蛋白质超滤的优缺点
㈠ 超滤净水器优缺点 超滤净水器的材质
大家都知道我们平时家里用的自来水是不能直接饮用的,需要在锅里煮沸了才可以。否则会引起拉肚子,因为在没有煮沸之前自来水里有许多微生物细菌,高温会让细菌死亡,所以煮沸后能够饮用。但是如果水的性质不一样,比如水是酸性水,也就是大家所知道的硬水,那么煮沸是没用多大用了。而超滤净水机就能讲弱酸性水变成对人体有益的弱碱性水,小编就为大家详细介绍!
超滤净水器的优缺点
超滤净水器的优点
1.替代桶装水:替代桶装水的最佳选择桶装水一桶约为8至16元不等,成本较高,而且这种水多数都是用大型净水器或者纯水机加工的自来水,很少有天然矿泉水;同时桶装水保质时间短,与饮水机连接使用后处于开放状态,易被空气中的污染物污染,因此不是理想的饮用水解决方案。
2.成本低:不像瓶装水成本极高瓶装水被少数富贵家庭列为日常用水,但其成本太高,且瓶装水是净水,缺乏微量元素和矿物质,久饮对人体健康不宜,其效果也未必如净水器。
3.出水口感好:达到生饮标准,成本较低净水器法兰尼可以有效地分离去除各类污染物,如细菌、余氯、重金属、挥发性物质、铁锈、泥沙等水中杂质及有害物质,且成本相对桶装水来说要低很多,出水口感好,水质呈弱碱性、小分子、活性强,是家庭最理想的饮用水解决方案。
超滤净水器的缺点
由于滤芯寿命比较短,超滤的寿命一般在1-2年,使得3m超滤净水器的使用寿命比较短,另外它也存在出水量小的不足之处。
超滤净水器的优缺点—超滤净水器的材质
1.优质的滤芯:超滤净水器可以到达五级过滤的标准,就是它使用了优质的滤芯,滤芯中有微米级别的PP棉,还使用颗粒活性炭来吸附水中的异味、异色大分子有机物,能有效改善水质和口感。
2.高压泵:超滤净水器的高压泵是0.0001微米的纳滤孔径,它的高压泵的水压可以使自来水顺利通过并有效去除细菌和病毒,在高压泵方面超滤净水器是非常具有优势的。
3.材质:超滤净水器使用的是全新ABS材质,能呈现漂亮的外观,它的材质本身不但是食品级无毒无副作用的健康材料,而且用户在后期清洗打理时也很方便。同时超滤净水器的机器载体为不锈钢材质的,防腐耐用的不锈钢材质才可以提供高承压力和超长的使用寿命。
4.超滤膜的优秀性能:仔细观察超滤净水器超滤膜的外观,你会发现它的滤膜膜丝精密细小可达800多根,而且纯物理过滤材质,不会残留任何无溶解物这是一般净水器达不到的。
看了小编上面的分析,大家也都知道了超滤净水器的优缺点,之所以超滤净水器能够成为全球最实用的净水器,是因为超滤净水器轻便、体积小、功能强大、给人们带来安全,而且作为一款直接插在水管口的终端处理器,价格不会太高。最后小编提醒大家,净水机的安装过程比较多,在安装时建议专业家电公司或者要求购买厂商为大家装,毕竟净水器在我们的生活之中是非常实用的。
㈡ 超滤膜主要有哪些优点和缺点
超滤膜主要具有以来下优点:
1.回收率自高,所得产品品质优良,可实现物料的高效分离、纯化及高倍数浓缩。系统制作材质采用卫生级管阀,现场清洁卫生,满足GMP或FDA生产规范要求。系统工艺设计先进,集成化程度高,结构紧凑,占地面积少,操作与维护简便,工人劳动强度低。
2.处理过程无相变,对物料中组成成分无任何不良影响,且分离、纯化、浓缩过程中始终处于常温状态,特别适用于热敏性物质的处理,完全避免了高温对生物活性物质破坏这一弊端,有效保留原物料体系中的生物活性物质及营养成分。
3.超滤设备系统能耗低,生产周期短,与传统工艺设备相比,设备运行费用低,能有效降低生产成本,提高企业经济效益。
4.操作简便,成本低廉,不需增加任何化学试剂,尤其是超滤技术的实验条件温和,与蒸发、冷冻干燥相比没有相的变化,而且不引起温度、pH的变化,因而可以防止生物大分子的变性、失活和自溶。在生物大分子的制备技术中,超滤主要用于生物大分子的脱盐、脱水和浓缩等。
超滤膜缺点:
超滤法也有一定的局限性,它不能直接得到干粉制剂。对于蛋白质溶液,一般只能得到10~50%的浓度。超滤膜的缺点是膜更换费用较高,技术设备投资很大。
㈢ 超滤净水机有什么优缺点
优点:超滤净水机一般不用泵,不耗电,没有电气安全问题。接头少,水压低,专一般用市政自来水的正常水属压即可,故障率及漏水概率相对较低。结构简单,价格便宜。
缺点:超滤净水机对于去除水中化学污染物的效果较差。对供水特发事件效果较差,出水口感一般,不能降低水的硬度,煮水容器依然存在结垢的可能。
㈣ 双缩脲法蛋白质定量有什么优缺点
优点:测定速度较快,干扰物质少,不同蛋白质产生的颜色深浅相近。
缺点:
①灵敏度差;
② 三羟甲基氨基甲烷、一些氨基酸和EDTA等会干扰该反应。
双缩脲法是第一个用比色法测定蛋白质浓度的方法,硫铵不干扰显色, Cu2+与蛋白质的肽键,以及酪氨酸残基络合,形成紫蓝色络合物,此物在540nm波长处有最大吸收。
(4)蛋白质超滤的优缺点扩展阅读:
在使用双缩脲试剂时候,必须注意,必须是先加0.1 g/mL氢氧化钠溶液,再加0.01 g/mL硫酸铜的水溶液。若先加入硫酸铜溶液,再加入氢氧化钠溶液,则无法充分制造碱性环境,此时硫酸铜会与氢氧化钠发生复分解反应,生成蓝色氢氧化铜沉淀,导致现象不清,无法较好地达到实验目的。
㈤ 常用来测定蛋白质含量的方法有哪些,优缺点是什么
①凯氏定氮法
原理:蛋白质平均含氮量为16%。当样品与浓硫酸共热,蛋白氮转化为铵盐,在强碱性条件下将氨蒸出,用加有指示剂的硼酸吸收,最后用标准酸滴定硼酸,通过标准酸的用量即可求出蛋白质中的含氮量和蛋白质含量。
②双缩脲法
原理:尿素在180℃下脱氨生成双缩脲,在碱性溶液中双缩脲可与Cu2+形成稳定的紫红色络合物。蛋白质中的肽键实际上就是酰胺键,故多肽、蛋白质等都有双缩脲(biuret)反应,产生蓝色或紫色复合物。比色定蛋白质含量。
缺点:灵敏度低,样品必须可溶,在大量糖类共存和含有脯氨酸的肽中显色不好。其 精确度 较差 (数mg),且会受样品中 硫酸铵 及 Tris 的干扰,但 准确度 较高,不受蛋白质的种类影响。
③Folin酚法(Lowry)
Folin酚法是biuret 法的延伸,所用试剂由试剂甲和乙两部分组成。试剂甲相当于双缩脲试剂(碱性铜试剂),试剂乙中含有磷钼酸和磷钨酸。
在碱性条件下,蛋白质中的巯基和酚基等可将Cu2+还原成Cu+, Cu+能定量地与Folin-酚试剂反应生成蓝色物质,600nm比色测定蛋白质含量。
灵敏度较高(约 0.1 mg),但较麻烦,也会受 硫酸铵 及 硫醇化合物 的干扰。 步骤中各项试剂的混合,要特别注意均匀澈底,否则会有大误差。
④紫外法
280nm光吸收法:利用Tyr在280nm在吸收进行测定。
280nm-260nm的吸收差法:若样品液中有少量核酸共存按下式计算:
蛋白质浓度(mg/ml)=1.24E280-0.74E260 (280 260为角标)
⑤色素结合法(Bradford 法)
直接测定法:利用蛋白质与色素分子(Coomassie Brilliant Blue G-250)结合物的光吸收用分光光度法进行测定。
考马斯亮兰(CBG)染色法测定蛋白质含量。CBG 有点像指示剂,会在不同的酸碱度下变色;在酸性下是茶色,在中性下为蓝色。当 CBG接到蛋白质上去的时候,因为蛋白质会提供 CBG一个较为中性的环境,因此会变成蓝色。当样本中的蛋白质越多,吸到蛋白质上的CBG也多,蓝色也会增强。因此,蓝色的呈色强度,是与样本中的蛋白质量成正比。
间接测定法:蛋白质与某些酸性或碱性色素分子结合形成不溶性的盐沉淀。用分光光度计测定未结合的色素,以每克样品结合色素的量来表示蛋白质含量的多少。
⑥BCA法
BCA(Bicinchoninc acid procere,4,4’-二羧-2,2’-二喹啉)法与Lowry法相似,主要差别在碱性溶液中,蛋白质使Cu2+转变Cu+后,进一步以BCA 取代Folin试剂与Cu+结合产生深紫色,在波长562 nm有强的吸收。
它的优点在于碱性溶液中BCA 比Folin试剂稳定,因此BCA与碱性铜离子溶液结合的呈色反应只需一步骤即完成。灵敏度Lowry法相似。
本方法对于阴离子、非离子性及二性离子的清洁剂和尿素较具容忍度,较不受干扰,但会受还原糖 及EDTA的干扰。
⑦胶体金测定法
胶体金(colloidal gold)是氯金酸(chloroauric acid)的水溶胶,呈洋红色,具有高电子密度,并能与多种生物大分子结合。
胶体金是一种带负电荷的疏水胶体遇蛋白质转变为蓝色,颜色的改变与蛋白质有定量关系,可用于蛋白质的定量测定。
⑧其他方法
有些蛋白质含有特殊的 非蛋白质基团,如 过氧化物酶含有 亚铁血红素基团,可测 403 nm 波长的吸光来定量之。 含特殊金属的酶 (如镉),则可追踪该金属。
㈥ 透析技术与超滤技术在生物制品中去除杂质的优缺点对比
透析和超滤基本原理差不多,都是利用半透膜分离大小不同的分子。但是也有一些区别,主要是应用范围不同。具体介绍如下:
透析
自Thomas Graham 1861年发明透析方法至今已有一百多年。透析已成为生物化学实验室最简便最常用的分离纯化技术之一。在生物大分子的制备过程中,除盐、除少量有机溶剂、除去生物小分子杂质和浓缩样品等都要用到透析的技术。
透析只需要使用专用的半透膜即可完成。通常是将半透膜制成袋状,将生物大分子样品溶液置入袋内,将此透析袋浸入水或缓冲液中,样品溶液中的大分子量的生物大分子被截留在袋内,而盐和小分子物质不断扩散透析到袋外,直到袋内外两边的浓度达到平衡为止。保留在透析袋内未透析出的样品溶液称为"保留液",袋(膜)外的溶液称为"渗出液"或"透析液"。
透析的动力是扩散压,扩散压是由横跨膜两边的浓度梯度形成的。透析的速度反比于膜的厚度,正比于欲透析的小分子溶质在膜内外两边的浓度梯度,还正比于膜的面积和温度,通常是4℃透析,升高温度可加快透析速度。
透析膜可用动物膜和玻璃纸等,但用的最多的还是用纤维素制成的透析膜,目前常用的是美国Union Carbide (联合碳化物公司)和美国光谱医学公司生产的各种尺寸的透析管,截留分子量MwCO(即留在透析袋内的生物大分子的最小分子量,缩写为MwCO)通常为1万左右。商品透析袋制成管状,其扁平宽度为23 mm~50 mm不等。为防干裂,出厂时都用10%的甘油处理过,并含有极微量的硫化物、重金属和一些具有紫外吸收的杂质,它们对蛋白质和其它生物活物质有害,用前必须除去。可先用50%乙醇煮沸1小时,再依次用50%乙醇、0.01 mol/L碳酸氢钠和0.001 mol/L EDTA溶液洗涤,最后用蒸馏水冲洗即可使用。实验证明,50%乙醇处理对除去具有紫外吸收的杂质特别有效。使用后的透析袋洗净后可存于4℃蒸馏水中,若长时间不用,可加少量NaN2,以防长菌。洗净凉干的透析袋弯折时易裂口,用时必须仔细检查,不漏时方可重复使用。
新透析袋如不作如上地殊处理,则可用沸水煮五至十分钟,再用蒸馏水洗净,即可使用。使用时,一端用橡皮筋或线绳扎紧,也可以使用特制的透析袋夹夹紧,由另一端灌满水,用手指稍加压,检查不漏,方可装入待透析液,通常要留三分之一至一半的空间,以防透析过程中,透析的小分子量较大时,袋外的水和缓冲液过量进入袋内将袋涨破。含盐量很高的蛋白质溶液透析过夜时,体积增加50%是正常的。为了加快透析速度,除多次更换透析液外,还可使用磁子搅拌。透析的容器要大一些,可以使用大烧杯、大量筒和塑料桶。小量体积溶液的透析,可在袋内放一截两头烧园的玻璃棒或两端封口的玻璃管,以使透析袋沉入液面以下。
检查透析效果的方法是:用1% BaCl2检查(NH4)2SO4,用1% AgNO3 检查NaCl、KCl等。
为了提高透析效率,还可以使用各种透析装置。使用者也可以自行设计与制作各种简易的透析装置。美国生物医学公司(Biomed Instruments Inc.)生产的各种型号的Zeineh 透析器,由于使用对流透析的原理,使透析速度和效率大大提高。
超滤
超过滤即超滤,自20年代问世后,直至60年代以来发展迅速,很快由实验室规模的分离手段发展成重要的工业单元操作技术。超滤现已成为一种重要的生化实验技术,广泛用于含有各种小分子溶质的各种生物大分子(如蛋白质、酶、核酸等)的浓缩、分离和纯化。
超滤是一种加压膜分离技术,即在一定的压力下,使小分子溶质和溶剂穿过一定孔径地制的薄膜,而使大分子溶质不能透过,留在膜的一边,从而使大分子物质得到了部分的纯化。超滤根据所加的操作压力和所用膜的平均孔径的不同,可分为微孔过滤、超滤和反渗透三种。微孔过滤所用的操作压通常小于4×104 Pa,膜的平均孔径为500埃~14微米(1微米=104埃),用于分离较大的微粒、细菌和污染物等。超滤所用操作压为4×104 Pa~7×105 Pa,膜的平均孔径为10-100埃,用于分离大分子溶质。反渗透所用的操作压比超滤更大,常达到35×105 Pa~140×105 Pa,膜的平均孔径最小,一般为10埃以下,用于分离小分子溶质,如海水脱盐,制高纯水等。
超滤技术的优点是操作简便,成本低廉,不需增加任何化学试剂,尤其是超滤技术的实验条件温和,与蒸发、冰冻干燥相比没有相的变化,而且不引起温度、pH的变化,因而可以防止生物大分子的变、失活和自溶。
在生物大分子的制备技术中,超滤主要用于生物大分子的脱盐、脱水和浓缩等。
超滤法也有一定的局限,它不能直接得到干粉制剂。对于蛋白质溶液,一般只能得到10~50%的浓度。
超滤技术的关键是膜。膜有各种不同的类型和规格,可根据工作的需要来选用。早期的膜是各向同的均匀膜,即现在常用的微孔薄膜,其孔径通常是0.05mm 和0.025mm。近几年来生产了一些各向异的不对称超滤膜,其中一种各向异扩散膜是由一层非常薄的、具有一定孔径的多孔"皮肤层"(厚约0.1mm ~1.0mm ),和一层相对厚得多的(约1mm )更易通渗的、作为支撑用的"海绵层"组成。皮肤层决定了膜的选择,而海绵层增加了机械强度。由于皮肤层非常薄,因此高效、通透好、流量大,且不易被溶质阻塞而导致流速下降。常用的膜一般是由乙酸纤维或硝酸纤维或此二者的混合物制成。近年来为适应制药和食品工业上灭菌的需要,发展了非纤维型的各向异膜,例如聚砜膜、聚砜酰胺膜和聚丙烯腈膜等。这种膜在pH 1~14都是稳定的,且能在90℃下正常工作。超滤膜通常是比较稳定的,若使用恰当,能连续用1~2年。暂时不用,可浸在1%甲醛溶液或0.2% 叠氮化钠NaN3中保存。
超滤膜的基本能指标主要有:水通量(cm3/(cm2·h));截留率(以百分率%表示);化学物理稳定(包括机械强度)等。
超滤装置一般由若干超滤组件构成。通常可分为板框式、管式、螺旋卷式和中空纤维式四种主要类型。由于超滤法处理的液体多数是含有水溶生物大分子、有机胶体、多糖及微生物等。这些物质极易粘附和沉积于膜表面上,造成严重的浓差极化和堵塞,这是超滤法最关键的问题,要克服浓差极化,通常可加大液体流量,加强湍流和加强搅拌。
国外生产超滤膜和超滤装置最有名的厂家是美国的Milipore公司和德国的Sartorius公司。国内主要的研究机构和生产厂家是:中科院生态环境研究中心、杭州淡化和水处理开发中心、兰州膜科学技术研究所、无锡化工研究所、上海医药工业研究所、天津膜分离工程研究所、北京化工厂、常熟膜分离实验厂、无锡市超滤设备厂、无锡纯水设备厂、天津超滤设备厂、湖北沙市水处理设备厂等。从膜的品种,以及从某些研究工作的深度方面看,我国与世畀先进国家的差距不很大,但在膜的质量能及商品化方面尚有较大差距。
在生物制品中应用超滤法有很高的经济效益,例如供静脉注射的25%人胎盘血白蛋白(即胎白)通常是用硫酸铵盐析法、透析脱盐、真空浓缩等工艺制备的,该工艺流程硫酸铵耗量大,能源消耗多,操诈时间长,透析过程易产生污染。改用超滤工艺后,平均回收率可达97.18%;吸附损失为1.69%;透过损失为1.23%;截留率为98.77%。大幅度提高了白蛋白的产量和质量,每年可节省硫酸铵6.2吨,自来水16000吨。
超滤技术的应用有很好的前景,应引起足够的重视。
㈦ 常用来测定蛋白质含量的方法有哪些优缺点是什么
1、凯氏定氮法
凯氏定氮法是测定化合物或混合物中总氮量的一种方法。即在有催化剂的条件下,用浓硫酸消化样品将有机氮都转变成无机铵盐,然后在碱性条件下将铵盐转化为氨,随水蒸气蒸馏出来并为过量的硼酸液吸收,再以标准盐酸滴定,就可计算出样品中的氮量。
由于蛋白质含氮量比较恒定,可由其氮量计算蛋白质含量,故此法是经典的蛋白质定量方法。
优点:可用于所有食品的蛋白质分析中;操作相对比较简单;实验费用较低;结果准确,是一种测定蛋白质的经典方法;用改进方法(微量凯氏定氮法)可测定样品中微量的蛋白质。
缺点:凯氏定氮法只是一个氧化还原反应,把低价氮氧化并转为氨盐来测定,而不能把高价氮还原为氮盐的形式,所以不可以测出物质中所有价态的氮含量。
2、双缩脲法
双缩脲法是一个用于鉴定蛋白质的分析方法。双缩脲试剂是一个碱性的含铜试液,呈蓝色,由1%氢氧化钾、几滴1%硫酸铜和酒石酸钾钠配制。
当底物中含有肽键时(多肽),试液中的铜与多肽配位,配合物呈紫色。可通过比色法分析浓度,在紫外可见光谱中的波长为540nm。鉴定反应的灵敏度为5-160mg/ml。鉴定反应蛋白质单位1-10mg。
优点:测定速度较快,干扰物质少,不同蛋白质产生的颜色深浅相近。
缺点:①灵敏度差; ② 三羟甲基氨基甲烷、一些氨基酸和EDTA等会干扰该反应。
3、酚试剂法
取6支试管分别标号,前5支试管分别加入不同浓度的标准蛋白溶液,最后一支试管加待测蛋白质溶液,不加标准蛋白溶液,在室温下放置30分钟,以未加蛋白质溶液的第一支试管作为空白对照,于650nm波长处测定各管中溶液的吸光度值。
优点:灵敏度高,对水溶性蛋白质含量的测定很有效。
缺点:①费时,要精确控制操作时间;②酚法试剂的配制比较繁琐。
4、紫外吸收法
大多数蛋白质在280nm波长处有特征的最大吸收,这是由于蛋白质中有酪氨酸,色氨酸和苯丙氨酸存在,可用于测定0.1~0.5mg/mL含量的蛋白质溶液。
取9支试管分别标号,前8支试管分别加入不同浓度的标准蛋白溶液,1号试管不加标准蛋白溶液,最后一支试管加待测蛋白质溶液,而不加标准蛋白溶液,每支试管液体总量通过加入蒸馏水补足而保持一致,将液体混合均匀,在280nm波长处进行比色,记录吸光度值。
优点:简便、灵敏、快速,不消耗样品,测定后能回收。
缺点:①测定蛋白质含量的准确度较差,专一性差; ②干扰物质多,若样品中含有嘌呤、嘧啶及核酸等能吸收紫外光的物质,会出现较大的干扰。
5、考马斯亮蓝法
考马斯亮蓝显色法的基本原理是根据蛋白质可与考马斯亮蓝G-250 定量结合。当考马斯亮蓝 G-250 与蛋白质结合后,其对可见光的最大吸收峰从 465nm 变为 595nm。
在考马斯亮蓝 G-250 过量且浓度恒定的情况下,当溶液中的蛋白质浓度不同时,就会有不同量的考马斯亮蓝 G-250 从吸收峰为 465nm 的形式转变成吸收峰为 595nm 的形式,而且这种转变有一定的数量关系。
一般情况,当溶液中的蛋白质浓度增加时,显色液在 595nm 处的吸光度基本能保持线性增加,因此可以用考马斯亮蓝 G-250 显色法来测定溶液中蛋白质的含量。
优点:灵敏度高,测定快速、简便,干扰物质少,不受酚类、游离氨基酸和缓冲剂、络合剂的影响,适合大量样品的测定。
缺点:由于各种蛋白质中的精氨酸和芳香族氨基酸的含量不同,因此用于不同蛋白质测定时有较大的偏差。
㈧ 微滤与超滤的共同点和不同点,及其优缺点
微滤、超滤的区别
从膜的分离范围来看,微滤最适合液体介质的降浊、除菌处理,而超滤主要可用於对低分子溶解物与有机大分子的分离(通常是指分子量在500以上,106以下的大分子从溶液中分离)。对於反渗透水处理中的预处理来说是分离水中全部的有机物、微生物和胶体颗粒。
微滤和超滤的过滤过程通常是以直流过滤方式(包括表面过滤、深度过滤)和错流过滤方式进行的。微滤膜和超滤膜的差异最明显的是孔径不同,微滤膜一般指孔径在 0.02-0.1um,高度均匀,具有筛网特征的多孔固体连续相,而超滤的孔径似为0.002-0.2um,在进行分离时的压力也分别为0.01- 0.3Mpa和0.2-1.0Mpa。
超滤膜透过物质主要是水、溶剂、离子和小分子。
被截留物质主要是蛋白质、各类□、细菌、病毒、乳胶、微粒子、过滤精度为10-4cm~10-7cm利用超滤膜不同孔径对液体进行分离,其分子切割量(CWCO)一般为6000~50万,孔径为100nm(纳米)。
微滤膜透过物质主要是水、溶液和溶解物。被截留物质主要是悬浮物、细菌类、微粒子。过滤精密有0.2cm、0.5cm、1.0cm、2.0cm、3.0cm、5.0cm、和10.0cm。其在过滤领域里的重要特点是:
1. 使所有比网孔大的粒子被全部拦截在膜的表面,克服了常规过滤的深层过滤介质过滤达不到“绝对值”的要求,而微孔过滤膜是趋于“绝对值”过滤器的首选材料。
2. 孔径均匀,过滤精度高
微孔滤膜的孔径十分均匀,故为均孔膜,其与反渗透及超滤有明显的不同。其最大孔径与平均孔径的比值一般为3~4,孔径分布基本呈正态分布,因而常被作为起 保证作用的手段,过滤精度高,分离效率高。孔隙率高,流速快。微孔膜的微孔数绚达每平方釐米107~1011个孔,孔隙率在60%~90%之间,由於孔隙 率高,其对液体的过滤速度在同等过滤精度下,比常规过滤介质快40倍。
3. 厚度薄,吸附量小微孔膜的厚度一般为90~220um,与一般深层过滤介质比,只有它们的1/10,因而过滤速度高,过滤时对被滤物质的液体的吸附量极小。
4. 无介质脱落,不产生二次污染。微孔膜是均匀,连续的整体结构,没有一般的深层过滤介质可能产生滤材脱落的不足。
5. 颗粒容纳量小,易赌塞。微孔膜阻留颗粒大多数只限于膜表面,因而易被材料中与膜孔径大小相近的微粒或凝胶物质所堵塞。微滤和超滤在处理系统上视水质需要适当地采取预过滤。
http://www.waterinfor.com/index.php?option=com_k2&view=item&id=101:%E5%BE%AE%E6%BF%BEmf%E8%B6%85%E6%BF%BEuf%E6%A6%82%E8%BF%B0&Itemid=78&tmpl=component&print=1
㈨ 超滤技术应用蛋白质的分离有何优势
来优势:血浆蛋白分离采用超滤技源术能使得生产工艺设计和设备单简化;缩短了生产周期;减少污染;大大降低生产成本,提高了效益。
正超滤具备了纯化和浓缩双重作用,所以在血浆蛋白分离上被广泛应用于脱盐、脱醇、浓缩,分离提纯,去热原等方面。
㈩ 双缩脲法蛋白质定量有什么优缺点
双缩脲法 测定范围(μg/ml)1000—10000 不同种类蛋白的差异小 最大吸收波长(nm)540 特 点: 重复性、线性关系好,灵敏度低,测定范围窄,样品需要量大