离子交换色谱分离物质的原理
㈠ 分离纯化常用的色谱分离方法有哪些它们的原理是什么
1、色谱方法根据分离机制的不同可分为吸附色谱、分配色谱、离子交换内色谱、凝胶过滤容(分子筛)色谱和亲和色谱等。2、(1)吸附色谱法是指混合物随流动相通过吸附剂时,由于该吸附剂对不同物质有不同的吸附力而使混合物分离的方法。(2)分配色谱系法是利用固定相与流动相之间对待分离组分溶解度的差异来实现分离。(3)离子交换色谱法是利用离子交换原理和液相色谱技术的结合来测定溶液中阳离子和阴离子的一种分离分析方法。凡在溶液中能够电离的物质通常都可以用离子交换色谱法进行分离。(4)凝胶色谱法又叫凝胶色谱技术,是六十年代初发展起来的一种快速而又简单的分离分析技术,由于设备简单、操作方便,不需要有机溶剂,对高分子物质有很高的分离效果。(5)亲和色谱法是将相互间具有高度特异亲和性的二种物质之一作为固定相,利用与固定相不同程度的亲和性,使成分与杂质分离的色谱法。
㈡ 离子交换色谱法的原理、装置及应用是什么
一、原理:离子交换色谱(ion exchange chromatography,IEC)以离子交换树脂作为固定相,树脂上具有固定离子基团及可交换的离子基团。当流动相带着组分电离生成的离子通过固定相时,组分离子与树脂上可交换的离子基团进行可逆变换。根据组分离子对树脂亲合力不同而得到分离。
二、装置:
1、分离柱:装有离子交换树脂,如阳离子交换树脂、阴离子交换树脂或螯合离子交换树脂。
2、抑制柱和柱后衍生作用:常用的检测器不仅能检测样品离子,而且也对移动相中的离子有响应,所以必须消除移动相离子的干扰。
3、检测器:分为通用型和专用型。通用型检测器对存在于检测池中的所有离子都有响应。离子色谱中最常用的电导检测器就是通用型的一种。
三、应用:
离子色谱主要用于测定各种离子的含量,特别适于测定水溶液中低浓度的阴离子,例如饮用水水质分析,高纯水的离子分析,矿泉水、雨水、各种废水和电厂水的分析,纸浆和漂白液的分析,食品分析,生物体液(尿和血等)中的离子测定,以及钢铁工业、环境保护等方面的应用。
㈢ 离子交换色谱法的分离原理
离子交换色谱(ion exchange chromatography,IEC)以离子交换树脂作为固定相,树脂上具有固回定离子基团及可交换的离答子基团。当流动相带着组分电离生成的离子通过固定相时,组分离子与树脂上可交换的离子基团进行可逆变换。根据组分离子对树脂亲合力不同而得到分离。
阳离子交换:
阴离子交换:
式中"--"表示在固定相上,Kxy和Kzm是交换反应的平衡常数,Z+和X-代表被分析的组分离子。M+和Y-表示树脂上可交换的离子团。
离子交换反应的平衡常数分别为:
阳离子交换:
阴离子交换:
平衡常数K值越大,表示组分的离子与离子交换树脂的相互作用越强。由于不同的物质在溶剂中离解后,对离子交换中心具有不同的亲合力,因此具有不同的平衡常数。亲合力大的,在柱中的停留时间长,具有高的保留值。
㈣ 简述色谱法的四种原理机制
1.液-固色谱:不同物质的吸附能力不同而分离
2.液-液色谱:溶解(分配)能力不同而分离
3.离子交换色谱:离子置换能力不同而分离
4.空间排阻色谱:色谱填料颗粒具有一定孔径,待分离物质中的大分子颗粒直径大于孔径,先出峰,小分子颗粒直径小于孔径,就会进入填料颗粒的空隙里,停留时间长,后出峰
㈤ 从分析原理简述hplc中,离子交换色谱,离子对色谱及离子色谱有何异同
离子抄色谱原理与离子交换袭色谱原理类似,离子色谱后一般使用电化学检测器进行检测,适用于分析无机与有机阴阳离子和氨基酸,以及糖类和DNA、RNA的水解产物等;离子对色谱主要是补充离子抑制色谱的不足,离子抑制色谱是指在流动相中加入弱酸或弱碱来抑制待测组分的离解,提高k值以利于组分的分离,一般针对酸性待测组分,可在流动相中加入弱酸,使待测组分减少在流动相中的离解,加强与固定相的分配,适用于有机弱酸碱或两性化合物的检测,但由于色谱柱一般是硅胶基质化学键合相色谱,其酸度耐受范围是2-8,因此在加入酸碱调节剂时还要兼顾流动相pH,导致无法通过此方法分析强酸强碱,因此引入离子对色谱,在流动相中加入可与强酸强碱抑制的离子对,通常分析碱加入烷基磺酸钠,分析酸加入季胺盐,适用于较强有机酸碱的分析。
㈥ 离子交换分离法的原理是什么
离子交换是用一种称为离子交换树脂的物质来进行的。离子交换树脂遇水溶液时版,能够从权水溶液中吸着某种(类)离子,而把本身所具有的另外一种相同电荷符号的离子等摩尔量地交换到溶液中去,这种现象称为离子交换。
希望有用
㈦ 色谱法的分离原理是什么
GC主要是利用物质的沸点、极性及吸附性质的差异来实现混合物的分离,待分析样品在汽化室汽化后被惰性气体(即载气,也叫流动相)带入色谱柱,柱内含有液体或固体固定相,由于样品中各组分的沸点、极性或吸附性能不同,每种组分都倾向于在流动相和固定相之间形成分配或吸附平衡。但由于载气是流动的,这种平衡实际上很难建立起来。也正是由于载气的流动,使样品组分在运动中进行反复多次的分配或吸附/解吸附,结果是在载气中浓度大的组分先流出色谱柱,而在固定相中分配浓度大的组分后流出。当组分流出色谱柱后,立即进入检测器。检测器能够将样品组分的与否转变为电信号,而电信号的大小与被测组分的量或浓度成正比。当将这些信号放大并记录下来时,就是气相色谱图了。
说的形象点,就像许多人在一条跑道,总有跑的快慢之分,快的就先出来,慢的就后到。
㈧ 简述离子交换色谱法韵分离机制
GC主要是利用物质的沸点、极性及吸附性质的差异来实现混合物的分离,待分析内样品在汽化室汽化后被惰性容气体(即载气,也叫流动相)带入色谱柱,柱内含有液体或固体固定相,由于样品中各组分的沸点、极性或吸附性能不同,每种组分都倾向于在流动相。
㈨ 离子交换层析法原理是什么
离子交换层析法 (ion exchange chromatography,简称IEC)是从复杂的混合物中,分离性质相似大分子的方法之一,依据的原理是物质的酸碱性、极性,也就是所带阴阳离子的不同。电荷不同的物质,对管柱上的离子交换剂有不同的亲和力,改变冲洗液的离子强度和pH值,物质就能依次从层析柱中分离出来。
离子交换层析法大致分为5个步骤:
1. 离子扩散到树脂表面。
2. 离子通过树脂扩散到交换位置。
3. 在交换位置进行离子交换;被交换的分子所带电荷愈多,它与树脂的结合愈紧密,也就愈不容易被其它离子取代。
4. 被交换的离子扩散到树脂表面。
5. 冲洗液通过,被交换的离子扩散到外部溶液中。
离子交换树脂的交换反应是可逆的,遵循化学平衡的规律,定量的混合物通过管柱时,离子不断被交换,浓度逐渐降低,几乎全部都能被吸附在树脂上;在冲洗的过程中,由于连续添加新的交换溶液,所以会朝正反应方向移动,因而可以把树脂上的离子冲洗下来。
如果被纯化的物质是氨基酸类的分子,则分子上的净电荷取决于氨基酸的等电点和溶液的pH值,所以当溶液的pH 值较低,氨基酸分子带正电荷,它将结合到强酸性的阳离子交换树脂上;随着通过的缓冲液pH逐渐增加,氨基酸将逐渐失去正电荷,结合力减弱,最后被洗下来。由于不同的氨基酸等电点不同,这些氨基酸将依次被洗出,最先被洗出的是酸性氨基酸,如apartic acid和glutamic acid(在约pH3~4时),随后是中性氨基酸,如glycine和alanine。碱性氨基酸如arginine和lysine在pH值很高的缓冲液中仍带有正电荷,因此这些在约pH值高达10~11时才出现。
㈩ 离子交换色谱柱和离子排阻色谱柱分离物质原理的区别
色谱过程的本质是待分离物质分子在固定相和流动相之间分配平衡的过程,不同的物质在两相之间的分配会不同,这使其随流动相运动速度各不相同,随着流动相的运动,混合物中的不同组分在固定相上相互分离。根据物质的分离机制,又可以分为吸附色谱、分配色谱、离子交换色谱、凝胶色谱、亲和色谱等类别。 吸附色谱利用固定相吸附中心对物质分子吸附能力的差异实现对混合物的分离,吸附色谱的色谱过程是流动相分子与物质分子竞争固定相吸附中心的过程