当前位置:首页 » 净水方式 » 己内酰胺离子交换废水

己内酰胺离子交换废水

发布时间: 2021-03-30 20:46:10

A. 因阳离子交换树脂在己内酰胺生产过程中的应用原理是什么

是阴阳离子。是将己内酰胺溶液中的无机杂质so42+和NH4-通过取代树脂上的官能基团达到除去无机杂质的目的,

B. 中科院化学研究所于萍

出生年月:1963年3月 学位:博士 职称职务:教授、博士生导师 学科专业:应用化学
主要研究方向:1.水与废水处理 2.金属腐蚀与防护 3.膜分离
简 历
1983年毕业于湖南大学化学化工系,获学士学位;1988年在电力部西安热工研究院获硕士学位;1999年在武汉水利电力大学获博士学位;2001年-2002年在英国Birmingham大学访问学者。担任过技术员、工程师、副教授及教授、博士生导师。 学术兼职 中国化工学会工业水处理专业委员会委员;中国锅炉水处理协会理事;中国土木工程学会水工业分会工业给排水委员会常委;中国金属与非金属覆盖层标准化技术委员会腐蚀试验分会委员; 湖北省机械工业学会表面处理与涂装专业委员会理事;卫生部“健康相关产品”(涉水产品)评审委员;《工业用水与废水》杂志编委;《工业水处理》杂志编委。 教学情况 主讲本科生《化学工程基础》、《化工过程开发》等课程。 承担科研项目情况 (1) 中国石油化工股份有限公司“十条龙”攻关项目:己内酰胺电去离子精制与浓缩耦合技术 (2) 国家留学回国人员基金:以废旧橡胶为介质的好氧生物膜反应器处理含氨氮废水的性能与机理研究 (3)中国石油化工股份有限公司项目:己内酰胺水溶液的吸附精制 (4)湖北省自然科学基金:有机硅纳米绝缘涂料的表面与绝缘性能研究 获奖情况(部分) (1)2004年获湖北省教学成果一等奖(理科化学类专业化工课程体系和教学内容改革研究) (2)2003年获中国电力科学技术三等奖(“三相流化床烟气脱硫技术及其技术经济分析”) (3)2003年获湖北省科技进步二等奖(“三相流化床烟气除尘脱硫一体化”) 出版专著与教材 (1)《火力发电厂专业外语》,武汉水利电力大学出版社,1999年 (2)《火力发电厂水处理及水质控制》,中国电力出版社,2000年 (3)《工业锅炉水处理技术》,气象出版社,2002年 (4)《锅炉水处理习题集》,地震出版社,2002年 (5)《现代工业水处理技术与应用》,中国石化出版社,2004年 (6)《绝缘与润滑材料化学》,武汉大学出版社,2005年 主要科研论文 1、于萍,罗运柏,钱达中,三相逆流离子交换-除CO2联合水处理床中离子交换性能的研究,离子交换与吸附,2000,16(4):337 2、于 萍,罗运柏,WHEC-11型防腐溶垢成膜剂的应用研究,热力发电,2001,30(3):24-25 3、于 萍,姚 琳,罗运柏,高浓度含酚废水处理的新工艺,工业水处理,2002,22(9):5-8 4、Ping Yu, Yun Luo, Noval water treatment process-combined cationic ion-exchange bed and degasifier in a three-phase fluidized bed, Desalination, 2002, 151:145-152 5、P. Yu, D.-M. Liao, Y.-B. Luo, Z.-G. Chen. Studies of Benzotriazole and Tolytriazoleas Inhibitors for Copper Corrosion in Deionized Water. Corrosion, 2003, 59(4) :314-318 6、于萍,陈启平,罗运柏,水电站大坝廊道内析出物的分析与试验研究,水利发电学报,2004,23(1):79-83

C. 21世纪化学重大事件谁能告诉我

公元1900年
英国E.卢瑟福和法国M.居里发现镭辐射由α、β、γ射线组成

德国F.E.多恩发现氡222

美国M.冈伯格发现三苯甲基自由基

公元1901年
美国G.N.路易斯提出逸度概念

法国 F.-A.V.格利雅发明格利雅试剂

公元1902年
法国M.居里和P.居里分离出90毫克氯化镭

德国W.奥斯特瓦尔德对催化下了确切的定义

公元1903年
英国E.卢瑟福和F.索迪提出放射性嬗变理论

公元1906年
俄国M.С.茨维特发明色谱分析法

德国H.费歇尔提出蛋白质的多肽结构并合成分子量为1000的多肽

公元1907年
美国G.N.路易斯提出活度概念

公元1909年
美国L.H.贝克兰制成酚醛树脂

德国F.哈伯合成氨试验成功

公元1910年
俄国C.B.列别捷夫制成丁钠橡胶

公元1911年
英国E.卢瑟福提出原子的核模型

公元1912年
奥地利F.普雷格尔建立有机元素微量分析法

德国W.H.能斯脱提出热力学第三定律

德国M.von劳厄发现晶体对X射线的衍射

瑞典G.C.de赫维西和德国F.A.帕内特创立放射性示踪原子法

德国F.克拉特和A.罗莱特制成聚乙酸乙烯酯

公元1913年
丹麦N.玻尔提出量子力学的氢原子结构理论

英国W.L.布喇格和俄国Г.В.武尔夫分别得出布喇格-武尔夫方程

英国F.索迪提出同位素概念

美国K.法扬斯发现镤234

英国H.G.J.莫塞莱证实原子序数与原子核内的正电荷数相等

德国M.博登施坦提出化学反应中的链反应概念

英国J.J.汤姆孙和F.W.阿斯顿发现氖有稳定同位素氖20和氖22

公元1916年
德国W.科塞尔提出电价键理论

美国G.N.路易斯提出共价键理论

美国I.朗缪尔导出吸附等温方程

荷兰P.德拜和瑞士P.谢乐发明 X射线粉末法

公元1919年
英国F.W.阿斯顿制成质谱仪

英国E.卢瑟福发现人工核反应

公元1920年
德国H.施陶丁格创立高分子线链型学说

公元1921年
德国O.哈恩发现同质异能素

公元1922年
捷克斯洛伐克J.海洛夫斯基发明极谱法

公元1923年
丹麦J.N.布伦斯惕提出酸碱质子理论

美国G.N.路易斯提出路易斯酸碱理论

英国P.德拜和德国E.休克尔提出强电解质稀溶液静电理论

公元1924年
德国W.O.赫尔曼和W.黑内尔制成聚乙烯醇

法国 L.-V.德布罗意提出电子等微粒具有波粒二象性假说

公元1925年
美国H.S.泰勒提出催化的活性中心理论

公元1926年
奥地利E.薛定谔提出微粒运动的波动方程

丹麦N.J.布耶鲁姆提出离子缔合概念

公元1927年
苏联H.H.谢苗诺夫和英国C.N.欣谢尔伍德分别提出支链反应理论

德国H.戈尔德施米特提出结晶化学规律

公元1928年
印度C.V.喇曼发现喇曼光谱

英国W.H.海特勒、F.W.伦敦和奥

地利E.薛定谔创立分子轨道理论

德国O.P.H.狄尔斯和K.阿尔德发现双烯合成

公元1929年
英国A.弗莱明发现青霉素

德国A.F.J.布特南特等分离并阐明性激素结构

公元1930年
英国C.N.欣谢尔伍德提出催化中间化合物理论

公元1931年
美国H.C.尤里发现氘(重氢)

美国L.C.鲍林和J.C.斯莱特提出杂化轨道理论

公元1932年
英国J.查德威克发现中子

中国化学会成立

公元1933年
美国L.C.鲍林提出共振论

E.春克尔制成丁苯橡胶

公元1934年
法国F.约里奥-居里和I.约里奥-居里发现人工放射性
英国E.W.福西特等制成高压聚乙烯
英国E.卢瑟福发现氚
W.库恩提出高分子链的统计理论

公元1935年
美国H.艾林、英国J.C.波拉尼和A.G.埃文斯提出反应速率的过渡态理论
美国W.H.卡罗瑟斯制成聚己二酰己二胺
英国B.A.亚当斯和E.L.霍姆斯合成离子交换树脂

公元1937年
意大利C.佩列尔和美国E.G.塞格雷人工制得锝
德国O.拜尔制成聚氨酯
英国帝国化学工业公司生产软质聚氯乙烯

公元1938年
德国P.施拉克制成聚己内酰胺
德国O.哈恩等发现铀的核裂变现象

公元1939年
法国M.佩雷发现钫
美国P.J.弗洛里提出缩聚反应动力学方程

公元1940年
美国E.M.麦克米伦和P.H.艾贝尔森人工制得镎
美国G.T.西博格和E.M.麦克米伦等人工制得钚
美国D.R.科森和E.G.塞格雷等发现砹

苏联Г.Н.弗廖罗夫和К.А.彼得扎克发现自发裂变

公元1941年
英国J.R.温菲尔德和J.T.迪克森制成聚对苯二甲酸乙二酯

公元1942年
意大利E.费密等在美国建成核反应堆
美国P.J.弗洛里和M.L.哈金斯提出高分子溶液理论

公元1943年
美国S.A.瓦克斯曼从链霉菌中析离出链霉素

公元1944年
美国G.T.西博格、R.A.詹姆斯和L.O.摩根人工制得镅
美国G.T.西博格、R.A.詹姆斯和A.吉奥索人工制得锔
美国R.B.伍德沃德合成奎宁碱
美国G.T.西博格建立锕系理论

公元1945年
瑞士G.K.施瓦岑巴赫利用乙二胺四乙酸二钠盐进行络合滴定
S.鲁宾研究出扣式电池
美国J.A.马林斯基和L.E.格伦丁宁等分离出钷

公元1949年
美国S.G.汤普森、A.吉奥索和G.T.西博格人工制得锫

公元1950年
美国 S.G.汤普森、K.Jr.斯特里特、A.吉奥索和G.T.西博格人工制得锎
苏联В.А.卡尔金提出非晶态高聚物的三个物理状态(玻璃态、高弹态、粘流态)

公元1952年
美国A.吉奥索等从氢弹试验后的沉降物中发现锿和镄
日本福井谦一提出前线轨道理论
英国A.T.詹姆斯和A.J.P.马丁发明气相色谱法
美国L.E.奥格尔提出配位场理论

公元1953年
美国J.D.沃森和英国F.H.C.克里克提出脱氧核糖核酸的双螺旋结构模型
联邦德国K.齐格勒发现烷基铝和四氯化钛可在常温常压下催化乙烯聚合

公元1953~1954年
联邦德国K.齐格勒和意大利G.纳塔发明齐格勒-纳塔催化剂

公元1954年
联邦德国E.G.维蒂希发现维蒂希试剂
美国R.B.伍德沃德合成番木鳖碱
意大利 G.纳塔等用齐格勒-纳塔催化剂制成等规聚丙烯

公元1955年
美国A.吉奥索、S.G.汤普森、G.T.西博格等人工制得钔
英国F.桑格测定了胰岛素的一级结构
美国杜邦公司制成聚酰亚胺
澳大利亚A.沃尔什发明原子吸收光谱法

公元1956年
英国帝国化学工业公司生产活性染料

公元1957年
英国J.C.肯德鲁测定了鲸肌红蛋白的晶体结构
英国A.凯勒制得聚乙烯单晶并提出高分子链的折叠理论

公元1958年
美国A.吉奥索等和苏联Г.Н.弗廖洛夫等分别人工制得锘
联邦德国R.L.穆斯堡尔发现穆斯堡尔谱
美国古德里奇公司制成顺式-聚异戊二烯

公元1950~1959年
美国R.B.伍德沃德、英国R.罗宾森、英国J.W.康福思和美国W.S.约翰森等完成胆甾醇、可的松、表雄酮和睾丸酮等的全合成

公元1960年
美国R.B.伍德沃德合成叶绿素
美国R.S.耶洛等提出放射免疫分析法
P.B魏斯用分子筛做择形催化剂·P.B.哈密顿用液相色谱法分离氨基酸

公元1961年
国际纯粹与应用化学联合会通过12C=12的原子量基准
美国A.吉奥索等人工制得铹
美国C.S.马维尔等制成聚苯并咪唑

公元1962年
英国N.巴利特合成六氟合铂酸氙
美国R.B.梅里菲尔德发明多肽固相合成法

公元1963年
美国R.G.皮尔孙提出软硬酸碱理论

公元1964年
苏联Г. Н. 弗廖洛夫等人工制得104号元素

公元1965年
美国R.B.伍德沃德和R.霍夫曼提出分子轨道对称守恒原理
中国全合成结晶牛胰岛素
美国通用电气公司制成聚苯醚

D. 聚己内酰胺的聚合方法

工业上多采用这种方法。纯己内酰胺不能聚合,必须加入少量的水、酸、氨或6-氨基己酸、耐纶单体盐等物质才能聚合。有水参与的己内酰胺聚合过程包括下列反应:

水是主要的引发剂。反应首先是己内酰胺在高温(约260℃)下水解开环,生成6-氨基己酸〔式(1)〕。水量的多少影响反应的快慢和最终平衡时低分子化合物的含量。添加羧酸可以加速水解开环和聚合反应。占优势的聚合反应是己内酰胺逐步加成于线型分子的末端氨基,形成高分子链〔式 (2)〕和线型分子间氨基与羧基的缩聚反应〔式 (3)〕。反应后期还有酰胺交换反应及酸解、胺解等平衡反应发生。
工业上己内酰胺水解聚合方法一般采用间歇的高压釜法和连续聚合法,而以后者居多。树脂切片通常要经过水洗,以萃取单体和低聚物,再经真空干噪后供纺丝加工或注射成型用。 又称单体浇铸聚合,即无水的己内酰胺在碱金属、碱土金属的存在下,于220℃以上加热,几分钟后即能聚合成粘度极高的聚合物。此法曾称为快速聚合或催化聚合。其反应机理为,先生成内酰胺负离子:

然后进行增长反应:

这就是50年代末发展起来的在模具内聚合成型的单体浇铸聚合。产品称为MC尼龙,中国称为铸型尼龙。此法由于是在常压下浇铸,工艺设备和模具简单,成型尺寸不受限制,适于制造几公斤以至几百公斤的大型制件。制品因在较低温度下成型,结晶度较高。聚合物的分子量很大(3.5万~7万),因此机械强度比耐纶6、耐纶66高。 单体在无水的条件下和氯化氢、胺盐、金属卤化物等存在下聚合。此法由于聚合转化率和产物的聚合度不高,还仅限于实验室研究。

E. 20世纪化学发展过程中重大的事件急要!!!

10月8日 23:48 元1900年
英国E.卢瑟福和法国M.居里发现镭辐射由α、β、γ射线组成

德国F.E.多恩发现氡222

美国M.冈伯格发现三苯甲基自由基

公元1901年
美国G.N.路易斯提出逸度概念

法国 F.-A.V.格利雅发明格利雅试剂

公元1902年
法国M.居里和P.居里分离出90毫克氯化镭

德国W.奥斯特瓦尔德对催化下了确切的定义

公元1903年
英国E.卢瑟福和F.索迪提出放射性嬗变理论

公元1906年
俄国M.С.茨维特发明色谱分析法

德国H.费歇尔提出蛋白质的多肽结构并合成分子量为1000的多肽

公元1907年
美国G.N.路易斯提出活度概念

公元1909年
美国L.H.贝克兰制成酚醛树脂

德国F.哈伯合成氨试验成功

公元1910年
俄国C.B.列别捷夫制成丁钠橡胶

公元1911年
英国E.卢瑟福提出原子的核模型

公元1912年
奥地利F.普雷格尔建立有机元素微量分析法

德国W.H.能斯脱提出热力学第三定律

德国M.von劳厄发现晶体对X射线的衍射

瑞典G.C.de赫维西和德国F.A.帕内特创立放射性示踪原子法

德国F.克拉特和A.罗莱特制成聚乙酸乙烯酯

公元1913年
丹麦N.玻尔提出量子力学的氢原子结构理论

英国W.L.布喇格和俄国Г.В.武尔夫分别得出布喇格-武尔夫方程

英国F.索迪提出同位素概念

美国K.法扬斯发现镤234

英国H.G.J.莫塞莱证实原子序数与原子核内的正电荷数相等

德国M.博登施坦提出化学反应中的链反应概念

英国J.J.汤姆孙和F.W.阿斯顿发现氖有稳定同位素氖20和氖22

公元1916年
德国W.科塞尔提出电价键理论

美国G.N.路易斯提出共价键理论

美国I.朗缪尔导出吸附等温方程

荷兰P.德拜和瑞士P.谢乐发明 X射线粉末法

公元1919年
英国F.W.阿斯顿制成质谱仪

英国E.卢瑟福发现人工核反应

公元1920年
德国H.施陶丁格创立高分子线链型学说

公元1921年
德国O.哈恩发现同质异能素

公元1922年
捷克斯洛伐克J.海洛夫斯基发明极谱法

公元1923年
丹麦J.N.布伦斯惕提出酸碱质子理论

美国G.N.路易斯提出路易斯酸碱理论

英国P.德拜和德国E.休克尔提出强电解质稀溶液静电理论

公元1924年
德国W.O.赫尔曼和W.黑内尔制成聚乙烯醇

法国 L.-V.德布罗意提出电子等微粒具有波粒二象性假说

公元1925年
美国H.S.泰勒提出催化的活性中心理论

公元1926年
奥地利E.薛定谔提出微粒运动的波动方程

丹麦N.J.布耶鲁姆提出离子缔合概念

公元1927年
苏联H.H.谢苗诺夫和英国C.N.欣谢尔伍德分别提出支链反应理论

德国H.戈尔德施米特提出结晶化学规律

公元1928年
印度C.V.喇曼发现喇曼光谱

英国W.H.海特勒、F.W.伦敦和奥

地利E.薛定谔创立分子轨道理论

德国O.P.H.狄尔斯和K.阿尔德发现双烯合成

公元1929年
英国A.弗莱明发现青霉素

德国A.F.J.布特南特等分离并阐明性激素结构

公元1930年
英国C.N.欣谢尔伍德提出催化中间化合物理论

公元1931年
美国H.C.尤里发现氘(重氢)

美国L.C.鲍林和J.C.斯莱特提出杂化轨道理论

公元1932年
英国J.查德威克发现中子

中国化学会成立

公元1933年
美国L.C.鲍林提出共振论

E.春克尔制成丁苯橡胶

公元1934年
法国F.约里奥-居里和I.约里奥-居里发现人工放射性
英国E.W.福西特等制成高压聚乙烯
英国E.卢瑟福发现氚
W.库恩提出高分子链的统计理论

公元1935年
美国H.艾林、英国J.C.波拉尼和A.G.埃文斯提出反应速率的过渡态理论
美国W.H.卡罗瑟斯制成聚己二酰己二胺
英国B.A.亚当斯和E.L.霍姆斯合成离子交换树脂

公元1937年
意大利C.佩列尔和美国E.G.塞格雷人工制得锝
德国O.拜尔制成聚氨酯
英国帝国化学工业公司生产软质聚氯乙烯

公元1938年
德国P.施拉克制成聚己内酰胺
德国O.哈恩等发现铀的核裂变现象

公元1939年
法国M.佩雷发现钫
美国P.J.弗洛里提出缩聚反应动力学方程

公元1940年
美国E.M.麦克米伦和P.H.艾贝尔森人工制得镎
美国G.T.西博格和E.M.麦克米伦等人工制得钚
美国D.R.科森和E.G.塞格雷等发现砹

苏联Г.Н.弗廖罗夫和К.А.彼得扎克发现自发裂变

公元1941年
英国J.R.温菲尔德和J.T.迪克森制成聚对苯二甲酸乙二酯

公元1942年
意大利E.费密等在美国建成核反应堆
美国P.J.弗洛里和M.L.哈金斯提出高分子溶液理论

公元1943年
美国S.A.瓦克斯曼从链霉菌中析离出链霉素

公元1944年
美国G.T.西博格、R.A.詹姆斯和L.O.摩根人工制得镅
美国G.T.西博格、R.A.詹姆斯和A.吉奥索人工制得锔
美国R.B.伍德沃德合成奎宁碱
美国G.T.西博格建立锕系理论

公元1945年
瑞士G.K.施瓦岑巴赫利用乙二胺四乙酸二钠盐进行络合滴定
S.鲁宾研究出扣式电池
美国J.A.马林斯基和L.E.格伦丁宁等分离出钷

公元1949年
美国S.G.汤普森、A.吉奥索和G.T.西博格人工制得锫

公元1950年
美国 S.G.汤普森、K.Jr.斯特里特、A.吉奥索和G.T.西博格人工制得锎
苏联В.А.卡尔金提出非晶态高聚物的三个物理状态(玻璃态、高弹态、粘流态)

公元1952年
美国A.吉奥索等从氢弹试验后的沉降物中发现锿和镄
日本福井谦一提出前线轨道理论
英国A.T.詹姆斯和A.J.P.马丁发明气相色谱法
美国L.E.奥格尔提出配位场理论

公元1953年
美国J.D.沃森和英国F.H.C.克里克提出脱氧核糖核酸的双螺旋结构模型
联邦德国K.齐格勒发现烷基铝和四氯化钛可在常温常压下催化乙烯聚合

公元1953~1954年
联邦德国K.齐格勒和意大利G.纳塔发明齐格勒-纳塔催化剂

公元1954年
联邦德国E.G.维蒂希发现维蒂希试剂
美国R.B.伍德沃德合成番木鳖碱
意大利 G.纳塔等用齐格勒-纳塔催化剂制成等规聚丙烯

公元1955年
美国A.吉奥索、S.G.汤普森、G.T.西博格等人工制得钔
英国F.桑格测定了胰岛素的一级结构
美国杜邦公司制成聚酰亚胺
澳大利亚A.沃尔什发明原子吸收光谱法

公元1956年
英国帝国化学工业公司生产活性染料

公元1957年
英国J.C.肯德鲁测定了鲸肌红蛋白的晶体结构
英国A.凯勒制得聚乙烯单晶并提出高分子链的折叠理论

公元1958年
美国A.吉奥索等和苏联Г.Н.弗廖洛夫等分别人工制得锘
联邦德国R.L.穆斯堡尔发现穆斯堡尔谱
美国古德里奇公司制成顺式-聚异戊二烯

公元1950~1959年
美国R.B.伍德沃德、英国R.罗宾森、英国J.W.康福思和美国W.S.约翰森等完成胆甾醇、可的松、表雄酮和睾丸酮等的全合成

公元1960年
美国R.B.伍德沃德合成叶绿素
美国R.S.耶洛等提出放射免疫分析法
P.B魏斯用分子筛做择形催化剂·P.B.哈密顿用液相色谱法分离氨基酸

公元1961年
国际纯粹与应用化学联合会通过12C=12的原子量基准
美国A.吉奥索等人工制得铹
美国C.S.马维尔等制成聚苯并咪唑

公元1962年
英国N.巴利特合成六氟合铂酸氙
美国R.B.梅里菲尔德发明多肽固相合成法

公元1963年
美国R.G.皮尔孙提出软硬酸碱理论

公元1964年
苏联Г. Н. 弗廖洛夫等人工制得104号元素

公元1965年
美国R.B.伍德沃德和R.霍夫曼提出分子轨道对称守恒原理
中国全合成结晶牛胰岛素
美国通用电气公司制成聚苯醚

公元1967年
美国菲利普斯公司制成聚苯硫醚

公元1968年
美国A.吉奥索等人工制得104 号元素
苏联Г. Н. 弗廖洛夫等人工制得105号元素

公元1969年
比利时I.普里戈金提出耗散结构理论

公元1970年
美国A.吉奥索等人工制得105 号元素

公元1973年
美国R.B.伍德沃德全合成维生素B12
美国杜邦公司合成聚对苯二甲酰对苯二胺

公元1974年
苏联Г.Н.弗廖洛夫等和美国A.吉奥索等分别人工制得 106号元素

公元1976年
苏联Г. Н. 弗廖洛夫等人工制得107号元素

公元1981年
联邦德国G.明岑贝格等人工制得107号元素

公元1982年
联邦德国G.明岑贝格等人工制得109号元素

公元1984年
联邦德国G.明岑贝格等人工制得108号元素

网址:
http://www.hgxx.cbe21.com/subject/chemistry/html/020202/2002_07/20020728_1762.html

F. 在生产己内酰胺的化工厂工作对身体有什么危害

己内酰胺;ε-己内酰胺;Caprolactam资料国标编号----CAS号105-60-2分子式C6H11NO;NH(CH2)5CO分子量113.18白色晶体;蒸汽压0.67kPa/122℃;闪点110℃;熔点68~70℃;沸点270℃;溶解性:溶于水,溶于乙醇、乙醚、氯仿等多数有机溶剂;密度:相对密度(水=1)1.05(70%水溶液);稳定性:稳定;危险标记;主要用途:用以制取己内酰胺树脂、己内酰胺纤维和人造革等,也用作医药原料2.对环境的影响一、健康危害侵入途径:吸入、食入、经皮吸收。健康危害:经常接触本品可致神衰综合征。此外,尚可引起鼻出血、鼻干、上呼吸道炎症及胃灼热感等。本品能引起皮肤损害,接触者出现皮肤干燥、角质层增夺取、皮肤皲裂、脱屑等,可发生全身性皮炎,易经皮肤吸收。二、毒理学资料及环境行为毒性:低毒类。致痉挛性毒物和细胞原生质毒。主要用途于中枢神经,特别是脑干,可引起裨脏器的损害。急性毒性:LD501155mg/kg(大鼠经口);70g(人经口致死量)亚急性和慢性毒性:大鼠经口500mg/kg×6月体重、血相有变化,大脑有病理损害;人吸入61mg/m3以下,上呼吸道炎症和胃有灼热感等;人吸入17.5mg/m3神衰症候群和皮肤损害;人吸入10mg/m3以下×3~10年,有神衰症候群发生。危险特性:遇高热、明火或与氧化剂接触,有引起燃烧的危险。受高热分解,产生有毒的氮氧化物。粉体与空气可形成爆炸性混合物,当达到一定的浓度时,遇火星发生爆炸。燃烧(分解)产物:一氧化碳、二氧化碳、氮氧化物。3.现场应急监测方法4.实验室监测方法空气中已内酰胺含量测定:如果本品在空气中呈尘埃状,则以过滤器收集,若呈气化状则用撞击式取样管收集,然后用气液色谱法分析。5.环境标准中国(TJ36-79)车间空气中有害物质的最高容许浓度10mg/m3前苏联(1977)居民区大气中有害物最大允许浓度0.06mg/m3(最大值,昼夜均值)中国(待颁布)饮用水源水中在害物质的最高容许浓度3.0mg/L(以BOD计)前苏联(1978)生活饮用水和娱乐用水水体中有害物质的最大允许浓度1.0mg/L嗅觉阈浓度0.3mg/m36.应急处理处置方法一、泄漏应急处理隔离泄漏污染区,周围设警告标志,切断火源。应急处理人员戴自给式呼吸器,穿化学防护服。不要直接接触泄漏物,用清洁的铲子收集于干燥净洁有盖的容器中,运至废物处理场所。如大量泄漏,收集回收或无害处理后废弃。二、防护措施呼吸系统防护:空气中浓度超标时,戴面具式呼吸器。紧急事态抢救或逃生时,应该佩带自给式呼吸器。眼睛防护:戴化学安全防护眼镜。防护服:穿工作服。手防护:戴橡皮胶手套。其它:工作后,淋浴更衣。注意个人清洁卫生。三、急救措施皮肤接触:脱去污染的衣着,用大量流动清水彻底冲洗。眼睛接触:立即翻开上下眼睑,用大量流动清水或生理盐水冲洗。就医。吸入:脱离现场至空气新鲜处。就医。食入:误服者漱口,给饮牛奶或蛋清,就医。灭火方法:雾状水、泡沫、二氧化碳、干粉、砂土。[编辑本段]己内酰胺生产工艺1943年,德国法本公司通过环己酮-羟胺合成(现在简称为肟法),首先实现了己内酰胺工业生产。随着合成纤维工业发展,对己内酰胺需要量增加,又有不少新生产方法问世。先后出现了甲苯法(又称斯尼亚法);光亚硝化法(又称PNC法);己内酯法(又称UCC法);环己烷硝化法和环己酮硝化法。新近正在开发的环己酮氨化氧化法,由于生产过程中无需采用羟胺进行环己酮肟化,且流程简单,已引起人们的关注。在已工业化的己内酰胺各生产方法中,肟法仍是80年代工业应用最广的方法,其产量占己内酰胺产量中的绝大部分。甲苯法由于甲苯资源丰富,生产成本低,具有一定的发展前途。其他各种生产方法,鉴于种种原因,至今仍未能推广。如以环己烷为原料的方法中,PNC法具有流程短、原料价廉等优点;但耗电多、设备腐蚀严重。在己内酰胺的生产过程中,往往副产硫酸铵,但由于硫酸铵滞销,因此,减少或消除副产硫酸铵,成为评价当今己内酰胺工业生产经济性的一个重要因素。肟法:各种肟法的主要生产步骤如下:拉西羟胺合成法(由法本公司开发)是用二氧化硫还原亚硝酸铵生成羟胺二磺酸盐(简称二盐),二盐水解生成硫酸羟胺。硫酸羟胺与环己酮在80~110℃下反应生成环己酮肟(简称肟)和硫酸,然后用25%氨水中和至pH约7,肟和硫酸铵溶液即分层析出。HPO法(由荷兰国家矿业公司开发)80年代发展很快。HPO法是在磷酸盐缓冲溶液中,采用以木炭或氧化铝为载体的钯催化剂,使硝酸根离子加氢生成羟胺盐,并在甲苯溶剂中与环己酮肟化。HPO法使羟胺合成与肟化工艺结合起来,肟化无副产硫酸铵。在反应废液中,加入硝酸后便可返回硝酸根离子加氢工序重新使用。一氧化氮还原法(瑞士尹文达研究和专利公司和联邦德国巴斯夫公司开发)是在稀硫酸中用铂催化剂(见金属催化剂)使一氧化氮加氢,此法副产硫酸铵少,但要求原料纯度高,并要增设催化剂回收工序,目前应用较少。贝克曼重排(简称转位)肟在发烟硫酸中转位,反应温度80~110℃,收率97%~99%。产物再用13%氨水中和。中和生成粗己内酰胺溶液(又称粗油)和硫酸铵。为消除转位副产硫酸铵,荷兰国家矿业公司开发了硫酸循环法。它是将转位产物中的硫酸中和生成为硫酸氢铵,然后用溶剂萃取出己内酰胺。硫酸氢铵再热解为二氧化硫,二氧化硫转化为发烟硫酸循环使用。无副产硫酸铵的转位方法还有气相转位法、离子交换树脂法、电渗析分离法等。[编辑本段]己内酰胺精制各种己内酰胺生产方法中,均需对己内酰胺进行精制。一般精制方法有:化学精制(高锰酸钾氧化、催化加氢等)法、萃取法、重结晶法、离子交换树脂法、真空蒸馏法等,为获得高纯度产品,工业上一般是组合几种方法进行联合精制。甲苯法甲苯在钴盐催化剂作用下氧化生成苯甲酸;反应温度160~170℃,压力0.8~1.0MPa,转化率约30%,收率为理论值的92%。苯甲酸用活性炭载体上的钯催化剂进行液相加氢生成六氢苯甲酸;反应温度170℃,压力1.0~1.7MPa,转化率99%,收率几乎达100%。在发烟硫酸中,六氢苯甲酸与亚硝酰硫酸反应生成己内酰胺,并用氨水中和;转化率50%,选择性90%。为减少或消除副产硫酸铵,开发了改良的副产硫酸铵减半法和无副产硫酸铵法。

G. 实验室制备己内酰胺为什么产品伴有咖啡色晶体

己内酰胺;ε-己内酰胺;Caprolactam
资料 国标编号 ----
CAS号 105-60-2
分子式 C6H11NO;NH(CH2)5CO
分子量 113.18
白色晶体;蒸汽压0.67kPa/122℃;闪点110℃;熔点68~70℃;沸点270℃;溶解性:溶于水,溶于乙醇、乙醚、氯仿等多数有机溶剂;密度:相对密度(水=1)1.05(70%水溶液);稳定性:稳定;危险标记;主要用途:用以制取己内酰胺树脂、己内酰胺纤维和人造革等,也用作医药原料
2.对环境的影响
一、健康危害
侵入途径:吸入、食入、经皮吸收。
健康危害:经常接触本品可致神衰综合征。此外,尚可引起鼻出血、鼻干、上呼吸道炎症及胃灼热感等。本品能引起皮肤损害,接触者出现皮肤干燥、角质层增夺取、皮肤皲裂、脱屑等,可发生全身性皮炎,易经皮肤吸收。
二、毒理学资料及环境行为
毒性:低毒类。致痉挛性毒物和细胞原生质毒。主要用途于中枢神经,特别是脑干,可引起裨脏器的损害。
急性毒性:LD501155mg/kg(大鼠经口);70g(人经口致死量)
亚急性和慢性毒性:大鼠经口500mg/kg×6月体重、血相有变化,大脑有病理损害;人吸入61mg/m3以下,上呼吸道炎症和胃有灼热感等;人吸入17.5mg/m3神衰症候群和皮肤损害;人吸入10mg/m3以下×3~10年,有神衰症候群发生。
危险特性:遇高热、明火或与氧化剂接触,有引起燃烧的危险。受高热分解,产生有毒的氮氧化物。粉体与空气可形成爆炸性混合物,当达到一定的浓度时,遇火星发生爆炸。
燃烧(分解)产物:一氧化碳、二氧化碳、氮氧化物。
3.现场应急监测方法
4.实验室监测方法
空气中已内酰胺含量测定:如果本品在空气中呈尘埃状,则以过滤器收集,若呈气化状则用撞击式取样管收集,然后用气液色谱法分析。
5.环境标准
中国(TJ36-79) 车间空气中有害物质的最高容许浓度 10mg/m3
前苏联(1977) 居民区大气中有害物最大允许浓度 0.06mg/m3(最大值,昼夜均值)
中国(待颁布) 饮用水源水中在害物质的最高容许浓度 3.0mg/L(以BOD计)
前苏联(1978)生活饮用水和娱乐用水水体中有害物质的最大允许浓度 1.0mg/L
嗅觉阈浓度 0.3mg/m3
6.应急处理处置方法
一、泄漏应急处理
隔离泄漏污染区,周围设警告标志,切断火源。应急处理人员戴自给式呼吸器,穿化学防护服。不要直接接触泄漏物,用清洁的铲子收集于干燥净洁有盖的容器中,运至废物处理场所。如大量泄漏,收集回收或无害处理后废弃。
二、防护措施
呼吸系统防护:空气中浓度超标时,戴面具式呼吸器。紧急事态抢救或逃生时,应该佩带自给式呼吸器。
眼睛防护:戴化学安全防护眼镜。
防护服:穿工作服。
手防护:戴橡皮胶手套。
其它:工作后,淋浴更衣。注意个人清洁卫生。
三、急救措施
皮肤接触:脱去污染的衣着,用大量流动清水彻底冲洗。
眼睛接触:立即翻开上下眼睑,用大量流动清水或生理盐水冲洗。就医。
吸入:脱离现场至空气新鲜处。就医。
食入:误服者漱口,给饮牛奶或蛋清,就医。
灭火方法:雾状水、泡沫、二氧化碳、干粉、砂土。
[编辑本段]己内酰胺生产工艺
1943年,德国法本公司通过环己酮-羟胺合成(现在简称为肟法),首先实现了己内酰胺工业生产。随着合成纤维工业发展,对己内酰胺需要量增加,又有不少新生产方法问世。先后出现了甲苯法(又称斯尼亚法);光亚硝化法(又称PNC法);己内酯法(又称 UCC法);环己烷硝化法和环己酮硝化法。新近正在开发的环己酮氨化氧化法,由于生产过程中无需采用羟胺进行环己酮肟化,且流程简单,已引起人们的关注。
在已工业化的己内酰胺各生产方法中,肟法仍是80年代工业应用最广的方法,其产量占己内酰胺产量中的绝大部分。甲苯法由于甲苯资源丰富,生产成本低,具有一定的发展前途。其他各种生产方法,鉴于种种原因,至今仍未能推广。如以环己烷为原料的方法中,PNC法具有流程短、原料价廉等优点;但耗电多、设备腐蚀严重。
在己内酰胺的生产过程中,往往副产硫酸铵,但由于硫酸铵滞销,因此,减少或消除副产硫酸铵,成为评价当今己内酰胺工业生产经济性的一个重要因素。
肟法:各种肟法的主要生产步骤如下:
拉西羟胺合成法(由法本公司开发)是用二氧化硫还原亚硝酸铵生成羟胺二磺酸盐(简称二盐),二盐水解生成硫酸羟胺。硫酸羟胺与环己酮在80~110℃下反应生成环己酮肟(简称肟)和硫酸,然后用25%氨水中和至pH约7,肟和硫酸铵溶液即分层析出。
HPO法(由荷兰国家矿业公司开发)80年代发展很快。HPO法是在磷酸盐缓冲溶液中,采用以木炭或氧化铝为载体的钯催化剂,使硝酸根离子加氢生成羟胺盐,并在甲苯溶剂中与环己酮肟化。
HPO法使羟胺合成与肟化工艺结合起来,肟化无副产硫酸铵。在反应废液中,加入硝酸后便可返回硝酸根离子加氢工序重新使用。
一氧化氮还原法(瑞士尹文达研究和专利公司和联邦德国巴斯夫公司开发)是在稀硫酸中用铂催化剂(见金属催化剂)使一氧化氮加氢,此法副产硫酸铵少,但要求原料纯度高,并要增设催化剂回收工序,目前应用较少。
贝克曼重排(简称转位)肟在发烟硫酸中转位,反应温度80~110℃,收率97%~99%。产物再用13%氨水中和。
中和生成粗己内酰胺溶液(又称粗油)和硫酸铵。为消除转位副产硫酸铵,荷兰国家矿业公司开发了硫酸循环法。它是将转位产物中的硫酸中和生成为硫酸氢铵,然后用溶剂萃取出己内酰胺。硫酸氢铵再热解为二氧化硫,二氧化硫转化为发烟硫酸循环使用。无副产硫酸铵的转位方法还有气相转位法、离子交换树脂法、电渗析分离法等。
[编辑本段]己内酰胺精制
各种己内酰胺生产方法中,均需对己内酰胺进行精制。一般精制方法有:化学精制(高锰酸钾氧化、催化加氢等)法、萃取法、重结晶法、离子交换树脂法、真空蒸馏法等,为获得高纯度产品,工业上一般是组合几种方法进行联合精制。
甲苯法
甲苯在钴盐催化剂作用下氧化生成苯甲酸;反应温度160~170℃,压力0.8~1.0MPa,转化率约30%,收率为理论值的92%。苯甲酸用活性炭载体上的钯催化剂进行液相加氢生成六氢苯甲酸;反应温度170℃,压力1.0~1.7MPa,转化率99%,收率几乎达100%。在发烟硫酸中,六氢苯甲酸与亚硝酰硫酸反应生成己内酰胺,并用氨水中和;转化率50%,选择性90%。为减少或消除副产硫酸铵,开发了改良的副产硫酸铵减半法和无副产硫酸铵法。

H. 聚己内酰胺(尼龙6)怎么合成

根据催化引发体系的不同,己内酰胺聚合可分为三种类型:
水解聚合 目前工业上多采用这种方法。纯己内酰胺不能聚合,必须加入少量的水、酸、氨或6-氨基己酸、耐纶单体盐等物质才能聚合。

水是主要的引发剂。反应首先是己内酰胺在高温(约260℃)下水解开环,生成6-氨基己酸〔式(1)〕。水量的多少影响反应的快慢和最终平衡时低分子化合物的含量。添加羧酸可以加速水解开环和聚合反应。占优势的聚合反应是己内酰胺逐步加成于线型分子的末端氨基,形成高分子链〔式 (2)〕和线型分子间氨基与羧基的缩聚反应〔式 (3)〕。反应后期还有酰胺交换反应及酸解、胺解等平衡反应发生。
工业上己内酰胺水解聚合方法一般采用间歇的高压釜法和连续聚合法,而以后者居多。树脂切片通常要经过水洗,以萃取单体和低聚物,再经真空干噪后供纺丝加工或注射成型用。
负离子聚合 又称单体浇铸聚合,即无水的己内酰胺在碱金属、碱土金属的存在下,于220℃以上加热,几分钟后即能聚合成粘度极高的聚合物。此法曾称为快速聚合或催化聚合。

正离子聚合 单体在无水的条件下和氯化氢、胺盐、金属卤化物等存在下聚合。此法由于聚合转化率和产物的聚合度不高,还仅限于实验室研究。

热点内容
丁度巴拉斯情人电影推荐 发布:2024-08-19 09:13:07 浏览:886
类似深水的露点电影 发布:2024-08-19 09:10:12 浏览:80
《消失的眼角膜》2电影 发布:2024-08-19 08:34:43 浏览:878
私人影院什么电影好看 发布:2024-08-19 08:33:32 浏览:593
干 B 发布:2024-08-19 08:30:21 浏览:910
夜晚看片网站 发布:2024-08-19 08:20:59 浏览:440
台湾男同电影《越界》 发布:2024-08-19 08:04:35 浏览:290
看电影选座位追女孩 发布:2024-08-19 07:54:42 浏览:975
日本a级爱情 发布:2024-08-19 07:30:38 浏览:832
生活中的玛丽类似电影 发布:2024-08-19 07:26:46 浏览:239