經常性廢水
1. 非經常性廢水貯存池底曝氣管徑怎麼算
火電廠的主要排放廢水包括:灰場排水工業廢水(經常性廢水+非經常性廢水)生回活廢水工業廢答水的處理:根據電廠產生的水量和水質,舊地設置廢水貯存池,池內設置攪拌曝氣裝置,視水質情況直接加入所需的酸、鹼、氧化劑等,廢水就地處理達標後回收利用或排入灰場.
2. 電廠里經常性廢水的含義是什麼
電廠中有一些系統需要不斷地排放廢水,如冷卻塔排污水、鍋爐排污水、脫硫系統排污水等等。這些都是電廠的經常性廢水
3. 污水處理
污水處理對地下水產生的污染主要是化學和生物污染,其影響的程度主要取決於污水的處理方法、含水層的水文地質和水文地球化學條件。
污水處理中引起地下水污染的做法主要包括用處理後的污水進行灌溉、用污泥施肥、有意或無意的污水入滲、生活污水管的泄漏以及污水對井的地表污染。
致病微生物是被污水污染的地下水對人體產生的最大威脅,Yates等(1993)綜述了細菌和病毒污染對人體健康產生的影響,並對其在地下水中的遷移和最終結局進行了討論。據此,他們認為20世紀80年代美國由飲用水傳染的大約200種疾病中,約1/2是由未處理或消毒不充分的地下水所引起的。
在地下水流系統中,細菌和病毒可存活數月,運移數百米(Yates等,1993)。這兩種微生物都是在低溫下可存活更長的時間,當溫度為8℃時,它們甚至可以無限期地存活。物理性的過濾可阻止細菌的運移,尤其是在細顆粒的土壤中更是如此。但病毒的體積很小,大部分的土壤不能使其含量明顯地減少。吸附是使兩種微生物含量減少的重要作用,Langmuir和Freundlich吸附等溫線均可用來描述地下水運移過程中兩種微生物的吸附作用。
污水的化學污染比生物污染的公認程度更高,污水中的許多污染物(如硝酸根)同時還與其他類型的污染相關。在污水中還含有各種類型的其他大量或微量組分,它們或者對人體健康有影響,或者可用來示蹤污染暈。幾乎所有常見的穩定同位素都可用來研究污水的污染問題。
5.2.3.1 污水處理廠對地下水的污染
污水可使用多種技術進行處理,污水處理的程度可劃分為初級、二級和三級(高級)。初級處理是指通過濾網或沉澱池除去其中的固體,二級處理指的是使用微生物除去廢水中的有機負荷,三級(高級)處理則是指去除廢水中特定化學物質(如硝酸根、磷酸根)的過程。經過二級處理後,廢水就允許排泄到天然水道中,或通過滲床滲入地下,或用來灌溉農田、高爾夫球場及其他的植被。其對地下水的影響就是在這些處置過程中發生的,從廢水中分離出的固體可進一步進行處理,或者在垃圾填埋場中填埋,或者用於施肥以提高土壤肥力,這樣,污泥的淋濾也會對地下水產生影響。
在美國農村地區的小社區,對污水進行二級處理的最常見方法就是氧化池(或污物穩定池)法。氧化池通常由一系列的蓄水池組成,污水依次通過各處理單元時其處理程度逐步加深,氧化池同時使用了好氧和厭氧過程來處理廢水中的 BOD。這種方法與其他方法相比要相對經濟一些,特別適用於土地面積不受限制的地區。Kehew(1984)和Bulger等人(1989)研究了美國北達科他州McVille污水處理場地對地下水的影響,該處理系統的蓄水池建設在可滲透的冰水沉積物上,要使廢水在池中有適宜的停留時間,必須對各處理單元進行襯砌。但三個處理單元只有一個做了襯砌,當廢水水位超過襯砌的處理單元時,它就會向未襯砌的處理單元排泄,這時廢水便會快速地滲透到淺層潛水含水層中。從第二個處理單元開始向下遊方向,地下水中的溶解固體、溶解有機碳、銨、鐵以及其他組分都有升高(圖5-2-9)。在處理單元附近,地下水的實測pE值很低,隨著遠離蓄水池,pE值逐漸升高,這與富含有機污染物的污染暈非常類似。該場地中的一個有趣的現象就是,來自上游一個好氧填埋場的污染暈,似乎與廢物穩定池下部的還原性污染暈發生了混合,從而使還原成了(Bulger等,1989)。
馬薩諸塞州Otis空軍基地由於二級處理廢水通過滲床入滲所引起的地下水污染問題在文獻中報道很多(LeBlane,1984;Barber,1992),該基地的污水處理廠從1936年開始運營,通過它處理廢水被排放到了一個24.5英畝的滲床中,在滲床的下游,形成了一個4000 m長、1000 m寬、30 m深的污染暈。可用多種參數來勾畫污染暈的范圍(圖5-2-10),但硼是最有用的一種參數,這是因為硼是一種保守性組分,在運移過程中不怎麼發生化學反應,而且在背景地下水中不存在。硼之所以在污染暈中出現,是因為在洗衣粉中過硼酸鈉被用作為了漂白劑。在地下水中,硼是以原硼酸(B(OH)3)的形式存在的,它之所以沒有發生離解是因為污染暈的pH值要遠低於原硼酸的pKa值。污染暈還可用電導率、氯濃度以及其他參數來勾畫。在二級處理廢水中DOC的含量大大減小,同時,大於背景值(2~5 mg/L)的DOC足以在污染暈中形成缺氧(反硝化作用)的條件。向下遊方向,污染暈與含氧補給水的混合可導致銨的硝化,盡管地下水中的濃度一般低於5 mg/L。處理後的廢水中,磷的濃度通常也相對較高,它在地下水中通常是以正磷酸根的形式存在的。由於磷酸根易於被含水層介質所吸附,或以低溶解度的磷酸鐵或磷酸鋁的形式沉澱,因此在污染暈中,磷酸根常常被強烈阻滯。
圖5-2-9 McVille污水處理場地中溶解有機碳的分布
Otis空軍基地污染暈的一個有趣現象是其含有來自家用洗潔劑中的化合物,根據測試這些物質所採用試劑的名稱(Methylene Blue Active Substances-亞甲藍活性物質),其在地下水中的含量通常用MBAS來表示。這些化合物一般由陰離子型表面活性劑組成,它們在地下水中的遷移性很強。洗潔劑在美國的使用大約始於1946年,1953年它們的使用量超過了肥皂。1964年之前,洗潔劑中最常用的表面活性劑是烷基苯磺酸鹽(ABS),它基本上是不可生物降解的。1964年,它開始被較易生物降解的表面活性劑——線性烷基磺酸鹽(LAS)所代替。MBAS在污染暈中的分布保存了洗潔劑使用的這一歷史,MBAS的最大濃度出現在污染暈的最前端(圖5-2-11),這些較高的濃度范圍反映了ABS的存在,而接近污染源的較低的濃度表明了污染暈中的LAS通過生物降解作用被去除了。
在污染暈中還檢測到了多種類型的其他合成揮發性和半揮發性化合物,它們均來源於家用洗潔劑及其他各種類型的產品,其中含量最大的是三氯乙烯(TCE)和四氯乙烯(PCE),它們在污染暈中的濃度已超過限制界限(Barber,1992)。
圖5-2-10 馬薩諸塞州Otis空軍基地硼在地下水垂直剖面中的分布(1978.5~1979.5)
5.2.3.2 化糞池系統
在北美缺乏下水道的大部分地區,化糞池系統是廢物處置的首選方法。據估計,美國三分之一的廢水是通過化糞池系統處理的。在該系統中,廢水在一個水池中通過沉澱作用與固體廢物分離,然後被排放到多孔排泄瓦筒中,進而釋放到濾床,在這里,廢水很快地滲入了土壤。另一種方法是在表層土壤中垂直安裝多孔下水管,用以代替濾床。化糞池系統的原理是,通過土壤的過濾,可除去廢水中的污染物。很遺憾的是,很多化糞池系統都在淺層潛水中形成了污染暈,它可對附近的水井和地表水體產生影響。
對化糞池系統污染暈水文地球化學過程的研究是近年來研究工作的一個焦點(Harman等,1996;Robertson等,1991,1998;Tinker,1991;Aravena and Robertson,1998;Robertson,1995;Robertson and Cherry,1995),其中最受關注的污染組分是硝酸根和磷酸根。硝酸根有時可導致嬰兒發生致命性的疾病——高鐵血紅蛋白症,這主要是由於嬰兒血攜氧能力的減弱而造成的。硝酸根也是水體富營養化的養分元素,地下水則是這些水體的補給源。磷酸根雖然比硝酸根的遷移能力弱,它也是水體富營養化的主要誘因之一。致病微生物的遷移也是可滲透性含水層值得關注的問題。
Harman等(1996)研究了加拿大安大略省一個學校的化糞池系統,該系統位於一個淺層潛水含水層之中。在化糞池中,廢水是一種強還原性的溶液,具有很高的DOC,其中的氮主要以銨的形式存在。它在從濾床向地下水面運動的過程中發生了很大的變化,氧化過程使得DOC減少了90%,銨則全部轉化成了硝酸根。污染暈中硝酸根的濃度表示在圖5-2-12中,有機碳的氧化形成了CO2,當含水層中沒有碳酸鹽礦物時,這將使地下水的pH值降低。當含水層中存在碳酸鹽礦物時,它們將發生溶解,對水溶液的pH值產生緩沖作用,使污染暈中Ca2+、Mg2+的濃度增大。
圖5-2-11 1983年Otis空軍基地地下水中MBAS的平面(a)和剖面(b)分布
Robertson等(1998)對比了安大略省各種水文地球化學環境下,10個化糞池系統污染暈中磷酸根的遷移能力。其中,—P平均濃度的變化范圍為0.03~4.9 mg/L,污染暈的延伸長度從1 m變化到70 m。這與此前人們的一般認識是矛盾的,通常認為磷酸根被強烈地吸附到了含水層固體表面上,對地下水不構成威脅。但這一觀測結果表明磷酸根在地下水中的遷移可成為一個重要的問題,尤其當小型湖泊周圍的住宅中具有獨立化糞池系統時更是如此。Robertson等得出結論認為,磷酸根在包氣帶中通過礦物的沉澱作用發生了衰減,這些礦物主要是藍鐵礦(Fe3(PO4)2· 8H2O)、紅 磷 鐵 礦(FePO4·2H2O)及磷鋁石(AlPO4· 2H2O)。水中磷酸根的平衡濃度受到了pH值的控制,在低pH值條件下的非鈣質含水層中,磷酸根的濃度受礦物溶解度的控制而保持在一個很低的水平上.在中等pH值條件下(這主要是由於含水層中含有碳酸鹽礦物而引起的),磷酸根的濃度可以很高。廢水一旦到達潛水面,尤其是當含水層中的金屬氧化物具有表面正電荷時,磷酸根含量的減少則主要是由含水層固體的吸附作用所控制的。由於吸附和沉澱作用的影響,磷酸根的遷移速度約為地下水的流速的二十分之一。氮、碳、氧、硫的穩定同位素在示蹤化糞池系統污染暈及相關的地球化學轉化作用中是非常有用的(Aravena等,1993;Aravena and Robertson,1998)。
圖5-2-12 一個化糞池系統污染暈中心線處硝酸根濃度等值線剖面圖
對化糞池系統致病細菌和病毒污染危害的評估,目前所作的研究工作還相對較少(Bitton and Gerba,1984;Bales等,1995;Canter and Knox,1985;Yates,1985)。很多微生物的分析和檢測都比較困難且昂貴,當前所進行的研究工作主要集中在確定指示性微生物的遷移特徵上,它能夠間接地表明相應致病微生物的潛在遷移特性。大腸桿菌常被用作為指示性細菌,人類的腸道病毒以及大腸桿菌噬菌體(一種能夠感染腸道大腸桿菌的病毒)常被用作為指示性病毒。
DeBorde等(1998)在研究美國蒙大拿州一個中學的化糞池系統時,闡述了其微生物的運移情況。該研究包括了對化糞池及污染暈中人類腸道病毒和大腸桿菌噬菌體的監測,以及在含水層中注入大腸桿菌噬菌體。雖然人類腸道病毒在化糞池和含水層中很少被檢測到,但在觀測孔中卻一直能夠檢測到大腸桿菌噬菌體。盡管含水層具有強烈的吸附作用,但在距注水井30 m之外的觀測孔中仍檢測到了細菌。由於含水層性質的變化多種多樣,因此對所有條件下致病微生物遷移的准確預測幾乎是不可能的。
5.2.3.3 污水灌溉
來自污水處理廠的污水及污泥經常被用來灌溉或施肥,這種處理方法對地下水化學成分的影響與化糞池系統是類似的,但其在含水層中的影響范圍要更大一些。用污水及污泥灌溉或施肥時對環境影響最大的污染物是硝酸根。如果場地下部具有好氧包氣帶,廢物中的有機氮或銨將被氧化為硝酸根。在飽水帶中,只要保持氧化性條件,硝酸根在遷移過程中將不發生任何轉化作用。Spalding等(1993)研究了內布拉斯加州的一個場地,在這里,一塊玉米田使用污泥進行施肥,從而在其下遊方向形成了一個很大的硝酸根污染暈(圖5-2-13)。濃度大於10 mg/L的的范圍在地下水位之下延伸了大約15 m,盡管一細粒沉積物透鏡體阻止了其進一步下滲。氮同位素分析證實氮的來源是動物排泄物。
地下水化學成分的其他變化是由於廢物中的DOC引起的,若大量的DOC到達了潛水面,地下水中將發生氧的消耗作用。在以色列,人們在一塊用廢水灌溉的耕地之下達30 m深的含水層中發現了厭氧過程的存在(Ronen等,1987),在這種條件下,有機碳通過包氣帶的遷移過程將長達15年。在前述內布拉斯加州的場地中,DOC在含水層深部引起了反硝化作用發生。地下水中其他主要離子的濃度也隨著硝酸根和DOC含量的增大而增加。污泥中金屬的含量一般很大,但吸附和沉澱作用通常限制了它們在地下水中的遷移。
圖5-2-13 使用污泥施肥形成的硝酸根污染暈
4. 純水機一直排廢水,是什麼原因
純水機一直排廢水的原因及解決辦法:
1、高壓開關失靈。
機器制滿水之後,開壓開關應該起跳,斷開電源。如果失靈,機器會一直工作,導致廢水常流。判斷方式:關閉壓力桶球閥,泵繼續在工作,肯定是高壓開關失靈,更換即可。
2、進水電磁閥失靈。
機器制滿水之後,泵停止工作,此時進水電磁閥應該切斷進水。此時如果廢水口一直流水,可能是進水電磁閥失靈。判斷方式:關閉進水球閥,廢水停止,可以肯定是進水電磁閥失靈,更換即可。
3、逆止閥失靈。
機器制滿水之後,泵停止工作,如果逆止閥失靈,壓力桶的人會倒流至RO膜殼,通過廢水口流出。判斷方式:關閉壓力桶球閥,廢水停止,可以肯定是逆止閥失靈,更換即可。
(4)經常性廢水擴展閱讀:
功能就是過濾水中的漂浮物,重金屬、細菌、病毒等都去除掉,它具較高的過濾技術,家用純水機一般為四級或五級過濾,笫一級為pp棉濾芯,笫二級和笫三級為活性炭(做的好的廠家可以把第二、三級合並成一級),笫四級為RO逆滲透膜,笫五級為精密活性炭,主要用於改善口感,因此純水機比較適合自來水污染較為嚴重的地區。
純水機的離子交換是一種特殊的固體吸附過程,它是由離子交換劑的電解質溶液中進行的。一般的離子交換劑是一種不溶於水的固體顆粒狀物質,即離子交換樹脂。
它能夠從電解質溶液中吸取某種陽離子或者陰離子,而把自身所含的另外一種帶相同電荷符號的離子等量地換出來,並釋放到溶液中去,這就是所謂的離子交換。按照所交換離子的種類,離子交換劑可分為陽離子交換劑和陰離子交換劑兩大類。
工業純水機由預處理系統、精處理系統、後處理系統三大部分組成。原水經PP濾芯(砂棒過濾器)、活性炭單元、軟水器單元等預處理系統後,使水中的懸浮物(顆粒物質)、膠體、有機物、硬度、微生物等雜質含量大大降低,以減輕後續的反滲透、電除鹽等精處理系統的處理負荷,延長其使用壽命。
凈化過程
第一級: 1微米過濾精度,去除鐵銹、泥沙等大顆粒雜質,保護增壓泵和後置濾芯;
第二級:去除余氯、氣味、異味和顆粒雜質等,保護反滲透膜濾芯;
第三級:有效截留砷、氟化物、鉛、鎘、鉻(六價)等污染物,有效降低水中的溶解性總固體(TDS);
第四級:優化出水口感;
濾芯功能
第一級:C1-DRO聚丙烯濾芯,1微米過濾精度,去除鐵銹、泥沙等大顆粒雜質,保護增壓泵和後置濾芯;
第二級:C2-DRO顆粒活性炭濾芯,去除余氯、氣味、異味和顆粒雜質等,保護反滲透膜濾芯;
第三級:C3-75-DRO反滲透膜濾芯,陶氏原裝反滲透膜組件,有效截留砷、氟化物、鉛、鎘、鉻(六價)等污染物,有效降低水中的溶解性總固體(TDS);
第四級:C4-DRO壓縮活性炭濾芯,優化出水口感;
純水機都帶有一個沖洗功能,這個功能主要是清洗RO膜的,主要是清除RO膜長時間使用後在表面產生的結垢、微生物等,對RO膜表面進行清洗保護。這個功能在家用機上來講,清洗沒有必要太頻繁。
從實用性和環保節約來講,建議採用手動清洗控制的純水機,因為自動控制純水機用開機自動清洗,大部分純水機基本上是制10升水沖洗一次,有的一停機再開機就沖洗,時間在10-60秒,這期間會浪費掉很多的水。
而且家用機的RO膜清洗時間可以控制在3-7天一次,一次30-40秒左右,特殊水質的情況下可以2天清洗一次。而且手動清洗的功能也是很方便,就是一個開關,打開一下就可以了。雖然有點麻煩,但是可以節約很多的水資源。
5. 非經常廢水池的含義
污水池或廢水池的主要特點是其存儲液體含酸鹼性,有毒有害物質,在水處理的過程中會產生溫度變化,所以對池的防滲要求也比較高。早期做污水存儲池,有著復雜的工藝,主要採用鋼筋混凝土與抗滲劑工藝,或者有些使用玻璃鋼等材料來建設污水池。用地下工程膜的產品之一:地工HDPE防滲膜來做污水池防滲層,最早只在一些由國際設計公司設計的項目中才會出現此類產品,也只有一些國家級重點工程或者外資項目建設中才要求使用,由於HDPE膜耐酸鹼,耐腐蝕(能耐80多種強酸強鹼等化學介質腐蝕),防滲性能好:水蒸汽滲透系數K<=1.0*10-13g.cm/c cm².s.pa,耐低溫:冷脆溫度-60度~-70度,耐高溫:熔化溫度110度~120度,池體採用HDPE膜做防滲,經濟效益好,綜合造價低,投資省,符合國家污水環保防滲標准,被得到廣泛的肯定與推廣,目前已經成為污水處理領域較為重要的防腐防滲方案。
目前,地工HDPE防滲膜等地下工程膜被常用於以下與污水相關的工程:
A類:臨時性污水存儲池防滲
化工企業在生產過程中,經常會出現要臨時存儲一些因設備改造或臨時施工而產生的污水,這些污水已經超出國家相關標准,只能先將其存儲起來,待處理合格後再排放,這就涉及到建設污水處理池,其最大的特點是臨時,但要求能存放污水,經常有企業來咨詢這方面的技術問題,看地下工程防滲膜是否可以使用在類似項目中。
對此,佶隆企業工程部進行簡單總結,具有可行性是肯定的,而且,其還有以下特點:
1、施工簡便:只要將池子挖好並做相應整平處理,不需要打混凝土墊層;
2、施工快速:不存在結構性混凝土所需的凝固期;
3、耐基礎變形:由於地工膜具有良好的斷裂延伸率,故能抵抗基礎沉降或基礎變形;
4、效果好:這是地工膜的最大特點;
5、使後後恢復:這是地工膜最大的特點,在使用後,只要將其收起,對池體進行回填,就可恢復原狀。
B類:污水處理池/廢水存儲池防滲
早期做污水存儲池,有著復雜的工藝,主要採用鋼筋混凝土與抗滲劑工藝,或者有些使用玻璃鋼等材料來建設污水池。在一些重點項目中,也有的使用到大理石,如電廠蓄水調節池等,這類工藝施工成本較高。HDPE地工膜可以使用在類似項目中,但其並不是完全獨立的,而是可以與鋼筋混凝土結構相輔助,以求達到更好的效果(如安裝設備的位置,就需澆築混凝土)。
在污水處理防滲等環境保護項目中,佶隆地工HDPE防滲膜主要應用於以下項目:
◆污水處理池防滲(造紙廠、化工廠、污水廠)
◆各類廢水存儲池防滲(養殖場廢水)
◆化工沉澱池、反應池、堆浸池防滲
◆有害液體收集池(含酸、含鹼液體收集處理池)
◆電廠調節池防滲
◆垃圾填埋場滲濾液收集池防滲
◆造紙廠污水池防滲
◆大型污水管道內襯防腐
◆對污水池滲漏結構的補救,改造,修復
『佶隆地工,國內著名的地下工程材料提供商與防腐防水工程專家,生產提供各類地下工程材料:地工防滲膜(防滲,HDPE防滲膜,LDPE防滲膜,EVA防滲膜,LLDPE防滲膜,超柔防滲膜),地工膜,特種防腐塑料等,提供工程設計與工程施工服務。』
◇有關防滲工程與環保科技上的疑問,或更多信息與內容,請來電來函。
6. 經常處理污水石灰常用嗎還是間隔用呀
熟石灰或生石灰在廢水處理用途上主要用來調節廢水的酸鹼度的,因為許多混凝劑的反應條件對廢水的PH值是具有要求的,而石灰剛好是強鹼性化合物,且石灰具有助凝效果,所以只要廢水的酸鹼度有偏差就必須用到石灰,所以是常用葯劑的。
熟石灰或生石灰做為污水絮凝沉降劑:
A、污水處理用熟石灰或生石灰目數高.
B、作為強鹼性葯劑絮凝中和酸性廢水或者重金屬廢水,使酸性廢水成為中性.
C、對廢水中膠體微粒能起助凝作用,並作為顆粒核增重劑,加速不溶物的分離.
D、能有效的去除磷酸根、硫酸根及氟離子等陰離子.
E、能破壞氨基磺酸根等絡合劑或鰲合劑對有些金屬離子的結合.
F、通過調節PH值對乳化液廢水有脫穩破乳的作用.
性能與價格比較:(廢水處理效果比較)
與普通石灰(即建築用石灰)相比,石灰對廢水的絮凝、沉降、脫色等效果明顯優於普通石灰的處理效果.與氫氧化鈉鹼液相比從處理效果看,石灰的用量還不到氫氧化鈉鹼液用量的一半,從絮凝、沉降、脫色等效果看也要優於氫氧化鈉鹼液;是公認的首選鹼性絮凝沉降劑,更多水處理熟石灰資料至http://www.shushihui.com/望採納。
7. 水污染的原因及防治措施
城市各物業水污染,一般是指人們在使用物業過程中大量排放的污染物和液體進入水體,使水質量下降,利用價值降低或喪失,並對生物和人體造成損害這一現象。這種損害還包括缺水、地表下沉和水土流失等現象。
全世界每年排放的污水據估計已超過7000億立方米,造成的淡水污染達55000億立方米,已相當於全球河水徑流量的44%以上。中國目前每年排放的廢水達349億噸。據預測,即使加以控制,到2000年全國工業廢水年排放量仍將達到500億噸,而城市污水也將達到200億噸。目前長江每年接納污水高達130億噸,平均每天吞下350萬噸。其中已監測到的污染物質多達40餘種,其中酚和氰化物達1800萬噸,砷及汞、鉻、鎘、鉛等有毒金屬1630萬噸,石油類近萬噸。有人預計,2000年後,長江每年容納的污水將達到300多億噸。目前,粗略統計,長江流域的工礦企業有4萬多個,城市污染源有1.6萬多個,而大的污染源有400多個。全國排放污水200萬噸以上的6個城市中有4個在長江沿線,即大工業城市上海、武漢、重慶和南京。黃河目前平均每天接納污水500萬噸。富饒的河套寧夏段氮氧的平均值和汞的平均值分別超標50%和36%,汞的最高值超標1.6倍,我國水質污染到了十分嚴重的地步。
城市物業的使用(生產、經營、辦公、居住等)是水污染的大戶,其水污染主要來源於工業廢液污染和生活廢水污染。當然還有其他類型的水污染,如垃圾填埋場污水滲漏產生的二次水污染、醫療污水污染、有毒危險品和放射性物質滲入水中造成的水污染,等等。
(一)工業廢液污染
工業廢液污染是自城市化以來已產生,並且是現在仍面臨的嚴峻的問題。歷史上發生了倫敦泰晤士河污染、日本水俁市怪病的例證。設在水俁灣的日本氮肥公司於1932年擴建成合成醋酸廠,並於1949年開始生產乙醛和氯乙烯,將生產中含大量甲基汞的廢水排入水俁灣,使灣內水質、沉積物和生物受汞的嚴重污染,造成水俁病的發生。該病的患者達2227人,其中死亡225人。
我國一半左右的城市是以地下水為供水水源的。據44個城市調查,有41個城市地下水受到醛、氰、砷等的污染,其中重度污染的有9個城市,中度污染的有17個城市。全國27條主要河流(包括長江、黃河、松花江、珠江、湘江等)現在都受到不同程度的污染,其中污染嚴重的有15條。如汾河(太原段)的含酚量超過國家標准3800倍,成為名符其實的「酚河」;淮河(蚌埠段)的含酚量和含汞量分別超過標準的56倍和9倍;作為上海飲用水源的黃浦江,每天要接納約500萬噸的工業和城市污水,每到夏天江水發黑發臭,1978年黑臭時間達106天之久。城市工業污水未經處理而直接排放,使地表水、地下水直接受到危害。市政水源井和單位自備水源井多數不符合飲用水質標准,有些水井含酚、鉻、胺基物等超過控制標准幾十倍到幾百倍。松花江自吉林化學工業公司下游23千米的江段水中含汞量每升高達2.3微克~20微克,比轟動世界的日本水俁病首發地水中含汞還高1.4倍~5倍。我國有些地區盲目地過量開采地下水,水資源枯竭,引起地面沉降,形成「漏斗」。河北平原因此而形成的「漏斗」有30多個,面積達1.3萬平方千米,大量水井被迫報廢,造成用水緊張。
(二)生活廢水污染
從全世界的范圍看,不管是發達國家還是發展中國家都有一個共同之處,就是水質污染的主要來源已逐漸發生變化。公害盛行的時代,工礦企業排污中的有毒、有害物質是使人畜、農業和漁業嚴重受害的主要來源;而進入大眾高消費社會,水質污染的來源已變為主要是生活污水中含有的過量的營養化物質排入水域,造成赤潮、水質發黑等水質污染現象。
較早發現赤潮是在日本東京灣,持續時間越來越長,而且逐年提前發生。20世紀60年代東京灣就發現赤潮,一般是每年的5月底至9月。1962年4月,東京灣一帶兩個水灣突然泛起赤潮,提前了50天左右。這是由於生活污水排放使水域越來越富有營養所造成的。
赤潮的發生,直接原因是生活污水中氮、磷等富有營養鹽類過量地流入水域特別是不易流動的封閉性內灣、內海和湖泊,這些水域流動性差,容易積蓄污濁物質和滋生藻類及其他水生物。大量的浮游微生物於是迅速繁殖和積聚,使水的顏色呈赤茶色,因而被稱為赤潮。
人們注意到赤潮的消長與工業生產和生活消費有一定的關系。20世紀70年代中期以後,生活排水中富營養污水是赤潮發生的主要原因。1973年中東石油危機致使燃料緊張,東京地區生產削減20%左右,赤潮現象非但沒有緩和,反而有所增加。因為雖然工業污水排出量減少,但生活排水的污濁成分如氮、磷等開始增大。1979年東京灣內排入的氮有55%是來自於生活排水,到1989年生活排水排出了58%的磷。這種生活公害的增長是大眾高消費社會的一個顯著特徵。廣州現在每天污水排放達到200多萬噸,生活污水是其主要部分。推廣水沖廁所使馬桶絕跡,加上其他生活污水都來不及處理就直接排入江中,嚴重污染了珠江水域。
物業水污染除了工業廢液、生活污水外,還有如醫療污水與污物污染、城市路面排水不暢、坑坑窪窪、積水養蚊蠅等污染。
二、物業水污染的危害
物業在使用過程中,人們的一切活動所造成的排入水體的污染物超過該物質在水體中的極限容量或水對該物質的自凈能力,就會破壞水體的原有用途,形成對水體本身的污染、底泥污染和水生物的污染。這類水體的系列污染必然給人類和自然界帶來災難性的後果。水污染造成的危害,一般來說可分為損害人體健康、破壞自然資源和降低經濟活動效益三個方面。
(一)水污染有損人體健康
水不僅是重要的環境因素,也是人體的重要組成部分。成人體內含水量約占體重的65%,每人每天生理需水量約為2升~3升。人體內的一切生理活動,如體溫調節、營養輸送、廢物排泄等都需要水來完成。因此,水體污染會直接或間接損害人類的身體健康。
我國城市水污染已經相當普遍,近年發展到十分嚴重的地步,污水危害健康的事件和事故逐年上升。如1992年,河北定州市因飲用了被甲醇污染後的水,導致數十人視力障礙,其中一部分失明;1992年江蘇徐州市和1999年1月福州市均發生了化糞池與蓄水池相通,使糞水等污物進入蓄水池和水箱,被人飲用後而使多數人急性腹瀉的惡性事故。城市江河水域的飲用水源嚴重污染,使不少城市發生水質性缺水。如淮河於流水域污染過重,沿江城市居民一度用礦泉水煮飯;蘇州河水墨黑發亮更是家喻戶曉;上海等城市已經不能從近處取水供城市居民用水需要;廣州市處於水域寬廣的珠江流域中心,珠江穿城而過,四周水網密布,但現在由於污染過甚,已跨入水質性缺水城市的行列。
另外,在被污染的水中,有機污染物中的苯酚類、醛類、石油類和有機氯等也對人體健康有直接的、深遠的危害。以有機氯為代表的合成高分子物質,大多數極難在自然環境中被分解,危害時間較長。這些物質和重金屬一樣,能夠被水生生物等富集成百萬倍,然後通過食物鏈進入人體,危害健康。據研究,這種危害可延續到第二代、甚至第三代。隨著有機農葯的廣泛使用,有機氯污染已經成為世界性的問題。
(二)水污染破壞自然資源
水污染的危害還突出地表現在對自然資源的破壞方面,尤其是水產資源受到污染之後,遭到破壞甚至毀滅性的情況極為嚴重。
人們在生產、生活過程中,排放出的含有大量需氧污染物(碳水化合物、脂肪、蛋白質等)的污水與污物進入水體之後,在水中溶解氧的作用下,逐漸分解為二氧化碳和水等,這一過程需要消耗大量的氧。但在正常狀態下,20℃時,水中含有溶解氧僅為9.17毫升/升,由於需氧污染物分解的消耗,使水中溶解氧的含量急劇下降,甚至產生無氧層。這會使依靠溶解氧生存的魚類窒息或大量死亡。同時,缺氧狀態還會使水中的細菌特別是厭氧菌大量繁殖,並促進有機物分解放出甲烷、硫化氫等有毒氣體,使水質進一步惡化,就會更不利於魚類的生存。如果污染物持續不斷地注入,水中則長期處於缺氧狀態,魚類資源被破壞,水體也會變黑變臭,成為有毒、有害的死水。
污水中的氮、磷等植物營養素所造成的「富營養化」,也可以成為缺氧危害的重要因素。水中含有過分豐富的植物營養素時,水中的藻類等低等植物便大量繁殖,占據大量空間,並隔絕空氣與水面的接觸,使水中的溶解氧降低。進一步發展的結果,是帶有膠性膜的蘭藻類取代硅藻、綠藻,占據整個水域。蘭藻不適合作為魚類食料,而且有些種類有毒。蘭藻的大量繁殖,使魚類的生存空間縮小,死亡藻體又大量消耗溶解氧,會導致魚類缺氧死亡。1972年8月日本瀨戶內海一次「赤潮」就造成1428萬尾魚死亡,損失71億日元。「赤潮」實際上是因紅藻大量繁殖引起海水變色的現象。湖泊富營養化的進一步發展,還會使湖泊淤積為沼澤,最終演化為乾地而斷絕水資源。
污水中的酸、鹼和無機鹽污染對農業土壤的影響也很大。例如,給農田長期灌溉pH值小於5.5的酸性水,土壤中硝化細菌的生長就會受到抑制,氮肥不能充分釋放,磷酸鹽肥效也會降低,土壤中鈣、鎂成分容易流失,會使作物產量大幅度下降,甚至成為不毛之地。另外,用鹼和無機鹽濃度較高的水灌溉農田,也會造成土壤鹽鹼化和農作物減產。
(三)水污染會降低經濟效益
水體污染對工業、農業等生產活動的影響主要表現為資源、能源的利用效率低和浪費嚴重,生產的產品質量下降或不穩定等,直接導致產出率及產出水平低下、產品價格提高、喪失市場競爭力,最終使企業經濟效益降低,甚至出現虧損。例如,大連棉織廠原有7種產品被評為全國各省的優質產品,現在因水質遭到污染,水洗工藝達不到要求,結果42萬米彩色織布只有2萬米達到優質標准。淮河流域蚌埠段和淮南段,因水質污染影響供水質量,在1978年11月到1979年5月半年之內,使沿岸工廠生產的產品全部降級為次品。據對15個工廠統計,因此而停產造成的損失達1000萬元。吉林化肥廠用被污染的江水做冷卻水,結果使冷卻設備和管道加速結垢、堵塞,導致冷卻效率降低了30%,合成氨年產量減產1萬余噸。此外,城市近郊工業區的污水污染農田,造成經常性的賠款。如1981年,上海市賠償93.2萬元,重慶市賠償63.6萬元。類似情況在全國經常發生,造成的經濟損失十分嚴重。
三、物業水污染的防治
生活污水和工業廢液等的隨意排放是造成物業水污染的主要原因。因此,防止水體污染首先要從斷源開始,即控制污水的排放,將「防」、「治」、「管」三者結合起來。具體來說,應從以下幾個方面著手:
(一)減少污(廢)水的排放量
改變傳統的工業發展模式,使工業用水重復利用並設法回收廢液,盡量減少工業用水總量,這是減少污水排放量的基本方法。通過實施超標准用水高價收費的差別價格,促使工礦企業盡量縮減用水量,也不失為一項有效措施。例如採用無水印染工藝代替水染工藝,高爐加裝煤氣洗滌用水循環使用設備,在互無影響的前提下實現一水多用等,都可以大量節約用水量。現在許多國家正在研究把處理凈化的城市污水開發為新水源,將其再利用於工農業、漁業和城市居民生活的方法,也是減少和節約用水的一種有效途徑。
(二)降低所排污水的有害程度
通過綜合利用或技術改進盡量降低污染物的濃度,也能有效減少污染。例如,採用無氰電鍍工藝代替氰電鍍法,用軟性洗滌劑代替不能自然分解的硬性洗滌劑。再例如,造紙黑液是很主要的污染源之一,含有大量的鹼和其他有機物,通過綜合利用,從中回收鹼和二甲基亞碸等有用物質,就可變成一種生產資源。對於生活排水,要控制其污染物質的量。例如,日本東京近旁的崎玉縣水域有機污染物質73%是生活排水引起的,該縣1992年首先開展減少生活排水污染物質的運動,其方法訂得很具體,如廚房洗碗槽要裝能濾水的垃圾袋,淘米水留著洗碗,減少其排出,嚴重影響水質的醬湯汁、酒和食用油不得進入下水道,洗碗應先擦後洗,減少洗滌劑的使用量,水要盡量節約和重復使用等等,這是有效減少水污染的方法。
(三)加強廢水處理環節,杜絕任意排放
為確保水體不受污染,必須在廢水排入水體之前進行妥善處理,以免影響水體衛生狀態和經濟價值。對含有特殊有害物質的工業廢液,應在工廠內設置專門的處理或回收設施進行處理,達到規定的污水排放標准才能排入公共污水水道。生活污水的排放也要經過處理後才准排入自然水體。
污水處理還涉及到下水道污水處理後留下的大量污泥。隨著污水處理水平的提高,污泥不像以前那樣直接排入江河,所以污泥量呈增加趨勢。污泥應及時填埋,否則會給新一輪的污水處理增加負擔和成本。現已開發利用污泥製作一些建築材料的技術:將下水道的污泥焚燒,用燒後的灰製作建築材料。日本名古屋1992年污泥灰的利用率已達到23%,這是一個值得借鑒的環保方法。
(四)加強對水體及其污染源的監測管理
經常對物業用水和排水進行監測,了解物業水污染等情況及其是否符合國家有關規定和標准,確保物業使用者的用水安全和身體健康,同時,確保不造成對外界的影響和危害。這樣可使物業水污染的防治工作有目標有方向的進行,是防止水污染嚴重化不可缺少的有效手段。
8. 有哪些廢水處理的基本方法
1、物理性方法。
物理性方法是對污水中的物質進行分離處理的一種方法,主要內是將污水中非溶解性的物質容給分離出來,在處理的過程中是不會改變其化學的性質的,經常用的具體方法包括使用重力進行分離,使用離心力進行分離,反滲透的方法以及氣浮法等。
2、生物性方法。
生物性方法主要是在污水中加入一些微生物,利用微生物代謝的功能將污水中的有機物給氧化成為穩定的無機物質,這樣污水被凈化的更加的徹底,要比物理性方法要好很多。
3、化學性方法。
化學性方法是利用化學的反應將污水中膠狀及溶解物來進行處理,大多會用於對工業性污水的處理,處理污水的效果確實是不錯的,但是就是費用比較高,也可能產生二次污染。
9. 什麼是電廠里經常性廢水的污染因子如題 謝謝了
PH值
10. 火電廠非經常性廢水有哪些