用范圍將越來越廣.
3.4.4生物酶脫色技術
一些使用合適的厭氧和嗜氧的聯合生物處理可提高染料的降解性, 但是在厭氧條件下, 偶氮還原酶通常將偶氮染料分解為相應的胺類, 其中許多會致低能或致癌,而且偶氮還原酶具有強專一性, 只分解被選擇染料的偶氮鍵.與此相反,苯氧化酶——過氧化木質素酶(木質素酶, LiP) , 過氧化錳酶(MnP) , 和漆酶——對芳香環沒有強的專一性, 因此, 有可能降解各種不同的芳香化合物.這些酶制劑可有效地使許多結構不同的染料脫色.初始反應速率與制劑中每一個酶(漆酶、LiP 和MnP) 都有關系.一些染料添加劑可顯著降低脫色速率.因此, 在評價新的酶及其處理工藝時, 必須考慮染色助劑對酶活性的影響.今後研究工作主要集中於已選擇出的酶的固定化以便為酶脫色的工業應用打下基礎[35].
4. 發展前景
各種脫色方法比較分析,可以看出每種處理方法從經濟性,技術性,對環境影響和實用性都有一定的缺陷, 氣吹、混凝、吸附、過濾等一般具有設備簡單、操作簡便和工藝成熟等優點,但是這類處理方法通常是將有機物從液相轉移到固相或氣相,不僅沒有完全消除有機污染物和消耗化學葯劑,而且造成廢物堆積和二次污染.吸附脫色具有隻吸附染料, 但不破壞其結構的特點, 但目前使用的吸附劑往往存在吸附量不夠, 或再生不容易的缺點.高級氧化法脫色如光氧化、超臨界氧化、濕式氧化、低溫等離子體化學法被認為是一種很有前途的方法, 但其昂貴的價格成為制約其廣泛應用的重要原因.一些傳統的氧化方法如NaClO、H2O2、臭氧和紫外氧化等證明對廢水脫色並不有效, 採用強化物理化學與酶催化降解的方法可能將有非常廣闊的應用前景.因此在實際工程中應該按照具體條件和要求,合理選擇工藝組合,以便取得最佳的效果.
Ⅹ 水質檢測中工業廢水污水監測標準是什麼
工業廢水污水檢測主要是對企業工廠在生產工藝過程中排出的廢水、污水和水生物檢測的總稱。
工業廢水污水檢測包括生產廢水和生產污水。按工業企業的產品和加工對象可分為造紙廢水、蝕刻廢水、紡織廢水、製革廢水、農葯廢水、冶金廢水、印染廢水、煉油廢水、醫療廢水等。
工業廢水檢測測試項目 工業廢水檢測測試:PH、CODcr、BOD5、石油類、LAS、氨氮、色度、總砷、總鉻、六價鉻、銅、鎳、鎘、鋅、鉛、汞、總磷、氯化物、氟化物等。 生活廢水檢測測試:PH、色度、渾濁度、臭和味、肉眼可見物、總硬度、總鐵、總錳、硫酸物、氯化物、氟化物、氰化物、硝酸鹽、細菌總數、總大腸桿菌、游離氯、總鎘、六價鉻、汞、總鉛等。
城市排水檢測測試項目: 水溫(度)、色度、易沉固體(15min)、懸浮物、溶解性固體、動植物油、石油類、PH值、五日生化需氧量(BOD5)、化學耗氧量(CODCr)、氨氮(以N計)、總氮(以N計)、總磷(以P計)、陰離子表面活性劑(LAS)、總氰化物、總余氯(以Cl2計)、硫化物、氟化物、氯化物、硫酸鹽、總汞、總鎘、總鉻、六價鉻、總砷、總鉛、總鎳、總鈹、總銀、總硒、總銅、總鋅、總錳、總鐵、揮發酚、三氯甲烷、四氯化碳、三氯乙烯、四氯乙烯、可吸附性有機鹵化物(AOX,以Cl計)、有機磷農葯(以P計)、五氯酚。
工業廢水水樣採集 :
1、采樣前的准備
(1)容器准備 容器的選擇原則:水樣不溶於容器、容器材質不吸附水樣中某些組分、水樣與容器不發生直接化學反應、避開物質的「相似相溶」原理。
(2)采樣器的准備:選擇合適的采樣器、沖洗干凈(三洗)。
2、水樣的運輸和保存
(1)水樣在運輸過程中不應有損失和丟失,要包裝好,貼上標簽、密封好。
(2)儲存水樣的容器可能吸附、玷污水樣,因此,要選擇性能穩定、雜質含量低的材料作容器,常用的有硼硅玻璃、石英、聚乙烯、聚四氟乙烯,最常用的是硼硅玻璃、聚乙烯瓶。
(3)運輸過程要求盡快,常用監測車、汽車、船,甚至飛機。 工業廢水污水檢測測試執行標准 廣東省水污染物排放限值 DB4426-2001
城鎮污水處理廠污染物排放標准 GB 18918-2002
污水排入城市下水道水質標准 CJ343-2010
排放標准編輯制漿造紙工業水污染物排放標准 GB 3544-2008
製糖工業水污染物排放標准 GB 21909-2008
混裝制劑類制葯工業水污染物排放標准 GB 21908-2008
中葯類制葯工業水污染物排放標准 GB 21906-2008
羽絨工業水污染物排放標准 GB 21901-2008
雜環類農葯工業水污染物排放標准 GB 21523-2008
醫療機構水污染物排放標准 GB 18466-2005
鋼鐵工業水污染物排放標准 GB 13456-1992
紡織染整工業水污染物排放標准 GB 4287-1992