当前位置:首页 » 净水方式 » 气体除湿反渗透

气体除湿反渗透

发布时间: 2021-04-02 08:18:45

❶ 空气除湿的方法有多少种都是什么

你好,1、恒温恒湿系统如为组合式机组,通常具有新风冷却和转轮除湿段。当处理空气经过新风过滤器洁净后,在新风表冷段与表冷器表面接触,由于新风表冷器的表面温度低于空气的温度,于是空气被冷却,温度降低;同时,空气中的水份变成凝结水析出,并由冷凝水管排除,空气的温度和含水量都得到降低;之后,再由转轮进行吸附除湿,以达到低湿度的要求;最后,所有空气再由后表冷器或加热器控制温度,由送风机将温湿度都符合要求的工艺空气送出。2、冷却除湿原理:由于空气在不同的温度及能量下,空气所能容纳的水分是不同的,空气中的水分含量随着空气温度的降低而减小。当室外空气通过新风表冷器时,空气被表冷盘管冷却降温,空气随着温度的降低,空气中的水蒸汽逐渐凝结,并达到饱和状态,当空气的露点继续降低时,空气的中的水蒸汽就变成凝结水并析出,从而空气中的绝对含水量得到降低,空气实现了除湿过程。3、吸附式转轮的除湿原理:除湿转轮在除湿段内部由密封系统分为处理区域和再生区域,除湿转轮以 8-10转/小时的速度缓慢旋转,以保证整个除湿为一个连续的过程。当处理空气通过转轮的处理区域时,其中的水蒸汽被转轮中的吸湿介质所吸附,水蒸气同时发生相变,并释放出潜热,转轮也因吸湿了一定的水份而逐渐趋向饱和;这时,处理空气因自身的水份减少和潜热释放而变成干的、热的空气。同时,在再生区域,另一路空气先经过再生加热器后,变成高温空气(一般为100-140度)并穿过吸湿后的饱和转轮,使转轮中已吸附的水份蒸发,从而恢复了转轮的除湿能力;同时,再生空气因水份的蒸发而变成湿空气;之后,再通过再生风机将湿空气排到室外。作为转轮吸附式除湿机,其最主要的核心部件是除湿转轮,转轮是由玻璃纤维和耐热的陶瓷材料作为转轮的内部支撑载体,加以特殊的效吸湿介质材料(如高效硅胶)而合成。这样,高效吸湿剂加以转轮自身的特殊蜂窝结构,不仅保证了转轮与空气接触的巨大表面积,也提高转轮的吸湿效率,增加了吸湿能力;转轮可通过气体吹扫清洗,以便除去转轮表面的一些机械污染物质,如灰尘,油污等。4、组合除湿的优点:在夏天高温高湿的情况下,湿负荷最大:这时,湿负荷有两个处理段同时负担,首先充分发挥新风表冷器在高温和高湿工况下的除湿效率高,除湿量大的特点,除去空气中大部分的水份,并降低空气的温度;而当冷冻除湿效率下降时,再经过转轮除湿,使空气湿度达到低湿控制要求; 这样,系统充分利用了两种除湿方法的优点。而在其他季节,如春秋季节,由于湿负荷下降,此时,通过制冷系统的能量调节,控制前冷后的空气温度,湿负荷完全由除湿转轮段承担。系统后冷和加热的目的是为了精确控制送风温度。可以选择新风除湿,这种方法除湿不彻底,还可以选择除湿机除湿,空气冷凝其中的水蒸气会液化,还可以用吸收式除湿,比如转轮除湿。朋友你好!要真正去体内湿气,还得从改善生活习惯开始下手。中医提供以下方法,让你轻松除去身体浊重湿气,重新恢复神清气爽。 一、勤运动。 运动可以纾解压力、活络身体器官运作,加速湿气排出体外。现代人动脑多、体力消耗少,加上长期待在密闭空调内,很少流汗,身体调控湿度的能力变差。试试看跑步、健走、游泳、瑜珈、太极等任何「有点喘、会流汗」的运动,有助活化气血循环,增加水分代谢。 二、饮食清淡适量 肠胃系统攸关营养及水分代谢,最好的方式就是适量、均衡饮食。酒、牛奶、肥甘厚味等油腻食物不易消化,容易造成肠胃闷胀、发炎。甜食油炸品会让身体产生过氧化物,加重发炎反应。中医认为生冷食物、冰品或凉性蔬果,会让肠胃消化吸收功能停滞,不易无限量食用。如生菜、沙拉、西瓜、大白菜、苦瓜等,最好在烹调时加入葱、姜,降低蔬菜寒凉性质。 三、避环境的湿 此外,日常生活最好减少暴露在潮湿环境中。尤其对湿气敏感的人,更应留心下列事项: 1.不要直接睡地板。空气中水分会下降且地板湿气重,容易入侵体内造成四肢酸痛。最好睡在与地板有一定距离的床上。 2.潮湿下雨天减少外出。 3.不要穿潮湿未干的衣服 4.水分摄取要适量 传统的做法:木炭对去湿气很有用的。将木炭用纸包住放在屋内就可以的。但切记放的地方不要有吃的东西就好。 石灰吸潮:阴雨天可用布料或麻袋裹装生石灰后放置于室内各处,使室内空气保持干燥。 现代的方法就是用空调去湿功能除湿或购买专用的去湿机去湿.还有,也可以买一个换气扇,装在窗口,经常开扇子抽气,让空气流动,可以去掉 湿气。1,空调除湿,现在很多空调都有除湿的功能,但是如果气温不高,除湿效果不是很好。比如阴湿雨天气里,就不要进行除湿了。

❷ 对空气进行除湿的设备有哪些

  • 1

    通风除湿

    通风除湿就是“开窗通风”,一方面自室外引入较为干燥的空气,同时向室外排出相对潮湿的空气,以置换、混合的方式降低室内湿度。

    通风除湿不需要任何消耗,经济、简单,但要求室外空气比干燥,并且受风向风力影响,因此保证率较低;除湿度外,还有温度等各种室内外混合,适用于室内要求不很严格的场合。

  • 2

    升温除湿

    升温除湿是通过加热器加热空气升温,空气在保持绝对含湿量不变而温度上升时,相对湿度降低。

    升温除湿简单易行,投资和运行费用都不高,但在除湿的同时,空气温度升高,并且空气不新鲜,适用于对室内温度没有要求的场合。

  • 3

    冷冻除湿

    冷冻除湿是通过冷表面冷却空气降温,空气温度下降至露点以下时,其中的水蒸气冷凝析出。

    冷冻除湿性能稳定,工作可靠,能连续工作,但需要制冷提供冷水,设备费和运行费较高,有噪声;由于受到冷水温度和冷却效率限制,适用于露点温度高于4℃的场合。

  • 4

    溶液除湿

    溶液除湿利用空气的水蒸气分压力与除湿溶液表面的饱和蒸汽压力之差进行质传递,除湿时用低温除湿溶液吸收高温潮湿空气中的水分,再生时将除湿溶液加热升温,与相对低温和干燥的空气接触后排出水分。

    溶液除湿效果好,能连续工作,兼有清洁空气功能,但设备比较复杂,初投资高,再生时需要热源,冷却水耗量大。溶液除湿适用于除湿量大、室内显热比小于60%、空气出口露点温度低于5℃的场合。

  • 5

    固体除湿

    固体除湿利用某些固体物质表面的毛细管作用,或相变时的蒸汽分压力差吸附或吸收空气中的水分。

    固体除湿设备简单,投资和运行费用较低,但除湿性能不太稳定,并随时间的增加而下降,需要再生,适用于除湿量小、要求露点温度低于4℃的场合。

  • 6

    常用的吸收式固体吸附剂:无水氯化钙CaCl2为白色多孔结晶体,吸湿能力较强,吸湿后潮解,变成氯化钙溶液。常用的工业氯化钙,纯度70%,吸湿量可达自身质量的100%;五氧化二磷P2O5,又名磷酸酐,白色软质粉末;氢氧化钠NaOH,又名苛性钠,无色透明的结晶体;硫酸铜,CuSO4.5H2O俗称蓝矾,蓝色三斜晶系结晶体,加热至250℃时失去全部结晶水,成为绿白色粉末。

  • 7

    常用的吸附式固体除湿剂:硅胶SiO2,无毒、无臭、无腐蚀性的半透明晶体,不溶于水,孔隙率多达70%,吸湿后可经150~180℃热空气再生;分子筛,具有均一微孔结构,能将不同大小的分子分离;活性炭是一种多孔结构和对气体、蒸汽或胶态固体有较强吸附能力的炭,通常由有机物如木材、果核等通过专门加工而成,含碳量最高达98%。

  • 8

    干式除湿

    干式除湿实际上也是固体除湿,通过吸湿材料加工成的载体如氯化锂转轮,在水蒸气分压力差的作用下吸收或吸附空气中的水分。

    干式除湿吸湿面积大,性能稳定,能连续除湿,湿度可调,除湿量大,能全自动运行但设备较复杂,并需要再生。

    干式除湿适用温度范围宽,可在-30~40℃范围内有效除湿;随着温度降低,氯化锂可含的结晶水增多,因此在低温低湿状态下有良好的除湿效果。

  • 9

    氯化锂转轮除湿是最典型的干式除湿,氯化锂吸收空气中的水分为结晶水,而不变成水溶液,也就是“干式”,不会产生水溶液对设备的腐蚀,同时无需添加和补充除湿剂,是一种理想的除湿设备。

    氯化锂转轮除湿的工作原理:载有吸湿剂的转轮分为工作区和再生区。常温下,需要处理的空气流经工作区时,其中的水分被吸湿剂吸附后送出;再生空气经加热后流经转轮的再生区,将吸湿剂中的水分脱附后排出。

反渗透制水可以除去气体么

反渗透膜可以除去水中的无机盐、重金属离子、有机物、胶体、细菌、病毒等杂质,气体一样可以除去。

❹ 反渗透膜除去溶解气体

RO膜可以脱除溶解性的离子而不能脱除溶解性的气体,首先氢气、氧气、CO、CO2等气体分子直径均小于水分子,另外机理上这些分子也不会被排斥,高压下很容易通过RO膜,但是水解后的碳酸氢根、碳酸根等离子不能通过,所以这部分气体会被除掉,一般与结合其他气体脱除的方法使出水达到苛刻的要求。

❺ 空气除湿的方法有多少种都是什么

你好,
1、恒温恒湿系统如为组合式机组,通常具有新风冷却和转轮除湿段。当处理空气经过新风过滤器洁净后,在新风表冷段与表冷器表面接触,由于新风表冷器的表面温度低于空气的温度,于是空气被冷却,温度降低;同时,空气中的水份变成凝结水析出,并由冷凝水管排除,空气的温度和含水量都得到降低;之后,再由转轮进行吸附除湿,以达到低湿度的要求;最后,所有空气再由后表冷器或加热器控制温度,由送风机将温湿度都符合要求的工艺空气送出。
2、冷却除湿原理:由于空气在不同的温度及能量下,空气所能容纳的水分是不同的,空气中的水分含量随着空气温度的降低而减小。当室外空气通过新风表冷器时,空气被表冷盘管冷却降温,空气随着温度的降低,空气中的水蒸汽逐渐凝结,并达到饱和状态,当空气的露点继续降低时,空气的中的水蒸汽就变成凝结水并析出,从而空气中的绝对含水量得到降低,空气实现了除湿过程。
3、吸附式转轮的除湿原理:除湿转轮在除湿段内部由密封系统分为处理区域和再生区域,除湿转轮以 8-10转/小时的速度缓慢旋转,以保证整个除湿为一个连续的过程。当处理空气通过转轮的处理区域时,其中的水蒸汽被转轮中的吸湿介质所吸附,水蒸气同时发生相变,并释放出潜热,转轮也因吸湿了一定的水份而逐渐趋向饱和;这时,处理空气因自身的水份减少和潜热释放而变成干的、热的空气。同时,在再生区域,另一路空气先经过再生加热器后,变成高温空气(一般为100-140度)并穿过吸湿后的饱和转轮,使转轮中已吸附的水份蒸发,从而恢复了转轮的除湿能力;同时,再生空气因水份的蒸发而变成湿空气;之后,再通过再生风机将湿空气排到室外。作为转轮吸附式除湿机,其最主要的核心部件是除湿转轮,转轮是由玻璃纤维和耐热的陶瓷材料作为转轮的内部支撑载体,加以特殊的效吸湿介质材料(如高效硅胶)而合成。这样,高效吸湿剂加以转轮自身的特殊蜂窝结构,不仅保证了转轮与空气接触的巨大表面积,也提高转轮的吸湿效率,增加了吸湿能力;转轮可通过气体吹扫清洗,以便除去转轮表面的一些机械污染物质,如灰尘,油污等。
4、组合除湿的优点:在夏天高温高湿的情况下,湿负荷最大:这时,湿负荷有两个处理段同时负担,首先充分发挥新风表冷器在高温和高湿工况下的除湿效率高,除湿量大的特点,除去空气中大部分的水份,并降低空气的温度;而当冷冻除湿效率下降时,再经过转轮除湿,使空气湿度达到低湿控制要求; 这样,系统充分利用了两种除湿方法的优点。而在其他季节,如春秋季节,由于湿负荷下降,此时,通过制冷系统的能量调节,控制前冷后的空气温度,湿负荷完全由除湿转轮段承担。系统后冷和加热的目的是为了精确控制送风温度。

希望有所帮助

❻ 常见的几种除湿方式有哪些特征

◆冷却除湿方式
冷却除湿是指空气经过蒸发器冷却除湿,由再热器加热升温,降低相对湿度,制冷剂的冷凝热全部由流过再热器的空气带走,其出风温度不能调节,只用于升温除湿的除湿机。
特性:
(1) 若冷却盘管的表面温度在 0℃ 以下,凝结水即在盘管表面冻结,使冷却效率降低除湿效果也降低,因此无法获得稳定湿度。
(2) 冷却除湿的界限是在露点温度 0℃ 以上。
(3) 例如设备大型化,即增大耗电量,提高运转费。
◆液体除湿方法
液体除湿是利用某些吸湿性溶液能够吸收空气中的水分而将空气脱湿的方法。它又称液体吸收法,简称液体除湿。在绝热性除湿器中,除湿溶液吸收空气中的水蒸气后,绝大部分水蒸气的凝结潜热进入溶液,使得溶液的温度显著升高。同时,溶液表面蒸气压也随着升高,导致溶液吸湿能力下降
特性:
(1) 连续除湿、再生动作,可获得稳定的除湿空气。
(2) 由于溶液是以雾状与空气接处,需防止溶液带出或飞散。
(3) 因氯化锂在不同的液体浓度和温度下会产生不同点的析离或结晶,因此 需要针对溶液特性控制溶液浓度,否则易造成循环泵毁损或喷嘴堵塞。
(4) 需要定期补充,更换溶液。
(5) 可杀菌并洗涤空气。
(6) 设置费高,维护费高。

◆压缩除湿方式
将空气压缩再冷却,空气中的水气即凝结成水。将凝结的水排除再加热即可获得低湿度的空 气。空气中的水份以下列公式表示
X=0 . 622XPs/(P 一 Ps)
X :绝对湿度 Kg/Kg
P :压缩空气的绝对压力 Kg/cm2abs
Ps :蒸气分压 Kg/cm2abs .
上列公式表示提高空气的压缩力 P,即减少绝对湿度X,可获得较低的湿度。
特性:
(1) 适合小风量,低露点除湿。
(2) 压缩动力费较大。
(3) 适合仪表、控制等需要高压少量除湿空气者用。

◆化学除湿方式
将固体吸附剂
( 如矽胶、分于筛、活性气化铝、沸石等 ) 作为固定层,填充于塔 ( 筒 )内,使用二塔以上的塔,一塔用于吸附空气水份,另一塔再生,
经过一定时间後将塔转换并改变空气回路使吸湿与再生作用互换,如此可产生间歇性的除湿空气。吸附剂的表面为多孔性的结构,空气中的水份因毛细管作用而吸附于表面,
因此有吸湿作用。
特性:
(1) 使用固体吸附剂,可获得低露点除湿空气。
(2) 以固定时间转换除湿、再生,因此不能连续获得稳定的除湿空气。
(3) 需要定时更换吸附剂。
(4) 装置的压力损失大。
(6) 气体流动之回路为全密闭式,因此可用於非空气之气体除湿。

❼ 膜法除湿怎么进行有什么优缺点

膜法空气除湿模式
要使水蒸气透过膜,必须在膜的两端产生一个浓度差,这种浓度差既可由膜两端压力差造成,又可由膜两端温度差造成[1]。因为浓度是由温度和压力共同作用的结果。目前对膜空气除湿基本都是以膜两边的水蒸气分压差作为驱动势,因此为了强化传湿,应尽量增大膜两侧的压力差。具体在系统方案上,有压缩法[2]、真空法[3]、吹扫气法[4]及膜/除湿剂混合系统[5]。
1.1 压缩法
这种系统是靠压缩输入气流来造成传质势差。

从外界来的新鲜空气经压缩机加压后进入膜组件,由于进气侧总压提高,其中水蒸气的分压也相应提高,水蒸气在膜进出侧压力差的作用下优先透过膜而散发到环境中去,被干燥的空气进入室内。
为了将渗透侧的水蒸气及时带走,可以在渗透侧引入吹扫气。

当原料气体中水蒸气会含量较高时,增大压力易使水蒸气在膜的表面凝结而形成的一层水珠,影响水蒸气向膜内的溶解扩散作用,降低膜的除湿效果。另外,提高气体压力,必然导致对膜强度以及组件设备耐压力性能的要求相应提高,从而对实际应用造成某些局限。

1.2 真空法
此方法主要是将降低渗透侧压力来传递水蒸气,它从渗透蒸发流程演变而来,靠一个真空泵降低渗透侧的空气压力,产生一个传湿驱动势。

1.3 膜/干燥剂复合法
此方法主要是将膜空气除湿跟固体吸湿剂结合起来,新鲜空气首先用膜进行预处理,然后流经固体吸湿剂,这样充分利用膜在高湿段的除湿能力和固体吸湿剂在低湿段的吸湿能力,能将空气除湿到很干燥状态。空气中水蒸气含量较高时,水蒸气透过膜的速率较高,膜除湿的效率较高;当空气中水蒸气含量很少时,水蒸气透过膜的速率急剧下降,导致膜面积成倍增长,此进采用固体吸湿剂除湿效率最高。

2 除湿膜的种类
除湿膜一般是采用亲水性膜,膜的种类可以是有机膜、无机膜和液膜;膜的形态可以是平板式,也可以是具有很高装填密度的中空纤维式。
2.1 高分子聚合物膜
复合膜、均质膜、非对称膜都曾被应用于空气除湿。
均质膜为致密膜,通过均质膜的推动力为压力梯度、浓度梯度或电势梯度。这种膜的分离作用是由于各种化学物质在膜中的传递速度和溶解度不同而产生的,主要是扩散率的影响,因此,一般渗透率较低,制图时应使膜尽可能薄,可制成平板式和中空纤维式。均质的高分子膜多用于气体分离或渗透汽化,如硅橡胶膜就是用于气体分离(氮氧分离)中渗透率很高的均质膜。
非对称膜具有物质分离最基本的两种性质,即高传质速率和良好的机械强度。它有很薄的表层(0.1~1um)和多孔支撑层(100~200um),这非常薄的表层为活性膜,其孔径和表层的性质决定了分离特性,而厚度主要决定传递速度。多孔的支撑层只起支撑作用,对分离特性和传递速度影响很小,甚至几乎没有。连续性的非对称膜在同样的压力差推动下,其渗透速率与相似性能的对称膜相比为10~100倍。现在醋酸纤维素和多种高分子材料都可以用相似的方法制成非对称膜。
复合膜是将选择性膜层(或称活性膜层)沉积于具有微孔的支撑层(底膜)表面上,就像非对称性膜的连续性表皮,只是表层与底层的材料不同。复合膜的分离性能主要是由表层决定的,但也要受到微孔支撑层的结构、孔径、孔分布和孔隙率影响[6]。

多孔膜结构的孔隙率愈高愈好,可以使膜表层与支撑层接触部分最小,而有利于物质传递。然而,孔径应愈小愈好,可使高分子层不起支撑作用的点间距离减小。此外,交联和未反应的高分子渗透作用的点间距离减小。此外,交联和未反应的高分子渗透入支撑层的情况,也是决定复合膜总体传递特性的重要因素。已制成的复合膜中,常用聚砚做多孔支撑,因其化学性能稳定,机械性能良好。现在也有用其它高分子化合物,如聚丙烯脯偏氟乙烯等。最近也有试用无机物,如石英玻璃和硅酸盐类做多孔支撑层。无机膜的一般分离系数小,但渗透率高,且可耐高温。
作为复合膜极薄的皮层,要求其有效厚度小于1um,一般为0.2~1um,因为渗透速率与其厚度成反比。
用膜进行空气除湿,首先考虑的是采用亲水膜[7~15],如聚乙烯醇膜,赛璐玢膜,藻酸膜,壳聚糖膜,芳香聚酰亚胺,聚丙烯腈和醋酸纤维素膜。另一类值得注意的膜是浸渗剂改性膜。所谓"浸渗剂"是指填充在膜中的高吸水性物质,常用CsF、LiBr、季胺盐等盐类。在空气除湿过程中只有蒸汽与膜接触,浸渗剂可长期保留在膜内不被洗脱,增加了膜对水蒸气的溶解和扩散能力。据报道,添加CsF的聚乙烯醇复合膜处理乙醇-水蒸气时,在保持相当高分离系数的情况下,渗透通量提高一倍多;添加CsF的纤维素膜处理丙醇-水蒸气时,渗透通量增加10倍数。
Cussler等人[3]应用聚醚砚复合膜,Pan等人[10]应用非对称三醋酸纤维素中空纤维来对空气进行除湿。他们的研究都表明这些膜具有较高的水蒸气透过度和选择度。但是,聚醚砚复合膜比较昂贵,而三醋酸纤维素膜则很容易被液态水破坏,所以应避免接触液态水。复合膜的表层的任何小洞将严重影响复合膜的分离性能。Bonne等人[11]采用多孔均质纤维素膜来对空气除湿,但是这种膜只适用于相对湿度较大的空气除湿。因为相对湿度较小时,膜中空隙的存在将使空气很容易渗透通过,从而影响膜对水蒸气的分离性能。而当空气湿度较大时,水会在这些空隙中冷凝,从而使氮气、氧气难以通过,达到水和空气分离的目的。
非对称三醋酸纤维素中空纤维在35℃,渗透侧压力2.3kPa条件下,水在标准状态时的透过度为7.2 × 10-10g/(Pa·cm2·s)。纤维内径70um,外径225um,纤维的外表面是较厚的选择性活性层。实验采用的除湿器单元类似于管壳式换热器,每个单元由32根14cm长的纤维组成。经过对膜透水结果的分析可知,膜的有效活性层厚度是1.1um。
Wang等人[2]研究了中空纤维膜除湿的传质过程。实验中使用的中空纤维膜单元参数如下:每个单元类似于一个管壳式换热器,外壳由尼龙做成,外径1.0或2.5cm,分别内含30根和400根纤维,每根纤维长94cm,外径600um,纤维由充满微孔的聚砚做支撑层,内壁覆盖一层界面交联的硅氧烷酰胺做选择性活性层。这种膜的水蒸气与空气的选择性可以高达4000:1;水在单位膜厚的透过度也很高,达5cm/s。所以,传质过程不仅与膜本身的阻力有关,而且膜两侧的边界也有很重要的影响。通过对实验与模型对比的分析,他们认为:对于分离空气和水的膜过程,空气穿过膜的传质阻力主要由膜本身的扩散阻力组成;而水蒸气穿过膜的传质阻力主要由膜本身的扩散阻力构成。所以可以认为膜本身对水的透过度有无穷大。另外,水蒸气与空气的选择性并非越大越好,合理选取选择性,可以增加除湿气产量,减小膜面积。引入吹扫气,或使部分空气渗透流过膜,可降低渗透侧的膜厚度,降低水蒸气传质阻力,增加水蒸气的透过。实验表明,多孔聚砚中空纤维在操作压力0.7MPa时,除湿率85%,干燥气露点可达-20℃以下。
与纤维素膜不同,同样为有机高分子膜的凝胶膜具有不同的除湿机理。Cha等人[12]研究了凝胶膜空气除湿的过程。他们使用由再生的纤维素经过铜铵化处理获得的被称为Cuprophan的膜,这种膜具有强烈的亲水性,并且膜分子与水分子接触时,能立刻生成水凝胶,进一步将分子链撑大。这样,当膜与很湿的空气接触时,聚合物分子链遇水发生膨胀,膨胀后的分子链之间充满水,成为透水的良好通道。而由于空气在水中的溶解度很小,所以分子链间的这些水又成为使空气难以透过的屏障。当这种膜与较为干燥的空气接触时,聚合物分子链失水发生收缩,分子间距减小,空气同样难以从膜分子链之间透过去。
Cha等人通过实验测定了这种凝胶膜的透湿性,结果表明,在真空除湿模式下,该膜的透湿率对空气的相对湿度非常敏感,膜的透湿率是膜进口空气相对湿度的指数函数。水蒸气与氮气的分离系数随相对湿度的不同而在20~250之间变动,水蒸气的透过度在(1.1~9.5)×10-11 g/(Pa·cm2·s)之内。
这种膜的缺点是在低相对湿度时,膜的除湿能力不强,与空气的分离系数不高。

2.2 无机膜
2.2.1 分子筛膜的性质
与有机高分子膜相比,无机膜具有许多突出的优点如:耐热、耐化学腐蚀和良好的机械强度,特别适合于高温气体分离和化学反应过程。目前实际使用的无机膜孔径多在0.1~1um,由于陶瓷膜多孔,其渗透选择性较差[16]。
沸石具有规则孔道,孔径(0.3~1.2nm①)可调,其表面吸附性能、酸碱性能及催化性能可因此而发生显著变化,已广泛用于吸附制冷、催化、气体分离和净化。如果将分子筛以膜形式加以利用,将其用来调整多孔材料的孔道结构和尺寸,使之能获得孔径小于1nm的无机膜,并能用于高温气体分离、空气除湿、渗透蒸发等分子水平的分离过程,可以实现气相分离的连续进行。因此分子筛膜成为近年来研究的热点。
分子筛膜的渗透性能取决于渗透温度压力和处理介质的性质,当然膜厚也是一个重要因素。由于分子筛对某些组分具有强烈的吸附性,因此分子筛膜的渗透过程既要考虑其分子选择性又要考虑其吸附性能对渗透性能的影响。

2.2.2 分子筛膜的传湿机理
对分子筛膜分离气体的机理的研究已有许多报道,其中Asaeda等人认为多孔固体膜分离气体的历程一般分为4种类型[17~19];①Knudsen扩散。在有压差条件下膜孔径5~10nm,无压差条件下膜孔径5~50nm时,Knudsen扩散起主导作用,其分离系数为被分离气体相对分子质量②之比的平方根;②表面扩散。膜孔壁上吸附分子通过吸附分子的浓度梯度在表面上进行扩散,这一历程中被吸附状态对膜分离性能有一定影响。被吸附组分比不被吸附组分扩为1~10nm时表面扩散起主导作用。对于气体分离,表面扩散比Knudsen扩散更为有用;③毛细管冷凝。在温度较低的情况下(如接近0℃时),每一孔道都有可能被冷凝物组分堵塞而阻止了非冷凝物组分的渗透,当孔道内的冷凝物组分流出孔道后又蒸发时,就实现了分离;④分子筛效应。这是一个比较理想的分离历程,分子大小不同的气体混合物与膜接触后,大分子被截留,而小分子则通过孔道,从而实现了分离。

2.2.3 分子筛膜的应用
沸石膜具有均一的孔径,优良的化学稳定性、热稳定性和再生性。沸石晶穴内部存在着强大的库仑电场和极性作用,使它对水有极大的亲和力。因此,在沸石膜脱水过程中,水分子在其上优先吸附形成的表面扩散及毛细凝聚现象,将使水蒸气与气体的分离系数很大,是一种很好的气体脱水膜材料。
Asaeda等人[17]使用铸浆法制得了分子筛陶瓷膜来分离醇水的混合物蒸气,膜的支撑层是孔较大的陶瓷片,厚度0.001m,空隙率50%,平均孔径1um,表面活性层是由硅铝溶胶铸成的,其厚度10um,平均孔径3nm。实验表明,在25℃,50%的温度和相湿度下,空气的透过率非常小,小于2mol/(m2·h),而水的透过率可高达15mol/(m2·h)。水蒸气与空气 选择性是460:1。这些结果显示,空气和不在这种陶瓷膜的分离机理是由于毛细管冷凝后的液体流。
王金渠等人[20]对用水热液相合成法制备的A型沸厂膜的研究发现,所制备的膜虽然对N2和O2的分离系数不高,但对气体中微量水蒸气的脱除仍表现出较好的分离效果。分析原因认为,无机多孔膜进行气体分离时,筛分机理限于目前的制膜水平,尚不能占据主要地位;努森扩散和表面扩散机理是众多研究者注目的焦点。当易凝聚气体存在时,发生在膜孔中的毛细凝聚现象将显得十分重要,成为最主要的分离机理。当气体中存在易吸附的气体时,表面扩散机理将起主导作用。王金渠等人在平板式膜气体渗透装置中测试了A型沸石膜的除湿性能,发现在0~0.6MPa的空气压力范围内,随着压力的升高和温度的降低,水蒸气的渗透速率增大,与空气的分离系数增加,这是由沸石对水蒸气的吸附性能决定的。但文献并没给出具体的水蒸气渗透速度。

2.3 液膜
液膜有两种形式,一种是乳状液膜,以表面活性剂稳定薄膜。另一种是带支撑层的液膜,即将液膜填充于微孔高分子结构中。后者比前者稳定。
Deetz[21]研究了将液体LiBr溶液浸渍于醋酸/硝酸纤维膜中形成的液膜的透湿性能,他主要研究了该膜的稳定性,发现,当将此膜置于相对湿度小于3%的干燥氮气中时,薄膜中的LiBr液相会蒸发,氮气会在多孔的膜分子晶格间自由渡过,导致气体分离失败。如果渡过的是相对湿度较大的空气,由于水会连续不断地在膜的微孔中冷凝,冷凝后的水向低压侧渗透,又补低压侧的真空作用抽走,空气中的水会继续在微孔中冷凝,膜中的液相LiBr会稳定下来,使空气除湿过程连续进行。

2.4 VOC去除膜
VOC意为挥发性有机化合物,是英文Volatile Oraganic Compound的缩写。这些物质在封闭环境的空气中达到一定浓度后,会对人的健康造成不良影响,引起疲劳、头疼、恶心等反应。此外,VOC还有致癌作用。所以在对室内送风进行除湿的同时,还应去除其中的VOC。
Poddar T K等人[5]使用微孔憎水性对称或非对称中空纤维膜来去除空气中的VOC,在这种中空纤维的外表面涂有一层超薄致密VOC的选择性膜(经过等离子聚合化)。工作时,被处理空气流过纤维内部,VOC渗过多孔的基膜,被活性膜选择性吸附,在纤维外侧真空的驱动下脱除。实验表明,使用30cm长的中空纤维,当VOC的体积分数较高如(30000~40000)× 10-6时,VOC的脱除率可高达98%~99%,如果再与吸附法结合起来,VOC的体积分数可以降得更低。

3 除湿膜的形态和特性
除湿膜的形态基本有两种:平板式和中空纤维式。平板式膜的制备工艺比较简单,适宜于在实验室手工制作;用在工艺上时对流体的阻力小,结构简单,维护方便。目前在实验室制备的大部分膜都是平板膜。
一般来讲,膜分离过程的传质速率较小,尤其是在反渗透、气体分离及渗透汽化过程中,由于膜中致密活性层的存在,传质速率非常低。为了满足实际工业过程中处理大量物料的需要,发展了中空纤维,与平板膜相比,中空纤维具有如下优点[22]:
①膜呈自支撑结构,无需另加其它支撑体,可大大简化组装成膜组件时的复杂性;
②中空纤维组件具有很高的装填密度,它可以提供很大的比表面积。如0.3m2的中空纤维组件可以提供500m2的有效膜面积,而同样条件下的平板膜组件为20m2,管式膜组件为5 m2。
③重现性好,放大容易。一般情形下,对于中空纤维膜组件,实验室规模的膜组件与工业规模的膜组件相比,其中的流动形式与分离效果差别不大。
所以,采用中空纤维膜时,可以用很大的膜面积抵消膜过程中传质速率低的弱点,从而给膜分离技术在工业生产中的推广应用提供了有利条件。它的缺点是制备工艺复杂,如果是液体还要对料液进行预处理,以防堵塞。

4 结论
膜法除湿作为一种新的除湿方法,具有传统除湿方法的不具有的许多优点,如除湿过程连续进行,无腐蚀问题,无需阀门切换,无运动部件,系统可靠性高,易维护,能耗小,维护费用低等。
有机强化传湿,应尽量增大膜两侧的压力差。具体系统方案可采用压缩法、真空法、吹扫气法及混合法。这些方法都必须在膜两侧产生一个很大的压力差,将对膜的强度提出很高要求。另外,对泵等设备也有较高要求。如果能在膜两侧产生一个温差,靠膜造成的浓度差来实现传湿,则将克服这些不利因素,这将是一种新型的除湿模式。
有机高分子聚合物膜、无机膜和液膜都能用来除湿。有机高分子聚合物膜具有较高的水蒸气透过度和选择度。无机膜具有耐热、耐化学腐蚀的优点和良好的机械强度,特别适合于高温气体分离和化学反应过程。目前实际使用的无机膜孔径多在0.1~1um。陶瓷膜由于多孔,渗透选择性较差。
沸石具有规则孔道,孔径(0.3~1.2nm)可调,其表面吸附性能、酸感性能及催化性能可因此而发生显著变化,如果将分子筛以膜形式加以利用,将其用来调整多孔材料的孔道结构和尺寸,使之能获得孔径小于1nm的无机膜,并能用于高温气体分离、空气除湿、渗透蒸发等分子水平的分离过程,可以实现气相分离的连续进行。因此分子筛膜成为近年来研究的特点。
总的说来,除湿膜还存在透湿率低、强度差、成本高的缺点。今后随着膜材料和制膜工艺的研究进展,膜空气除湿必将研究会调及其它领域取得更大的发展

❽ 反渗透法的反渗透原理

反渗透法通常又称超过滤法,该法是利用只允许溶剂透过、不允许溶质透过的半版透膜,将权海水与淡水分隔开的。在通常情况下,淡水通过半透膜扩散到海水一侧,从而使海水一侧的液面逐渐升高,直至一定的高度才停止,这个过程为渗透。此时,海水一侧高出的水柱静压称为渗透压。如果对海水一侧施加一大于海水渗透压的外压,那么海水中的纯水将反渗透到淡水中。反渗透法的最大优点是节能。它的能耗仅为电渗析法的1/2,蒸馏法的1/40。因此,从1974年起,美日等发达国家先后把发展重心转向反渗透法。

❾ 有没有可以用管子把干燥气体排出来的除湿机

您好!
1、内循环管道除湿机,就是用回风管道和排风管道,将一定空间内的空气逐渐干燥。
2、全新风管道除湿机,吸入室外自然环境空气,除湿后,通过管道输送到使用环境。
请参考!祝您顺利!

❿ 气体可以通过反渗透膜吗

反渗透膜是通过分子大小来实现分离的,就看气体的分子大小,当分子大小小于膜孔径时肯定是可以通过反渗透膜的。

热点内容
丁度巴拉斯情人电影推荐 发布:2024-08-19 09:13:07 浏览:886
类似深水的露点电影 发布:2024-08-19 09:10:12 浏览:80
《消失的眼角膜》2电影 发布:2024-08-19 08:34:43 浏览:878
私人影院什么电影好看 发布:2024-08-19 08:33:32 浏览:593
干 B 发布:2024-08-19 08:30:21 浏览:910
夜晚看片网站 发布:2024-08-19 08:20:59 浏览:440
台湾男同电影《越界》 发布:2024-08-19 08:04:35 浏览:290
看电影选座位追女孩 发布:2024-08-19 07:54:42 浏览:975
日本a级爱情 发布:2024-08-19 07:30:38 浏览:832
生活中的玛丽类似电影 发布:2024-08-19 07:26:46 浏览:239