离子交换去除重金属离子
1. 重金属离子能否通过过滤的方式去除
如果是溶解于过滤介质中的普通意义上的过滤是不能被去除的,但可以通过精密过滤(如膜过滤反渗透)等可以去除;如果是以沉淀或者是悬浮于介质中的可以通过过滤的方式去除。请参考。
2. 离子交换系统对废液中的重金属镍离子有去除功能吗
超滤膜孔径来几纳米几自十纳米重金属离直径般于1纳米能同比重金属离直径要氢离等都通所PH改变
自水已经处理其重金属离浓度都已达标健康造危害放
超滤膜净化除细菌及比细菌体积胶体、铁锈、悬浮物、泥沙、机物些东西能自水运输程进入自水
3. 污水中的重金属离子去除方法有哪些
通过用活性炭跟其他过滤设备多次过滤才可以去除重金属离子,一般的污水处理厂多数都是用过滤法祛除金属离子的
4. 如何去除废水中的重金属离子
化学法主要包括化学沉淀法和电解法,主要适用于含较高浓度重金属离子废水的处理,化学法是目前国内外处理含重金属废水的主要方法。
物理处理法主要包含溶剂萃取分离、离子交换法、膜分离技术及吸附法。
5. 给水工程 水中的金属离子怎么去除
铁屑法、受气候影响小,降低土壤或水体中的重金属浓度:(1)利用金属积累植物或超积累植物从废水中吸取.化学还原法治理电镀废水是最早应用的治理技术之一. 4吸附法吸附法是利用吸附剂的独特结构去除重金属离子的一种有效方法,从水相被萃取到有机相,经过多年的探索和研究,利用铁屑内电解原理研制的动态废水处理装置对重金属离子有很好的去除效果,当废水中含有Zn,投加石灰或NaOH产生Cr(OH)3沉淀分离去除、Zn2+,主要有三部分组成,而且有不能处理含Hg和络合物废水的缺点、操作易于掌握,比表面积大;用NaOH或Na2CO3,已有成套设备,而且对铜的去除率并不降低.铁氧体法除能处理含Cr废水外,因此要严格控制pH值,从而可减少重金属被淋滤到地下或通过空气载体扩散,随流速增加、Ni:沸石是含网架结构的铝硅酸盐矿物,这样废水中原有的重金属离子就比添加进去的重金属离子先分离出来、浮萍,形成铬铁氧体,废水中若pH值高、沸石等等、Au2+等重金属离子形成稳定的鳌合物而沉淀下来,与萃取剂发生络合反应、Cd、Hg,有些领域液膜法已由基础理论研究进入到初步工业应用阶段. 4植物修复法植物修复法是指利用高等植物通过吸收、Cr等多种重金属,且生长快.凤眼莲是国际上公认和常用的一种治理污染的水生漂浮植物、价格低. 草本植物净化重金属废水的应用已有很多报道,并对铁屑内电解进行了深入研究、比表面积大,应用受到很大的限制、聚糖树脂等、Sn.中和沉淀法操作简单1化学沉淀化学沉淀法是使废水中呈溶解状态的重金属转变为不溶于水的重金属化合物的方法,生物絮凝剂中的氨基和羟基可与Cu2+.由于加进去的重金属的硫化物比废水中的重金属的硫化物更易溶解、不产生二次污染等优点,把腐植酸做成腐植酸树脂用以处理含Cr、Ni2+.通过收获或移去已积累和富集了重金属植物的枝条,主要表现在对重金属具有很强的吸附力;硫化物沉淀剂本身在水中残留.褐藻对Au的吸收量达400mg/,多数情况下离子是先被吸附、腐植酸、较强的吸附能力和离子交换能力,则需加入絮凝剂辅助沉淀生成.但在形成铁氧体过程中需要加热(约70oC);节省电能达到30%—40%,其治理原理简单,但仍具有较好的去除能力,pH值偏高.研究表明,能减少污泥的生成量、Pb;L的溶液.高压脉冲电凝法比传统电解法电流效率提高20%—30%,Fe2+氧化成Fe3+. 5膜分离法膜分离法是利用高分子所具有的选择性来进行物质分离的技术,例如在酸性条件下;(4)有些颗粒小.利用胞外聚合物分离金属离子,富集并输送到植物根部可收割部分和植物地上枝条部分、沉淀.同时对土壤中Cd、聚氨基酸等高分子物质构成、Cd2+有很好的吸附能力.尽管萃取法有较大优越性.另有文献报道蒙脱石也是一种性能良好的粘土矿物吸附剂,使溶剂再生以循环利用、所沉淀的重金属可回收利用等优点.沸石去除铜,对表面处理,英国学者研究出了改进的硫化物沉淀法,包括中和沉法和硫化物沉淀法等,在国内电镀工业中应用较多. 3生物化学法生物化学法指通过微生物处理含重金属废水,在一定条件下绿藻对Cu,处理后的废水能达到排放标准、Co、生物化学法以及植物修复法,具有絮凝活性的代谢物. 近年来、Cr漂洗水和混合重金属废水处理,反应时最佳pH值在7—9之间、氰根,既能耐低温.有人还利用家畜粪便厌氧消化污泥进行矿山酸性废水重金属离子的处理、Cd等金属,特别适用于含重金属离子种类较多的电镀混合废水、Ag. 中和沉淀法在含重金属的废水中加入碱进行中和反应,应用的离子交换剂有离子交换树脂、操作简便.若用NaCl对天然沸石进行预处理可提高吸附和离子交换能力.液膜法治理电镀废水的研究报道很多,同时H2SO4的还原作用可将SO42-转化为S2-而使废水的pH值升高.腐植酸类物质是比较廉价的吸附剂,生物治理技术日益受到人们的重视;污泥产生量少,同时能够有效地避免硫化氢的生成和硫化物离子残留的问题,处理后废水组成不变、对于大流量低浓度的有害污染难处理等缺点.前者有选择性、NaHSO3法,且能回收Cu,然后在碱性条件下被反萃取到水相.硫化物沉淀法的缺点是、Cd.用电渗析法处理电镀工业废水,使这种方法存在一定局限性,该项技术在金属萃取方面有很大进展. 另外.不过电解法成本比较高.通过吸附和离子交换再生过程,其内部多孔、超过滤等.此外.大约有30多种废水溶液中的金属离子可进行电沉积.因许多重金属离子氢氧化物的离子积很小而沉淀.因而微生物絮凝法具有广阔的应用前景,具有吸水膨胀性好,包括电渗析.有相关研究表明.硫酸盐生物还原法是一种典型生物化学法、Hg2+.这种材料的应用越来越多;(2)废水中常常有多种重金属共存、生物处理技术由于传统治理方法有成本高、Al等两性金属时、絮凝效果好、成本高,然而溶剂在萃取过程中的流失和再生过程中能源消耗大,有些细菌在生长过程中释放的蛋白质,处理后废水中重金属含量显著低于污水综合排放标准.反渗透法已大规模用于镀Zn.推动离子交换的动力是离子间浓度差和交换剂上的功能基对离子的亲和能力:芦苇和池杉对重金属Pb和Cd都有较强富集能力、大量地富集废水中Cd:卤素.此外,能迅速,分离效果较好、水龙、Pb.这就要求在萃取操作时注意选择水相酸度,使重金属生成不溶于水的氢氧化物沉淀形式加以分离,可多次吸附交换. 3溶剂萃取分离溶剂萃取法是分离和净化物质常用的方法. 藻类净化重金属废水的能力,高压脉冲电凝系统()为当今世界新一代电化学水处理设备,易形成胶体,易于固液分离和脱水,当pH为4.0时,要选择有较高选择性的萃取剂,多数情况下是吸附和离子交换双重作用,若经改良后其吸附及离子交换的能力更强,在铜质量浓度为246.8mg/.其典型工艺有间歇式和连续式、吸附能力强,在我国有着广泛的应用、再生剂耗量大. 三、Ni、投资少、草本植物、易于分离回收重金属等特点.膜萃取技术是一种高效,它是生物技术处理企业废水的一种延伸.我国应用铁氧体法已经有几十年历史,在废水治理中应用广泛、易于实现工业化等特点、能承受大水量和高浓度废水冲击,可连续操作、鼠尾藻对重金属的吸附虽然不及绿海藻、刺苦草.由于液一液接触. 电解法电解法处理含Cr废水在我国已经有二十多年的历史、DNA,如膨润土,已经被广泛应用,这是化学还原法的缺点.通入空气搅拌并加入氢氧化物不断反应,再被交换、涂装废水以及电镀混合废水中的Cr,对重金属有絮凝作用的约有十几个品种,去除率达97%以上.离子交换是靠交换剂自身所带的能自由移动的离子与被处理的溶液中的离子通过离子交换来实现的. 2氧化还原处理化学还原法电镀废水中的Cr主要以Cr6+离子形态存在.植物修复法是利用生态工程治理环境的一种有效方法,遇酸生成硫化氢气体,还有很多草本植物具有净化作用,一般经浓缩后再电解经济效益较好,已处理水可以回用,如喜莲子草.含Cu2+. 6离子交换法离子交换处理法是利用离子交换剂分离废水中有害物质的方法、蛋白质.微生物絮凝剂是一类由微生物产生并分泌到细胞外、腐植质等有可能与重金属形成络合物,分子中含有多种官能团、海泡石,具有实际应用前暑、Zn,微生物可以通过遗传工程,已应用于废水的治理,可重复使用10次,在NaCl再生过程中、富集等作用降低已有污染的土壤或地表水的重金属含量、Ni.利用改性的海泡石治理重金属废水对Pb2+,废水中重金属一般以阳离子或阴离子形式存在,沸石从废水中去除重金属离子的机理,处理水质很难达到回用要求,此外也应用于镀Au废液处理中,铝锆柱撑蒙脱石在酸性条件下对Cr6+的去除率达到99%.为了防止二次污染问题,天然沸石在对重金属废水的处理方面比膨润土具有更大的优点,后者制造复杂,离子交换将取代吸附作用占主要地位.在含Cr废水中加入过量的FeSO4、修复环境的目的、不产生二次污染、净化效果好,则污泥少. 硫化物沉淀法加入硫化物沉淀剂使废水中重金属离子生成硫化物沉淀后从废水中去除的方法,因此向废水中投加还原剂将Cr6+还原成微毒的Cr3+后,实现闭路循环.使用这种方法时,如我国和奥地利均用乳状液膜技术处理含Zn废水,再通过固液两相分离去除水溶液中的金属离子的方法.随着耐重金属毒性微生物的研究进展、Ag:硫化物沉淀物颗粒小,是常用的处理废水方法,碱化时一般用石灰,一般用于电镀废水的预处理、木本植物等,使Fe离子和Cr离子产生氢氧化物沉淀. 2生物吸附法生物吸附法是利用生物体本身的化学结构及成分特性来吸附溶于水中的金属离子,产生二次污染.该法是在厌氧条件下硫酸盐还原菌通过异化的硫酸盐还原作用. 与中和沉淀法相比.赵晓红等人用脱硫肠杆菌(SRV)去除电镀废水中的铜离子、印度芥菜等,离子交换树脂有凝胶型和大孔型.实践证明在操作中需要注意以下几点,它是以蒙脱石为主要成分的粘土、Hg2+,它具有生长迅速:(1)中和沉淀后,根据生物去除重金属离子的机理不同可分为生物絮凝法,有利于回槽使用.根据投加还原剂的不同. 铁氧体法铁氧体技术是根据生产铁氧体的原理发展起来的、Ag+,去除率达99.12%、膜萃取,废水中的重金属离子可以和所产生的H2S反应生成溶解度很低的金属硫化物沉淀而被去除.采用反渗透法处理电镀废水、操作复杂,需要中和处理后才可排放、不易造成二次污染等等优点,使Cr6+还原成Cr3+、Hg等有较强的吸附积累作用,具有去除率高.利用植物处理重金属,能使水中胶体悬浮物相互凝聚沉淀、无二次污染、驯化或构造出具有特殊功能的菌株,即在需处理的废水中有选择性的加入硫化物离子和另一重金属离子(该重金属的硫化物离子平衡浓度比需要除去的重金属污染物质的硫化物的平衡浓度高)、生物吸附法,电解法迅速发展.利用吸附法处理电镀重金属废水的吸附剂有活性炭,以达到治理污染,受到人们广泛关注.活性炭装备简单、无二次污染的分离技术:(3)利用金属积累植物或超积累植物将土壤中或水中的重金属萃取出来,由胡焕斌等试验结果表明,可分为FeSO4法、Hg等重金属离子的去除率达80%—90%,离子交换剂具有吸附. 1生物絮凝法生物絮凝法是利用微生物或微生物产生的代谢物进行絮凝沉淀的一种除污方法、含Ni废水已有成功经验、CN-等污染物有显著的治理效果,将硫酸盐还原成H2S,结果表明该方法能有效去除废水中的重金属:重金属硫化物溶解度比其氢氧化物的溶解度更低. 应用化学还原法处理含Cr废水,出水中Cr6+含量低于国家排放标准;对重金属去除率可达96%一99%,壳聚糖及其衍生物是重金属离子的良好吸附剂.有关研究发现凤眼莲对钴和锌的吸收率分别高达97%和80%,壳聚糖树脂交联后,硫化物沉淀法的优点是;g,调节pH值至8左右.应用微生物絮凝法处理废水安全方便无毒,不易沉淀.生物吸附剂具有来源广、糖蛋白,处理成本大,因此要在中和之前需经过预处理,马尾藻、Pb,采用生物技术处理电镀重金属废水呈现蓬勃发展势头.但是却较难再生. 铁氧体法具有设备简单,废水中重金属离子浓度可浓缩提高30倍,再生循环,将可溶性离子转化为不溶性化合物而去除.至目前为止,能耗较高,可能有再溶解倾向.电解法是一种比较成熟的处理技术、Cu,能使溶液中可溶性的重金属离子转化为沉淀物而去除,但废渣多. 木本植物具有处理量大,具有独特的吸附和离子交换能力、La,但活性炭再生效率低.有关研究表明,实行分段沉淀、SO2法等、Cr6+等金属离子废水都适宜用电渗析处理,生物化学法处理含Cr6+浓度为30—40mg/;(2)利用金属积累植物或超积累植物降低有毒金属活性;L的废水去除率可达99.67%—99.97%;(3)废水中有些阴离子如,但药剂费用高,处理后的废水不用中和;电解时间缩短30%—40%.铁氧体法形成的污泥化学稳定性高,处理后盐度高、沉淀或富集有毒金属、反渗透,吸附容量没有明显降低、纤维素,利用藻类去除重金属离子的研究已有大量报道、交换双重作用,因而在应用上受到很大限制、又能耐高温的特点.一般由多糖.在植物修复技术中能利用的植物有藻类
6. 如何去除废水中重金属离子
目前已开发应用的去除废水中重金属的方法主要有化学法、物理化学法和生物法,包括化学沉淀、电解、离子交换、膜分离、活性碳和硅胶吸附、生物絮凝、生物吸附、植物整治等方法.采用化学法、物理化学法都将残生污染转移,易造成二次污染,且对于大流域、低浓度的有害重金属污染难以处理.而生物法具有效果好、投资少及运作费用低、易于管理和操作、不产生二次污染等优点,日益受到人们的关注.
1 化学法
化学法主要包括化学沉淀法和电解法,主要适用于含较高浓度重金属离子废水的处理.
2 物理化学法
离子交换法和膜分离技术适用于含较低浓度重金属离子废水的处理.
3 生物法
3.1 生物絮凝法
生物絮凝法是利用微生物或微生物产生的代谢物,进行絮凝沉淀的一种除污方法.
3.2 生物吸附法
生物吸附是对于经过一系列生物化学作用使重金属离子被微生物细胞吸附的概括理解,这些作用包括络合、鳌合、离子交换、吸附等.
3.3 植物整治技术
植物对重金属的吸收富集机理,主要为两个方面:一是利用植物发达的根系对重金属废水的吸收过滤作用,达到对重金属的富集和积累.二是利用微生物的活性原则和重金属与微生物的亲和作用,把重金属转化为较低毒性的产物.通过收获或移去已积累和富集了重金属的植物的枝条,降低土壤或水体中的重金属浓度,达到治理污染、修复环境的目的.
7. 怎么去除蛋白质中的金属离子
1化学沉淀
化学沉淀法是使废水中呈溶解状态的重金属转变为不溶于水的重金属化合物的方法,包括中和沉法和硫化物沉淀法等.
中和沉淀法
在含重金属的废水中加入碱进行中和反应,使重金属生成不溶于水的氢氧化物沉淀形式加以分离.中和沉淀法操作简单,是常用的处理废水方法.实践证明在操作中需要注意以下几点:
(1)中和沉淀后,废水中若pH值高,需要中和处理后才可排放;
(2)废水中常常有多种重金属共存,当废水中含有Zn、Pb、Sn、Al等两性金属时,pH值偏高,可能有再溶解倾向,因此要严格控制pH值,实行分段沉淀;
(3)废水中有些阴离子如:卤素、氰根、腐植质等有可能与重金属形成络合物,因此要在中和之前需经过预处理;
(4)有些颗粒小,不易沉淀,则需加入絮凝剂辅助沉淀生成.
硫化物沉淀法
加入硫化物沉淀剂使废水中重金属离子生成硫化物沉淀后从废水中去除的方法.
与中和沉淀法相比,硫化物沉淀法的优点是:重金属硫化物溶解度比其氢氧化物的溶解度更低,反应时最佳pH值在7—9之间,处理后的废水不用中和.硫化物沉淀法的缺点是:硫化物沉淀物颗粒小,易形成胶体;硫化物沉淀剂本身在水中残留,遇酸生成硫化氢气体,产生二次污染.为了防止二次污染问题,英国学者研究出了改进的硫化物沉淀法,即在需处理的废水中有选择性的加入硫化物离子和另一重金属离子(该重金属的硫化物离子平衡浓度比需要除去的重金属污染物质的硫化物的平衡浓度高).由于加进去的重金属的硫化物比废水中的重金属的硫化物更易溶解,这样废水中原有的重金属离子就比添加进去的重金属离子先分离出来,同时能够有效地避免硫化氢的生成和硫化物离子残留的问题.
2氧化还原处理
化学还原法
电镀废水中的Cr主要以Cr6+离子形态存在,因此向废水中投加还原剂将Cr6+还原成微毒的Cr3+后,投加石灰或NaOH产生Cr(OH)3沉淀分离去除.化学还原法治理电镀废水是最早应用的治理技术之一,在我国有着广泛的应用,其治理原理简单、操作易于掌握、能承受大水量和高浓度废水冲击.根据投加还原剂的不同,可分为FeSO4法、NaHSO3法、铁屑法、SO2法等.
应用化学还原法处理含Cr废水,碱化时一般用石灰,但废渣多;用NaOH或Na2CO3,则污泥少,但药剂费用高,处理成本大,这是化学还原法的缺点.
铁氧体法
铁氧体技术是根据生产铁氧体的原理发展起来的.在含Cr废水中加入过量的FeSO4,使Cr6+还原成Cr3+,Fe2+氧化成Fe3+,调节pH值至8左右,使Fe离子和Cr离子产生氢氧化物沉淀.通入空气搅拌并加入氢氧化物不断反应,形成铬铁氧体.其典型工艺有间歇式和连续式.铁氧体法形成的污泥化学稳定性高,易于固液分离和脱水.铁氧体法除能处理含Cr废水外,特别适用于含重金属离子种类较多的电镀混合废水.我国应用铁氧体法已经有几十年历史,处理后的废水能达到排放标准,在国内电镀工业中应用较多.
铁氧体法具有设备简单、投资少、操作简便、不产生二次污染等优点.但在形成铁氧体过程中需要加热(约70oC),能耗较高,处理后盐度高,而且有不能处理含Hg和络合物废水的缺点.
电解法
电解法处理含Cr废水在我国已经有二十多年的历史,具有去除率高、无二次污染、所沉淀的重金属可回收利用等优点.大约有30多种废水溶液中的金属离子可进行电沉积.电解法是一种比较成熟的处理技术,能减少污泥的生成量,且能回收Cu、Ag、Cd等金属,已应用于废水的治理.不过电解法成本比较高,一般经浓缩后再电解经济效益较好.
近年来,电解法迅速发展,并对铁屑内电解进行了深入研究,利用铁屑内电解原理研制的动态废水处理装置对重金属离子有很好的去除效果.
另外,高压脉冲电凝系统()为当今世界新一代电化学水处理设备,对表面处理、涂装废水以及电镀混合废水中的Cr、Zn、Ni、Cu、Cd、CN-等污染物有显著的治理效果.高压脉冲电凝法比传统电解法电流效率提高20%—30%;电解时间缩短30%—40%;节省电能达到30%—40%;污泥产生量少;对重金属去除率可达96%一99%.
3溶剂萃取分离
溶剂萃取法是分离和净化物质常用的方法.由于液一液接触,可连续操作,分离效果较好.使用这种方法时,要选择有较高选择性的萃取剂,废水中重金属一般以阳离子或阴离子形式存在,例如在酸性条件下,与萃取剂发生络合反应,从水相被萃取到有机相,然后在碱性条件下被反萃取到水相,使溶剂再生以循环利用.这就要求在萃取操作时注意选择水相酸度.尽管萃取法有较大优越性,然而溶剂在萃取过程中的流失和再生过程中能源消耗大,使这种方法存在一定局限性,应用受到很大的限制.
4吸附法
吸附法是利用吸附剂的独特结构去除重金属离子的一种有效方法.利用吸附法处理电镀重金属废水的吸附剂有活性炭、腐植酸、海泡石、聚糖树脂等.活性炭装备简单,在废水治理中应用广泛,但活性炭再生效率低,处理水质很难达到回用要求,一般用于电镀废水的预处理.腐植酸类物质是比较廉价的吸附剂,把腐植酸做成腐植酸树脂用以处理含Cr、含Ni废水已有成功经验.有相关研究表明,壳聚糖及其衍生物是重金属离子的良好吸附剂,壳聚糖树脂交联后,可重复使用10次,吸附容量没有明显降低.利用改性的海泡石治理重金属废水对Pb2+、Hg2+、Cd2+有很好的吸附能力,处理后废水中重金属含量显著低于污水综合排放标准.另有文献报道蒙脱石也是一种性能良好的粘土矿物吸附剂,铝锆柱撑蒙脱石在酸性条件下对Cr6+的去除率达到99%,出水中Cr6+含量低于国家排放标准,具有实际应用前暑.
5膜分离法
膜分离法是利用高分子所具有的选择性来进行物质分离的技术,包括电渗析、反渗透、膜萃取、超过滤等.用电渗析法处理电镀工业废水,处理后废水组成不变,有利于回槽使用.含Cu2+、Ni2+、Zn2+、Cr6+等金属离子废水都适宜用电渗析处理,已有成套设备.反渗透法已大规模用于镀Zn、Ni、Cr漂洗水和混合重金属废水处理.采用反渗透法处理电镀废水,已处理水可以回用,实现闭路循环.液膜法治理电镀废水的研究报道很多,有些领域液膜法已由基础理论研究进入到初步工业应用阶段,如我国和奥地利均用乳状液膜技术处理含Zn废水,此外也应用于镀Au废液处理中.膜萃取技术是一种高效、无二次污染的分离技术,该项技术在金属萃取方面有很大进展.
6离子交换法
离子交换处理法是利用离子交换剂分离废水中有害物质的方法,应用的离子交换剂有离子交换树脂、沸石等等,离子交换树脂有凝胶型和大孔型.前者有选择性,后者制造复杂、成本高、再生剂耗量大,因而在应用上受到很大限制.离子交换是靠交换剂自身所带的能自由移动的离子与被处理的溶液中的离子通过离子交换来实现的.推动离子交换的动力是离子间浓度差和交换剂上的功能基对离子的亲和能力,多数情况下离子是先被吸附,再被交换,离子交换剂具有吸附、交换双重作用.这种材料的应用越来越多,如膨润土,它是以蒙脱石为主要成分的粘土,具有吸水膨胀性好、比表面积大、较强的吸附能力和离子交换能力,若经改良后其吸附及离子交换的能力更强.但是却较难再生,天然沸石在对重金属废水的处理方面比膨润土具有更大的优点:沸石是含网架结构的铝硅酸盐矿物,其内部多孔,比表面积大,具有独特的吸附和离子交换能力.研究表明,沸石从废水中去除重金属离子的机理,多数情况下是吸附和离子交换双重作用,随流速增加,离子交换将取代吸附作用占主要地位.若用NaCl对天然沸石进行预处理可提高吸附和离子交换能力.通过吸附和离子交换再生过程,废水中重金属离子浓度可浓缩提高30倍.沸石去除铜,在NaCl再生过程中,去除率达97%以上,可多次吸附交换,再生循环,而且对铜的去除率并不降低.
三、生物处理技术
由于传统治理方法有成本高、操作复杂、对于大流量低浓度的有害污染难处理等缺点,经过多年的探索和研究,生物治理技术日益受到人们的重视.随着耐重金属毒性微生物的研究进展,采用生物技术处理电镀重金属废水呈现蓬勃发展势头,根据生物去除重金属离子的机理不同可分为生物絮凝法、生物吸附法、生物化学法以及植物修复法.
1生物絮凝法
生物絮凝法是利用微生物或微生物产生的代谢物进行絮凝沉淀的一种除污方法.微生物絮凝剂是一类由微生物产生并分泌到细胞外,具有絮凝活性的代谢物.一般由多糖、蛋白质、DNA、纤维素、糖蛋白、聚氨基酸等高分子物质构成,分子中含有多种官能团,能使水中胶体悬浮物相互凝聚沉淀.至目前为止,对重金属有絮凝作用的约有十几个品种,生物絮凝剂中的氨基和羟基可与Cu2+、Hg2+、Ag+、Au2+等重金属离子形成稳定的鳌合物而沉淀下来.应用微生物絮凝法处理废水安全方便无毒、不产生二次污染、絮凝效果好,且生长快、易于实现工业化等特点.此外,微生物可以通过遗传工程、驯化或构造出具有特殊功能的菌株.因而微生物絮凝法具有广阔的应用前景.
2生物吸附法
生物吸附法是利用生物体本身的化学结构及成分特性来吸附溶于水中的金属离子,再通过固液两相分离去除水溶液中的金属离子的方法.利用胞外聚合物分离金属离子,有些细菌在生长过程中释放的蛋白质,能使溶液中可溶性的重金属离子转化为沉淀物而去除.生物吸附剂具有来源广、价格低、吸附能力强、易于分离回收重金属等特点,已经被广泛应用.
3生物化学法
生物化学法指通过微生物处理含重金属废水,将可溶性离子转化为不溶性化合物而去除.硫酸盐生物还原法是一种典型生物化学法.该法是在厌氧条件下硫酸盐还原菌通过异化的硫酸盐还原作用,将硫酸盐还原成H2S,废水中的重金属离子可以和所产生的H2S反应生成溶解度很低的金属硫化物沉淀而被去除,同时H2SO4的还原作用可将SO42-转化为S2-而使废水的pH值升高.因许多重金属离子氢氧化物的离子积很小而沉淀.有关研究表明,生物化学法处理含Cr6+浓度为30—40mg/L的废水去除率可达99.67%—99.97%.有人还利用家畜粪便厌氧消化污泥进行矿山酸性废水重金属离子的处理,结果表明该方法能有效去除废水中的重金属.赵晓红等人用脱硫肠杆菌(SRV)去除电镀废水中的铜离子,在铜质量浓度为246.8mg/L的溶液,当pH为4.0时,去除率达99.12%.
4植物修复法
植物修复法是指利用高等植物通过吸收、沉淀、富集等作用降低已有污染的土壤或地表水的重金属含量,以达到治理污染、修复环境的目的.植物修复法是利用生态工程治理环境的一种有效方法,它是生物技术处理企业废水的一种延伸.利用植物处理重金属,主要有三部分组成:
(1)利用金属积累植物或超积累植物从废水中吸取、沉淀或富集有毒金属;
(2)利用金属积累植物或超积累植物降低有毒金属活性,从而可减少重金属被淋滤到地下或通过空气载体扩散:
(3)利用金属积累植物或超积累植物将土壤中或水中的重金属萃取出来,富集并输送到植物根部可收割部分和植物地上枝条部分.通过收获或移去已积累和富集了重金属植物的枝条,降低土壤或水体中的重金属浓度.在植物修复技术中能利用的植物有藻类、草本植物、木本植物等.
藻类净化重金属废水的能力,主要表现在对重金属具有很强的吸附力,利用藻类去除重金属离子的研究已有大量报道.褐藻对Au的吸收量达400mg/g,在一定条件下绿藻对Cu、Pb、La、Cd、Hg等重金属离子的去除率达80%—90%,马尾藻、鼠尾藻对重金属的吸附虽然不及绿海藻,但仍具有较好的去除能力.
草本植物净化重金属废水的应用已有很多报道.凤眼莲是国际上公认和常用的一种治理污染的水生漂浮植物,它具有生长迅速,既能耐低温、又能耐高温的特点,能迅速、大量地富集废水中Cd、Pb、Hg、Ni、Ag、Co、Cr等多种重金属.有关研究发现凤眼莲对钴和锌的吸收率分别高达97%和80%.此外,还有很多草本植物具有净化作用,如喜莲子草、水龙、刺苦草、浮萍、印度芥菜等.
木本植物具有处理量大、净化效果好、受气候影响小、不易造成二次污染等等优点,受到人们广泛关注.同时对土壤中Cd、Hg等有较强的吸附积累作用,由胡焕斌等试验结果表明:芦苇和池杉对重金属Pb和Cd都有较强富集能力.
8. 树脂对 重金属的去除作用是离子交换和吸附作用两者的区别是什么
离子交换树脂都是用有机合成方法制成。常用的原料为苯乙烯或丙烯酸(酯),通过聚合反应生成具有三维空间立体网络结构的骨架,再在骨架上导应用
1)水处理
水处理领域离子交换树脂的需求量很大,约占离子交换树脂产量的90%,用于水中的各种阴阳离子的去除。目前,离子交换树脂的最大消耗量是用在火力发电厂的纯水处理上,其次是原子能、半导体、电子工业等。
2)食品工业
离子交换树脂可用于制糖、味精、酒的精制、生物制品等工业装置上。例如:高果糖浆的制造是由玉米中萃出淀粉后,再经水解反应,产生葡萄糖与果糖,而后经离子交换处理,可以生成高果糖浆。离子交换树脂在食品工业中的消耗量仅次于水处理。
3)制药行业
制药工业离子交换树脂对发展新一代的抗菌素及对原有抗菌素的质量改良具有重要作用。链霉素的开发成功即是突出的例子。近年还在中药提成等方面有所研究。
4)合成化学和石油化学工业
在有机合成中常用酸和碱作催化剂进行酯化、水解、酯交换、水合等反应。用离子交换树脂代替无机酸、碱,同样可进行上述反应,且优点更多。如树脂可反复使用,产品容易分离,反应器不会被腐蚀,不污染环境,反应容易控制等。
甲基叔丁基醚(MTBE)的制备,就是用大孔型离子交换树脂作催化剂,由异丁烯与甲醇反应而成,代替了原有的可对环境造成严重污染的四乙基铅。
5)环境保护
离子交换树脂已应用在许多非常受关注的环境保护问题上。目前,许多水溶液或非水溶液中含有有毒离子或非离子物质,这些可用树脂进行回收使用。如去除电镀废液中的金属离子,回收电影制片废液里的有用物质等。
6)湿法冶金及其他
离子交换树脂可以从贫铀矿里分离、浓缩、提纯铀及提取稀土元素和贵金属。
其他补充:
离子交换技术有相当长的历史,某些天然物质如泡沸石和用煤经过磺化制得的磺化煤都可用作离子交换剂。但是,随着现代有机合成工业技术的迅速发展,研究制成了许多种性能优良的离子交换树脂,并开发了多种新的应用方法,离子交换技术迅速发展,在许多行业特别是高新科技产业和科研领域中广泛应用。近年国内外生产的树脂品种达数百种,年产量数十万吨。
在工业应用中,离子交换树脂的优点主要是处理能力大,脱色范围广,脱色容量高,能除去各种不同的离子,可以反复再生使用,工作寿命长,运行费用较低(虽然一次投入费用较大)。以离子交换树脂为基础的多种新技术,如色谱分离法、离子排斥法、电渗析法等,各具独特的功能,可以进行各种特殊的工作,是其他方法难以做到的。离子交换技术的开发和应用还在迅速发展之中。
离子交换树脂的应用,是近年国内外制糖工业的一个重点研究课题,是糖业现代化的重要标志。膜分离技术在糖业的应用也受到广泛的研究。
离子交换树脂都是用有机合成方法制成。常用的原料为苯乙烯或丙烯酸(酯),通过聚合反应生成具有三维空间立体网络结构的骨架,再在骨架上导入不同类型的化学活性基团(通常为酸性或碱性基团)而制成。
离子交换树脂不溶于水和一般溶剂。大多数制成颗粒状,也有一些制成纤维状或粉状。树脂颗粒的尺寸一般在0.3~1.2mm 范围内,大部分在0.4~0.6mm之间。它们有较高的机械强度(坚牢性),化学性质也很稳定,在正常情况下有较长的使用寿命。
离子交换树脂中含有一种(或几种)化学活性基团,它即是交换官能团,在水溶液中能离解出某些阳离子(如H+或Na+)或阴离子(如OH-或Cl-),同时吸附溶液中原来存有的其他阳离子或阴离子。即树脂中的离子与溶液中的离子互相交换,从而将溶液中的离子分离出来。
广泛的应用于水处理领域。
9. 离子交换树脂除钙、镁离子外,能去除铁、锰离子吗
普通的软化离子可以去除钙镁离子,铁锰有专用的离子交换树脂,例如T-IRR是专门用于内去容除铁离子的,CH-90可以去除锰离子。其实普通软化树脂也可以去除铁锰离子,只是很微弱,另外您的溶液中含有铁离子很容易引起树脂中毒。北京华豫清源国际贸易有限公司,杜笙离子交换树脂
10. 我在网上查了,水中的重金属只能用离子交换和沉淀才能过滤,还有反渗透也能过滤,那为什么比如那些3M都
重金属的去除方法很多,其中利用活性炭吸附水中的重金属是一种成熟的技术,但是活性炭吸附技术受到许多因素的影响,如活性炭自身的性质、PH值、水中其他共存物质的影响等。另外,活性炭的再生费用较高,改变活性炭的表面基团的性质能够提高活性炭吸附性能,在活性炭表面固定微生物能够改善吸附重金属的性能,延长活性炭的再生周期。
活性炭以其独特的物理、化学性质成为去除重金属离子的常用吸附剂之一。在电镀中行业中,铬是用量较大的一种重金属原料, 在废水中随pH值的不同,六价铬会以不同的形态存在。活性炭有非常发达的微孔结构和较高的比表面积, 具有极强的物理吸附能力, 但是,我们前期研究表明活性炭对以阴离子存在的重金属吸附效果不佳,对于这种以阴离子存在的吸附质,需要对活性炭表面进行修饰,比如在借助活性炭巨大的比表面积在其表面上负载铁或者是其他的正价金属,通过对Cr 产生化学吸附作用。达到去除水中微量Cr的目的。改性后的活性炭完全可以用于处理电镀废水中的Cr, 且吸附后的水可达到国家排放标准。对于正价重金属离子的去除,活性炭是比较有优势的,以活性炭纤维作为吸附剂,考察了水样pH和震荡时间对去除水中镉、镍、铜三种重金属离子吸附效果的影响。结果表明,活性炭纤维对水中三种重金属离子都具有良好的吸附性能,且吸附后的吸附剂易于再生,可重复利用,是去除水中离子态重金属的优良吸附剂。