离子交换法去除有机物
⑴ 有谁知道怎么除掉有机物当中的离子啊
加电极去离子
⑵ 混凝沉淀处理法、 离子交换法和吸附法去除对象是什么
混凝沉淀处理去除水中悬浮物,杂质 胶体等。离子交换法去除水中阴阳离子一般用阴阳床混床。吸附法主要是吸附水中氯离子例如活性炭过滤器
⑶ 列举出至少三种不能用离子交换法去除的水中杂质有哪些
有机物杂质不能用离子交换去除。
例如甲醛,乙醇,苯。
⑷ 用离子交换法制备的去离子水,能有效地除去有机物吗
单用离子交换是不行的哦,有机物用树脂去除不了
⑸ 自来水中的杂质主要有哪些,说明为什么可以用离子交换法去除
自来水中的杂质大多就是ca、mg、cl等离子,可以离子交换使其沉淀下来,达到去杂质的回目的
一般加入絮凝剂,比如答明矾,铁盐,铝盐,高铁酸盐等.
这些盐类在水中可以水解生成胶体,胶体的胶粒具有较大的比表面积,可以吸附水中的悬浮小颗粒,从而达到净水的目的.但是这样只是除去了水中一些难溶于水的微笑颗粒物,并不能除去水中的离子.
现在去除水中离子的方法主要有电渗析法,反渗透法,和离子交换剂法
⑹ 如何去除水中有机物
通常用蒸馏的方法和离子交换方法来获得。
将自然界的水经过蒸馏器蒸馏冷凝,就可以得到蒸馏水,
利用离子交换树脂,将水中所含的杂质(阴阳离子)可除去有机物。
⑺ 离子交换法的纯化方法
若将离子交换法与其他纯化水质方法(例如反渗透法、过滤法和活性碳吸附法)组合应用版时,则离权子交换法在整个纯化系统中,将扮演非常重要的一个部分。离子交换法能有效的去除离子,却无法有效的去除大部分的有机物或微生物。而微生物可附着在树脂上,并以树脂作为培养基,使得微生物可快速生长并产生热源。因此,需配合其他的纯化方法设计使用。
⑻ 离子交换介质如何去除dna残留
摘要:DSD酸是重要的染料中间体。伴随着酸的生产,产生了大量含氨基和磺酸基的芳香族有机化合物的废水。离子吸附与交换作为一种有效的化学分离方法,具有优越的分离选择性和很高的浓缩倍数,操作方便,效果突出。采用离子交换树脂法处理DSD酸还原废水,并对该过程进行系统的研究。通过树脂选型确定出大孔弱碱性阴离子交换树脂D301R,其对废水COD_(Cr)的去除率可达74.7%。对各种不同因素影响下D301R对DSD酸还原废水吸附交换进行热力学实验研究,分别考察了时间、温度、pH值、盐含量等对该过程的影响。实验结果表明,离子交换树脂对DSD酸还原废水的吸附平衡时间为6h;该吸附交换过程为放热过程,温度越高树脂吸附交换量越低,低温有利于树脂吸附交换反应的进行;高pH值有利于吸附交换的进行;含盐量对该过程的影响主要是来自于废水中大量的SO~(2-)_4离子的竞争交换作用。除了上述静态因素,考察了动态因素对吸附交换的影响。流速低时,处理效果较好,随着流速的增加,穿透时间提前,并且穿透曲线的形状趋于平坦,完全穿透时间延长。随着溶液pH值的增加,流出液的CODCr降低,表明高pH值有利于吸附交换反应。当含盐量加倍时,穿透时间大大提前,表明含盐量是影响该吸附交换过程的重要因素之一。以NaOH溶液为洗脱剂,采用高温、高浓度、低流速洗脱剂洗脱有利于床层的再生。以DSD酸钠盐为代表物研究DSD酸在D301R树脂上的吸附交换过程。分别应用Langmuir模型、Freundlich模型和Langmuir-Freundlich模型采用非线性最小二乘法对等温平衡吸附数据进行拟合,结果发现Langmuir-Freundlich模型能更准确反映该吸附交换过程。以三参数方程描述该吸附交换过程,获得了不同温度时D301R吸附交换DSD酸的标准自由能变以及不同吸附交换量下的吸附交换焓变,从理论上证明了该吸附交换过程是放热过程。DSD酸钠盐在D301R树脂上的静态吸附交换显示了良好的动力学特征。对动态吸附交换实验数据进行拟合,其符合一级反应动力学过程。进一步研究测定交换率(F)与时间(t)的关系,发现实验数据按“[1-3(1-F)~(2/3)+2(1-F)]-t”标绘,呈良好的线性关系,线性相关系数为0.99957,说明该过程为颗粒扩散控制。
⑼ 为什么蒸馏法和离子交换法能去除水中的无机杂质
天然水中含有氯化钠、氯化镁、硫酸镁、氯化钙等无机盐杂质,蒸馏法可以将水蒸发冷却后形成所谓的蒸馏水,水从液相转换为气相的过程中,无机盐杂质被沉淀去除。离子交换法去除水中无机盐杂质原理为:
应用离子交换树脂进行水处理时,离子交换树脂可以将其本身所具有的某种离子和水中同符号电荷的离子相互交换而达到净化水的目的。
如H型阳离子交换树脂遇到含有Ca2+、Na+的水时,发生如下反应:
2RH + Ca2+→ R2Ca + 2H+
RH + Na+ → RNa + H+
当OH型阴离子交换树脂遇到含有Cl-、SO42-的水时,其反应为:
ROH + Cl- →RCl + OH-
2ROH + SO42- →R2SO4 +2OH-
反应的结果是水中的杂质离子(Ca2+、Na+、Cl-、SO42-等)分别被吸着在树脂上,树脂由H型和OH型变为Ca型、Na型和Cl型SO4型,而树脂上的H+、OH-则进入水中,相互结合成为水,从而除去水中的杂质离子,制得纯水。
H+ + OH- →H2O
离子交换树脂的离子与水中的离子之间所以能进行交换,是在于离子交换树脂有可交换的活动离子。而且因为离子交换树脂是多孔的,即在树脂颗粒中存在着许多水能渗入其内的微小网孔,这样使树脂和水有很大的接触面,不仅能在树脂颗粒的外表面进行交换,而且在与水接触的网孔内也可以进行这一交换。
如前所述,合成的离子交换树脂是一种带有交联剂的高分子化合物,有许多水能渗入的网孔,交换剂的内部是一个立体的网状结构作为骨架,这些网组成了无数的四通八达的孔隙,孔隙里面充满了水。在孔隙的一定部位上有一个可以自由活动的交换离子。当离子交换树脂和水溶液接触时,水溶液即通过这些网状结构的孔渗入其内,离子交换树脂进行离解,结果是一定数量的离子(H型离子交换树脂为氢离子,OH型离子交换树脂为氢氧根离子)进入围绕离子交换树脂颗粒四周的水溶液中,形成离子雾。
离子交换树脂与水溶液中离子的交换过程,实际上就是离子雾中的离子与水溶液中的离子的相互交换过程,其机理可以用双电层理论进行解释。
这种理论是将离子交换树脂看作具有胶体型结构的物质,即在离子交换树脂的高分子表面上有和胶体表面相似的双电层。也就是说,在离子交换树脂的高分子表面有两层离子,紧挨着高分子表面的一层离子(如强酸性阳树脂中的—SO3-),称为内层离子,在其外面的是一层符号相反的离子层(如强酸性阳树脂中的H+)。和内层离子符号相同的离子称为同离子,符号相反的称为反离子。
⑽ 去除水中的溶解性有机污染物有哪些可能的方法
去除水中的溶解性有机污染物可能的方法:
中和法(酸碱反应) 、化学沉淀法(沉淀反应、固液分离) 、氧化法(氧化反应) 、还原 法(还原反应) 、电解法(电解反应) 、超临界分解法(热分解、氧化还原反应、游离基反应 等) 、气提法,吹脱法,萃取(污染物在不同相之间的分配) 、吸附法(界面吸附) 、离子交 换法(离子交换) 、电渗析法(离子迁移) 、混凝法(电中和、吸附架桥作用)。天猫美国普卫欣提示:雾霾天气出行记得做好防护。