当前位置:首页 » 净水方式 » spark协同过滤

spark协同过滤

发布时间: 2021-04-18 11:41:45

Ⅰ 如何使用Spark ALS实现协同过滤

在本文中矩阵用斜体大写字母表示(如:R),标量用小写字母表示(如:i,j)。给定一个矩阵R, Rij表示它的一个元素,Ri.表示矩阵R的第i行,R.j表示矩阵R的第j列,RT 表示矩阵R的转置。R-1 表示矩阵R的逆。在本文中给定的矩阵R表示具有m个用户

Ⅱ spark mllib能解决什么问题

MLlib 是构建在 Spark 上的分布式机器学习库,充分利用了 Spark 的内存计算和适合迭代型计算的优势,将性能大幅度提升。同时由于 Spark 算子丰富的表现力, 让大规模机器学习的算法开发不再复杂。
MLlib 是 一 些 常 用 的 机 器 学 习 算 法 和 库 在Spark 平台上的实现。MLlib 是 AMPLab 的在研机器学习项目 MLBase 的底层组件。
MLBase 是一个机器学习平台,详细见 http://www.cnblogs.com/zlslch/p/5726445.html
MLI 是一个接口层,提供很多结构, MLlib 是底层算法实现层,
MLlib 中包含分类与回归、聚类、协同过滤、数据降维组件以及底层的优化库。

Ⅲ Spark基于RDD的MLib协同过滤的一些疑惑(Scala)

协同过滤抄(Collaborative Filtering)的基本概念就是把这种推荐袭方式变成自动化的流程

协同过滤主要是以属性或兴趣相近的用户经验与建议作为提供个性化推荐的基础。透过协同过滤,有助于搜集具有类似偏好或属性的用户,并将其意见提供给同一集群中的用户作为参考,以满足人们通常在决策之前参考他人意见的心态。

Ⅳ 有什么关于 Spark 的书推荐

《大数据Spark企业级实战》本书共包括14章,每章的主要内容如下。


第一章回答了为什么大型数据处理平台都要选择SPARK

。为什么spark如此之快?星火的理论基础是什么?spark如何使用专门的技术堆栈来解决大规模数据处理的需要?

第二章回答了如何从头构建Hadoop集群的问题。

如何构建基于Hadoop集群的星火集群?如何测试火星的质量?


附录从spark的角度解释了Scala,并详细解释了Scala函数编程和面向对象编程。

Ⅳ 如何在spark分布式矩阵实现协同过滤推荐

在本文来中矩阵用斜体大写字源母表示(如:R),标量用小写字母表示(如:i,j)。给定一个矩阵R, Rij表示它的一个元素,Ri.表示矩阵R的第i行,R.j表示矩阵R的第j列,RT 表示矩阵R的转置。R-1 表示矩阵R的逆。在本文中给定的矩阵R表示具有m个用户

Ⅵ spark mllib机器学习什么语言

1、机器学习概念

1.1机器学习的定义

在维基网络上对机器学习提出以下几种定义:

l“机器学习是一门人工智能的科学,该领域的主要研究对象是人工智能,特别是如何在经验学习中改善具体算法的性能”。

l“机器学习是对能通过经验自动改进的计算机算法的研究”。

l“机器学习是用数据或以往的经验,以此优化计算机程序的性能标准。”一种经常引用的英文定义是:A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P, if its performance at tasks in T, as measured by P, improves with experience E。

可以看出机器学习强调三个关键词:算法、经验、性能,其处理过程如下图所示。

3、Spark MLlib架构解析

Ⅶ Spark 推荐算法-协同过滤-java的语句意思

协同过滤(Collaborative Filtering)的基本概念就是把这种方式变成自动化的流程

协同过滤主要是以属性或兴趣专相近的用户经验属与建议作为提供个性化的基础。透过协同过滤,有助于搜集具有类似偏好或属性的用户,并将其意见提供给同一集群中的用户作为参考,以满足人们通常在决策之前参考他人意见的心态。

本人认为,协同过滤技术应包括如下几方面:(1)一种比对和搜集每个用户兴趣偏好的过程;(2)它需要许多用户的信息去预测个人的兴趣偏好;(3)通过对用户之间兴趣偏好相关程度的统计去发展建议那些有相同兴趣偏好的用户。

Ⅷ 如何解释spark mllib中ALS算法的原理

整理一下自己的理解。
对于一个users-procts-rating的评分数据集,ALS会建立一个user*proct的m*n的矩阵
其中,m为users的数量,n为procts的数量
但是在这个数据集中,并不是每个用户都对每个产品进行过评分,所以这个矩阵往往是稀疏的,用户i对产品j的评分往往是空的
ALS所做的事情就是将这个稀疏矩阵通过一定的规律填满,这样就可以从矩阵中得到任意一个user对任意一个proct的评分,ALS填充的评分项也称为用户i对产品j的预测得分
所以说,ALS算法的核心就是通过什么样子的规律来填满(预测)这个稀疏矩阵
它是这么做的:
假设m*n的评分矩阵R,可以被近似分解成U*(V)T
U为m*d的用户特征向量矩阵
V为n*d的产品特征向量矩阵((V)T代表V的转置,原谅我不会打转置这个符号。。)
d为user/proct的特征值的数量

关于d这个值的理解,大概可以是这样的
对于每个产品,可以从d个角度进行评价,以电影为例,可以从主演,导演,特效,剧情4个角度来评价一部电影,那么d就等于4
可以认为,每部电影在这4个角度上都有一个固定的基准评分值
例如《末日崩塌》这部电影是一个产品,它的特征向量是由d个特征值组成的
d=4,有4个特征值,分别是主演,导演,特效,剧情
每个特征值的基准评分值分别为(满分为1.0):
主演:0.9(大光头还是那么霸气)
导演:0.7
特效:0.8
剧情:0.6
矩阵V由n个proct*d个特征值组成

对于矩阵U,假设对于任意的用户A,该用户对一部电影的综合评分和电影的特征值存在一定的线性关系,即电影的综合评分=(a1*d1+a2*d2+a3*d3+a4*d4)
其中a1-4为用户A的特征值,d1-4为之前所说的电影的特征值
参考:
协同过滤中的矩阵分解算法研究

那么对于之前ALS算法的这个假设
m*n的评分矩阵R,可以被近似分解成U*(V)T
就是成立的,某个用户对某个产品的评分可以通过矩阵U某行和矩阵V(转置)的某列相乘得到

那么现在的问题是,如何确定用户和产品的特征值?(之前仅仅是举例子,实际中这两个都是未知的变量)
采用的是交替的最小二乘法
在上面的公式中,a表示评分数据集中用户i对产品j的真实评分,另外一部分表示用户i的特征向量(转置)*产品j的特征向量(这里可以得到预测的i对j的评分)在上面的公式中,a表示评分数据集中用户i对产品j的真实评分,另外一部分表示用户i的特征向量(转置)*产品j的特征向量(这里可以得到预测的i对j的评分)
用真实评分减去预测评分然后求平方,对下一个用户,下一个产品进行相同的计算,将所有结果累加起来(其中,数据集构成的矩阵是存在大量的空打分,并没有实际的评分,解决的方法是就只看对已知打分的项)
参考:
ALS 在 Spark MLlib 中的实现
但是这里之前问题还是存在,就是用户和产品的特征向量都是未知的,这个式子存在两个未知变量

解决的办法是交替的最小二乘法
首先对于上面的公式,以下面的形式显示:
为了防止过度拟合,加上正则化参数为了防止过度拟合,加上正则化参数
首先用一个小于1的随机数初始化V首先用一个小于1的随机数初始化V
根据公式(4)求U
此时就可以得到初始的UV矩阵了,计算上面说过的差平方和
根据计算得到的U和公式(5),重新计算并覆盖V,计算差平方和
反复进行以上两步的计算,直到差平方和小于一个预设的数,或者迭代次数满足要求则停止
取得最新的UV矩阵
则原本的稀疏矩阵R就可以用R=U(V)T来表示了
以上公式内容截图来自:
基于矩阵分解的协同过滤算法

总结一下:
ALS算法的核心就是将稀疏评分矩阵分解为用户特征向量矩阵和产品特征向量矩阵的乘积
交替使用最小二乘法逐步计算用户/产品特征向量,使得差平方和最小
通过用户/产品特征向量的矩阵来预测某个用户对某个产品的评分

不知道是不是理解正确了
有几个问题想请教一下~
(1)在第一个公式中加入正则化参数是啥意思?为什么是那种形态的?
(2)固定一个矩阵U,求偏导数之后可以得到求解V的公式,为什么?

Ⅸ 最最最简单的推荐系统是什么样的(附Spark实

协同过滤推荐

热点内容
丁度巴拉斯情人电影推荐 发布:2024-08-19 09:13:07 浏览:886
类似深水的露点电影 发布:2024-08-19 09:10:12 浏览:80
《消失的眼角膜》2电影 发布:2024-08-19 08:34:43 浏览:878
私人影院什么电影好看 发布:2024-08-19 08:33:32 浏览:593
干 B 发布:2024-08-19 08:30:21 浏览:910
夜晚看片网站 发布:2024-08-19 08:20:59 浏览:440
台湾男同电影《越界》 发布:2024-08-19 08:04:35 浏览:290
看电影选座位追女孩 发布:2024-08-19 07:54:42 浏览:975
日本a级爱情 发布:2024-08-19 07:30:38 浏览:832
生活中的玛丽类似电影 发布:2024-08-19 07:26:46 浏览:239