当前位置:首页 » 净水方式 » 离子交换法在食品方面的应用6

离子交换法在食品方面的应用6

发布时间: 2021-04-07 11:58:39

离子交换树脂法的应用有哪些

楼主你好:
用离子交换树脂进行分离的操作程序包括三个步骤,具体操作过程如下文中所述。
(1)交换柱的制备首先选择合适的离子交换树脂类型,用相应的溶液进行处理,如强酸性阳离子交换树脂需要在稀盐酸中浸泡,以除去杂质并使之溶胀和完全转变成H式。然后用蒸馏水洗至中性,装入充满蒸馏水的交换柱中。注意防止气泡进入树脂层。
(2)交换使待处理水样以合适的流速通过交换柱进行离子交换。交换完毕后用蒸馏水洗去残留的溶液及交换过程中形成的酸、碱或盐类等。
(3)洗脱洗脱是将已交换到树脂上的离子分离出来的过程。选择合适的洗脱液,使之以适宜速度通过交换柱进行洗脱。(更多质量检测、分析测试、化学计量、标准物质相关技术资料请参考中检所对照品查询 www.rmhot.com)
阳离子交换树脂常用盐酸溶液作为洗脱液;阴离子交换树脂常用盐酸溶液、氯化钠或氢氧化钠溶液作洗脱液。对于分配系数相近的离子,可用含有机络合剂或有机溶剂的洗脱液,以提高洗脱过程的选择性。
离子交换技术在富集和分离微量或痕量元素方面应用很广。例如分离水中的锂离子、锰离子、铜离子、铁离子、锌离子等多种金属离子,首先加入盐酸使一部分离子转变为络合阴离子,然后将水样通过强碱性阴离子交换树脂,各种离子均被交换在树脂上,最后用不同浓度的盐酸溶液进行洗脱分离。锂离子不生成络合阴离子,不发生交换,可用12mol/L HCl溶液最先洗脱出来

❷ 离子交换法原理

采用碱性阴离子抄交换树脂,A-Cl + I- =A-I + Cl-。离子交换法一般应用于生化产品的制备、纯水的制备等。原理:根据目的物与杂质在不同pH下所带电荷的不同选择相应的离子交换树脂。你的实验是提取碘,在溶液中,碘离子带负电荷,那么就要选择阴离子交换树脂,要么强碱性,要么弱碱性,如果原液ph>9,就必须用强碱性树脂,在9以下,强碱弱碱都可以。你可以都试试。碘酸属于中强酸,优先选择弱碱性阳离子交换树脂。

❸ 什么是离子交换技术水处理方面有什么应用

离子交换法(ion exchange process)是液相中的离子和固相中离子间所进行的一种可逆性化学反应内,当液相容中的某些离子较为离子交换固体所喜好时,便会被离子交换固体吸附,为维持水溶液的电中性,所以离子交换固体必须释出等价离子回溶液中。离子交换技术在水处理领域应用比较广泛,纯水物软化器即指钠离子交换器,而离子交换器分为钠离子交换器、阴阳床、混合床等种类。主要用于锅炉、热电站、化工、轻工、纺织、医药、生物、电子、原子能及纯水处理的前道处理,工业生产所需进行硬水软化去离子水制备的场合,还可用于食品药物的脱色提纯,贵重金属、化工原料的回收,电镀废水的处理等。

❹ 常用的离子交换树脂材料有哪些方面的应用

1)水处理
水处理领域离子交换树脂的需求量很大,约占离子交换树脂产量的90%,用于水中的各种阴阳离子的去除。目前,离子交换树脂的最大消耗量是用在火力发电厂的纯水处理上,其次是原子能、半导体、电子工业等。
2)食品工业
离子交换树脂可用于制糖、味精、酒的精制、生物制品等工业装置上。例如:高果糖浆的制造是由玉米中萃出淀粉后,再经水解反应,产生葡萄糖与果糖,而后经离子交换处理,可以生成高果糖浆。离子交换树脂在食品工业中的消耗量仅次于水处理。
3)制药行业
制药工业离子交换树脂对发展新一代的抗菌素及对原有抗菌素的质量改良具有重要作用。链霉素的开发成功即是突出的例子。近年还在中药提成等方面有所研究。
4)合成化学和石油化学工业
在有机合成中常用酸和碱作催化剂进行酯化、水解、酯交换、水合等反应。用离子交换树脂代替无机酸、碱,同样可进行上述反应,且优点更多。如树脂可反复使用,产品容易分离,反应器不会被腐蚀,不污染环境,反应容易控制等。
甲基叔丁基醚(MTBE)的制备,就是用大孔型离子交换树脂作催化剂,由异丁烯与甲醇反应而成,代替了原有的可对环境造成严重污染的四乙基铅。
5)环境保护
离子交换树脂已应用在许多非常受关注的环境保护问题上。目前,许多水溶液或非水溶液中含有有毒离子或非离子物质,这些可用树脂进行回收使用。如去除电镀废液中的金属离子,回收电影制片废液里的有用物质等。
6)湿法冶金及其他
离子交换树脂可以从贫铀矿里分离、浓缩、提纯铀及提取稀土元素和贵金属。

❺ 离子交换法在废水处理中有哪些应用

在废水处理中,离子交换法可用于去除废水中的某些有害物质,回收有价值化学品、重金属和稀有元素,或为了实现水资源的重复利用。主要用于处理电镀废水,如镀铬废水、镀镍废水、镀镉废水、镀金废水、镀银废水、镀锌废水、镀铜废水及含氰废水等,在胶片洗印废水中回收银、CD-2、CD-3等贵重化学药品,还可用于其他含铬废水、含镍废水和含汞废水、放射性废水的处理。
每升含铬数十至数百毫克的电镀废水首先经过过滤去除悬浮物,再经阳离子交换器除去金属离子,然后进入阴离子交换器除去Cr2O7-和Cr2O4- ,出水六价铬的含量小于0.5mg/L,还可作为清洗水循环使用。阴树脂用12%NaOH再生后,再生液含铬可高达17g/L,将此再生液H型阳离子交换器使Na2CrO4 转变成铬酸,再经蒸发浓缩7~8倍后,可返回电镀槽重新使用。
离子交换法处理电镀废水,第一个阳离子交换器的作用有两个,一是除去金属离子及杂质,减少对阴树脂的污染,因为重金属对树脂的氧化分解能起催化作用;二是降低pH值,使六价格以Cr2O7- 存在,因为阴树脂Cr2O7- 的选择性大于Cr2O4- 和其他阴离子的选择性,而且交换一个Cr2O7- 除去两个Cr6+,面交换一个Cr2O4- 只能除去一个Cr6+。由于Cr2O7- 是强氧化剂,容易引起树脂的氧化性破坏,因此一定要选用化学稳定性较好的强碱性树脂
详情请向上海立昌环境了解,不懂请继续追问!

❻ 请问离子交换技术和色谱分离技术是什么,在果汁加工中的应用

离子交换技术:;nbsp;Sobernbsp;和nbsp;Peterson于1956年首次将离子交换基团结合到纤维素上,制成了离子交换纤维素,成功地应用于蛋白质的分离。从此使生物大分子的分级分离方法取得了迅速的发展。离子交换基团不但可结合到纤维上,nbsp;还可结合到交联葡聚糖(S-ephadex)和琼脂糖凝胶(Sepharose)上。nbsp;近年来离子交换色谱技术已经广泛应用于蛋白质、酶、核酸、肽、寡核苷酸、病毒、噬菌体和多糖的分离和纯化。它们的优点是:⑴具有开放性支持骨架,大分子可以自由进入和迅速扩散,故吸附容量大。⑵具有亲水性,对大分子的吸附不大牢固,用温和条件使可以洗脱,不致引起蛋白质变性或酶的失活。⑶多孔性,表面积大、交换容量大,回收率高,可用于分离和制备。一、基本理论nbsp;nbsp;离子交换剂通常是一种不溶性高分子化合物,如树脂,纤维素,葡聚糖,醇脂糖等,它的分子中含有可解离的基团,这些基因在水溶液中能与溶液中的其它阳离子或阴离子起交换作用。虽然交换反应都是平衡反应,但在层析柱上进行时,由于连续添加新的交换溶液,平衡不断按正方向进行,直至完全。因此可以把离子交换剂上的原子离子全部洗脱下来,同理,当一定量的溶液通过交换柱时,由于溶液中的离子不断被交换而波度逐减少,因此也可以全部被交换并吸附在树脂上。如果有两种以上的成分被交换吸着在离子交换剂上,用洗脱液洗脱时,在被洗脱的能力则决定于各自洗反应的平衡常数。蛋白质的离子交换过程有两个阶段——吸附和解吸附。吸附在离子交换剂上的蛋白质可以通过改变pH使吸附的蛋白质失去电荷而达到解离但更多的是通过增加离子强度,使加入的离子与蛋白质竞争离子交换剂上的电荷位置,使吸附的蛋白质与离子交换剂解开。不同蛋白质与离子交换剂之间形成电键数目不同,即亲和力大小有差异nbsp;,因此只要选择适当的洗脱条件便可将混合物中的组分逐个洗脱下来,达到分离纯化的目的。二、离子交换的分类及常见种类(一)分类离子交换剂分为两大类,即阳离子交换剂和阴离子交换剂。各类交换剂根据其解离性大小,还可分为强、弱两种,即nbsp;强酸剂nbsp;阳离子交换剂nbsp;nbsp;弱酸剂nbsp;强碱型nbsp;阴离子交换剂nbsp;弱碱型nbsp;。1.阳离子交换剂nbsp;nbsp;阳离子交换剂中的可解离基因是磺酸(-SO3H)、磷酸(-PO3H2)、nbsp;羧酸(COOH)和酚羟基(-OH)等酸性基。某些交换剂在交换时反应如下:强酸性:R-SO3nbsp;-H+nbsp;+nbsp;Na+nbsp;R-SO3-nbsp;Na+H+弱酸性:R-COOH+Na+nbsp;R-COONanbsp;+H+国产树脂中强酸1×7(上海树脂#732)和国外产品Dowexnbsp;50、Zerolitnbsp;225等都于强酸型离子交换剂。2.阴离子交换剂nbsp;nbsp;阴离子交换剂中的可解离基因是伯胺、(-NH2)、仲胺(-NHCH3)、叔胺[N-(CH3)2]和季胺[-N(CH3)2]等碱性基团。某些交换反应如下:强碱性:R-N+(CH3)2nbsp;H·OH-nbsp;+Clnbsp;R-N+(CH3)2nbsp;Cl+OH-弱碱性:R-N+(CH3)2nbsp;H·OH-nbsp;+Clnbsp;R-N+(CH3)2nbsp;HCl+OH-强碱性#201号国产树脂和国外Dowex1、Dowex2、ZerolitFF等都属于强碱型阴离子交换剂。(二)种类1.纤维素离子交换剂:阳离子交换剂有羟甲基纤维素(CM-纤维素),nbsp;阴离子交换剂有氯代三乙胺纤维纱(DESE-纤维素)。2.交联葡聚糖离子交换剂:是将交换基因连接到交联葡聚糖上制成的一类交换剂,因而既具有离子交换作用,又具有分子筛效应,是一类广泛应用的色谱分离物质。常用的Sephadex离子交换剂也有阴离子和阳离子交换剂两类。阴离子交换剂有DEAE-Sephadexnbsp;A-25,A-50和QAE-nbsp;Sephadexnbsp;A25nbsp;,nbsp;A50nbsp;;nbsp;阳离子交换剂有CM-Sephaetxnbsp;C-50,C-50和Sephadexnbsp;C-25,C-50。阴离子交换剂用英文字头A,阳离子交换剂的英文字头是C。英文字后面的数字表示Sephadex型号。3.琼脂糖离子离交换剂:是将DESE-或CM-基团附着在Sepharosenbsp;CL-6Bnbsp;上形成,DEAE-Sephades(阴离子)和CM-Sepharose(阳离子),具有硬度大,nbsp;性质稳定,凝胶后的流速好,分离能力强等优点。三、实验操作(一)交换剂的处理,再生与转型nbsp;nbsp;新出厂的树脂是

❼ 离子交换的原理是什么,简述其在食品工业中的利用

离子交换,可以把水中呈离子态的阳、阴离子去除,以氯化钠(NaCl)代表水中无机盐类专,水质除盐的基本反属应可以用下列方程式表达:
1、阳离子交换树脂:R—H+Na+ R—Na+H+
2、阴离子交换树脂:R—OH+Cl- R—Cl+OH-
阳、阴离子交换树脂总的反应式即可写成:
RH+ROH+NaCl——RNa+RCL+H2O
可看出,水中的NaCl已分别被树脂上的H+和OH-所取代,而反应生成物只有H2O,故达到了去除水中盐的作用.

食品工业的运用主要包含制糖脱色,掩苦剂,水体除氨氮,硝酸盐,饮用水除铁,玉米糖浆催化,酶,多肽,和蛋白质分离,有机酸纯化,饮料除砷等等。

❽ 吸附法和离子交换法

以各类阴、阳离子交换树脂为固定相的离子交换法,以萃淋树脂为固定相的萃淋法回,以螯合答树脂、螯合纤维、活性炭、聚氨酯泡沫塑料、巯基棉及黄原脂棉等固定相的螯合-吸附法以广泛用于贵金属的分离与富集。

在HCl介质中,贵金属氯配阴离子与阴离子交换树脂相互作用的强度决定于配阴离子的电荷数,其中双电荷的[PtCl42-、[PdCl42-、[PtCl62-、[IrCl62-、[RuCl62-、[OsCl62-牢固地吸附于树脂上,而三电荷的[IrCl63-、[RhCl63-、[RuCl63-仅有很弱的亲和力。铑、钌的配合物。由于其配合物在溶液中电荷的可变性,因此它们的吸附强度也随其电荷数而变化。在实际应用中应考虑这一特性。

❾ 离子交换树脂法的应用有哪些

离子交换树脂法的应用有哪些
用离子交换树脂进行分离的操作程序包括三个步骤,具体操作过程如下文中所述.
(1)交换柱的制备首先选择合适的离子交换树脂类型,用相应的溶液进行处理,如强酸性阳离子交换树脂需要在稀盐酸中浸泡,以除去杂质并使之溶胀和完全转变成H式.然后用蒸馏水洗至中性,装入充满蒸馏水的交换柱中.注意防止气泡进入树脂层.
(2)交换使待处理水样以合适的流速通过交换柱进行离子交换.交换完毕后用蒸馏水洗去残留的溶液及交换过程中形成的酸、碱或盐类等.
(3)洗脱洗脱是将已交换到树脂上的离子分离出来的过程.选择合适的洗脱液,使之以适宜速度通过交换柱进行洗脱.
阳离子交换树脂常用盐酸溶液作为洗脱液;阴离子交换树脂常用盐酸溶液、氯化钠或氢氧化钠溶液作洗脱液.对于分配系数相近的离子,可用含有机络合剂或有机溶剂的洗脱液,以提高洗脱过程的选择性.
离子交换技术在富集和分离微量或痕量元素方面应用很广.例如分离水中的锂离子、锰离子、铜离子、铁离子、锌离子等多种金属离子,首先加入盐酸使一部分离子转变为络合阴离子,然后将水样通过强碱性阴离子交换树脂,各种离子均被交换在树脂上,最后用不同浓度的盐酸溶液进行洗脱分离.锂离子不生成络合阴离子,不发生交换,可用12mol/L HCl溶液最先洗脱出来

❿ 离子交换树脂可以应用在食品中吗

可以,作为食品生产过程的脱盐脱色用,在淀粉糖、水净化方面已经很普遍应用。

热点内容
丁度巴拉斯情人电影推荐 发布:2024-08-19 09:13:07 浏览:886
类似深水的露点电影 发布:2024-08-19 09:10:12 浏览:80
《消失的眼角膜》2电影 发布:2024-08-19 08:34:43 浏览:878
私人影院什么电影好看 发布:2024-08-19 08:33:32 浏览:593
干 B 发布:2024-08-19 08:30:21 浏览:910
夜晚看片网站 发布:2024-08-19 08:20:59 浏览:440
台湾男同电影《越界》 发布:2024-08-19 08:04:35 浏览:290
看电影选座位追女孩 发布:2024-08-19 07:54:42 浏览:975
日本a级爱情 发布:2024-08-19 07:30:38 浏览:832
生活中的玛丽类似电影 发布:2024-08-19 07:26:46 浏览:239