膜分离方法超滤
Ⅰ 膜分离技术主要包含哪些
1、微滤:与常规过滤相比,微滤属于精密过滤,它是截留溶液中的砂砾、内淤泥、黏容土等颗粒和贾第虫、隐孢子虫、藻类和一些细菌等,而大量溶剂、小分子及少量大分子溶质都能透过膜的分离过程。微滤操作有死端过滤和错流(又称切线流)过滤两种形式。
2、超滤:超滤是在压差推动力作用下进行的筛孔分离过程,它介于纳滤和微滤之间,膜孔径范围在1nm~0.055m之间。最早使用的超滤膜是天然动物的脏器薄膜。
3、纳滤:纳滤膜分离在常温下进行,无相变,无化学反应,不破坏生物活性,能有效地截留二价及高价离子和相对分子质量高于200的有机小分子,而使大部分一价无机盐透过,可分离同类氨基酸和蛋白质,实现高分子量和低分子量有机物的分离,且成本比传统工艺低,因而被广泛应用于超纯水的制备、食品、化工、医药、生化、环保、冶金等领域的各种浓缩和分离过程。
Ⅱ 膜分离技术有哪些
膜分离技术主要有以下几种:渗透汽化、微滤、超滤、纳滤、反渗透。
1、渗透汽化——渗透汽化又称渗透蒸发,是指液体混合物在膜两侧组分的蒸汽分压差作用下,其中组分以不同速率透过膜并蒸发除去,从而达到分离目的的一种膜分离方法。有机渗透汽化膜利用的是膜层对组分的吸附-溶解机理,分子筛渗透汽化膜利用的是膜层对组分的吸附-扩散以及分子筛分双重机理。应用范围包括有机溶剂脱水、水溶液脱除有机物、有机物与有机物的分离。
2、微滤——常用于食品医药消毒、半导体生产工业中液体的纯化、生物技术、废水处理等方面。
3、超滤——常用于牛奶脱脂、蛋白预浓缩、果汁澄清、发酵液处理、排放液处理等。
4、纳滤——可用于去除低聚糖、染料、多价离子等方面。
5、反渗透——可用于处理市政废水、工业废水、海水与苦咸水淡化、地下水和地表水的处理。
Ⅲ 常见的膜分离技术有哪些,分别适用于什么情况
膜分离技术是指在分子水平上不同粒径分子的混合物在通过半透膜时,实现选择性分离的技术,半透膜又称分离膜或滤膜,膜壁布满小孔,根据孔径大小可以分为:微滤膜(MF)、超滤膜(UF)、纳滤膜(NF)、反渗透膜(RO)等,膜分离都采用错流过滤方式。
微滤
具体涉及领域主要有:医药工业、食品工业(明胶、葡萄酒、白酒、果汁、牛奶等)、高纯水、城市污水、工业废水、饮用水、生物技术、生物发酵等。
超滤
早期的工业超滤应用于废水和污水处理。三十多年来,随着超滤技术的发展,如今超滤技术已经涉及食品加工、饮料工业、医药工业、生物制剂、中药制剂、临床医学、印染废水、食品工业废水处理、资源回收、环境工程等众多领域。
纳滤
纳滤的主要应用领域涉及:食品工业、植物深加工、饮料工业、农产品深加工、生物医药、生物发酵、精细化工、环保工业等。
反渗透
由于反渗透分离技术的先进、高效和节能的特点,在国民经济各个部门都得到了广泛的应用,主要应用于水处理和热敏感性物质的浓缩,主要应用领域包括以下:食品工业、牛奶工业、饮料工业、植物(农产品)深加工、生物医药、生物发酵、制备饮用水、纯水、超纯水、海水、苦咸水淡化、电力、电子、半导体工业用水、医药行业工艺用水、制剂用水、注射用水、无菌无热源纯水、食品饮料工业、化工及其它工业的工艺用水、锅炉用水、洗涤用水及冷却用水。
其他
除了以上四种常用的膜分离过程,另外还有渗析、控制释放、膜传感器、膜法气体分离、液膜分离法等。
Ⅳ 膜分离法的膜分离:
⑴膜:能够把流体相分隔为互不相通的两部分,这两部分之间能存在“传质”的薄的物质。⑵膜的特征:一是无论厚度多少都必须有两个界面,两个界面分别与两侧流体相接触,二是要具有选择透过性,可允许一侧流体中一种或几种物质通过,而不允许其他物质通过。⑶膜分离:利用膜的选择透过性能将离子或分子或某些微粒从水中分离出来的过程。用膜分离溶液时,使溶质通过膜的方法称为渗析,使溶剂通过膜的方法称为渗透。⑷膜分离的特点:⑸根据溶质或溶剂透过膜的推动力和膜种类不同,水处理中膜分离法通常可以分为:电渗析、反渗透、超滤、微滤。膜分离法是利用特殊结构的薄膜对废水中的某些成分进行选择性透过的一类方法的总称。水过膜的过程称为渗透,水中溶质透过膜的过程成为渗析。常用于废水处理的膜分离方法有电渗析(ED)、反渗透(R0)、微滤(MF)、超滤(UF)、纳滤(NF)等,这些分离方法的基本特陛对比见表5—8。与常规分离技术相比,膜分离过程具有无相变、能耗低、工艺简单、不污染环境、易于实现自动化等优点,可以在常温下进行。在废水处理领域,常被用做污水回用前的一种水质深度处理工艺,其中电渗析和反渗透有时也被用做高含盐废水或含金属离子废水进生物法处理系统前的预处理。气体膜分离技术是20世纪70年代开发成功的新一代气体分离技术,其原理是在压力驱动下,借助气体中各组分在高分子膜表面上的吸附能力以及在膜内溶解-扩散上的差异,即渗透速率差来进行分离的。现已成为比较成熟的工艺技术,并广泛用于许多气体的分离,提浓工艺。工业发达国家称之为“资源的创造性技术”,目前主要有两种工艺流程,即正压法和负压法,前者适用于氧氮同时应用或对氧浓度要求较高的场合。早在80年代初,许多发达国家都投入了大量人力物力来研究膜法富氧技术,特别是日本,其通产省就资助了旭硝子等7家公司和研究所参加“膜法富氧燃烧技术研究组”。由于能源紧张,日本先后有近20家推出膜法富氧装置。膜法的主要特点是无相变,能耗低,装置规模根据处理量的要求可大可小,而且设备简单,操作方便安全,启动快,运行可靠性高,不污染环境,投资少,用途广等优点。各种气体分离方法的规模,经济性,技术成熟程度,能耗和用途如下:高分子分离膜是用高分子材料制成的具有选择性透过功能的半透性薄层物材料。主要有聚酸胺类,聚酸亚胺类,聚砜类,聚乙烯酸类,丙烯类衍生物聚合物及纤维素类等。但大多数高分子材料均存在PO2和αO2/N2相互制约的关系且不耐高温、易腐蚀等缺点。聚砜是一种机械性能优良、耐热性好、耐微生物降解、价廉易得的膜材料。由于以聚砜制成的膜具有膜薄、内层孔隙率高且微孔规则等特点,
因而常作为气体分离膜的基本材料。
Ⅳ 超滤膜分离技术是物理方法还是化学方法
超滤膜分离技术是属于物理方法。膜分离技术就是利用天然的或人工合成专的具有选择属性的高分子薄膜,根据混合物的物理性质的不同用过筛的方法将其分离,或根据混合物的不同化学性质分离物质。物质通过分离膜的速度(溶解速度)取决于进入膜的速度和进入膜的表面扩散到另一表面的速度(扩散速度)。而溶解速度完全取决于被分离于膜材料之间化学性质的差异,扩散速度除化学性质外还与物质的分子量有关,速度越大,透过膜所需的时间越短,混合物中各组分透过膜的速度相差越大,则分离效率越高。
Ⅵ 什么是膜分离技术,类型及应用特点
膜分离技术的特点膜分离过程是一个高效、环保的分离过程,是多学科交叉的高新技术,在物理、化学和生物性质上呈现出各种各样的特性,具有较多的优势
。膜是具有选择性分离功能的材料,利用膜的选择性分离实现料液的不同组分的分离、纯化、浓缩的过程称作膜分离。它与传统过滤的不同在于,膜可以在分子范围内进行分离,并且这过程是一种物理过程,不需发生相的变化和添加助剂。
膜的孔径一般为微米级,依据其孔径的不同(或称为截留分子量),可将膜分为微滤膜、超滤膜、纳滤膜和反渗透膜,根据材料的不同,可分为无机膜和有机膜,无机膜主要是陶瓷膜和金属膜,其过滤精度较低,选择性较小。有机膜是由高分子材料做成的,如醋酸纤维素、芳香族聚酰胺、聚醚砜、聚氟聚合物等等。
微滤(MF)又称微孔过滤,它属于精密过滤,其基本原理是筛孔分离过程。微滤膜的材质分为有机和无机两大类,有机聚合物有醋酸纤维素、聚丙烯、聚碳酸酯、聚砜、聚酰胺等。无机膜材料有陶瓷和金属等。鉴于微孔滤膜的分离特征,微孔滤膜的应用范围主要是从气相和液相中截留微粒、细菌以及其他污染物,以达到净化、分离、浓缩的目的。
对于微滤而言,膜的截留特性是以膜的孔径来表征,通常孔径范围在0.1~1微米,故微滤膜能对大直径的菌体、悬浮固体等进行分离。可作为一般料液的澄清、保安过滤、空气除菌。
超滤(UF)
是介于微滤和纳滤之间的一种膜过程,膜孔径在0.05um至1nm之间。超滤是一种能够将溶液进行净化、分离、浓缩的膜分离技术,超滤过程通常可以理解成与膜孔径大小相关的筛分过程。以膜两侧的压力差为驱动力,以超滤膜为过滤介质,在一定的压力下,当水流过膜表面时,只允许水及比膜孔径小的小分子物质通过,达到溶液的净化、分离、浓缩的目的。
对于超滤而言,膜的截留特性是以对标准有机物的截留分子量来表征,通常截留分子量范围在1000~300000,故超滤膜能对大分子有机物(如蛋白质、细菌)、胶体、悬浮固体等进行分离,广泛应用于料液的澄清、大分子有机物的分离纯化、除热源。
纳滤(NF)
是介于超滤与反渗透之间的一种膜分离技术,
其截留分子量在80~1000的范围内,孔径为几纳米,因此称纳滤。基于纳滤分离技术的优越特性,其在制药、生物化工、
食品工业等诸多领域显示出广阔的应用前景。
对于纳滤而言,膜的截留特性是以对标准NaCl、MgSO4、CaCl2溶液的截留率来表征,通常截留率范围在60~90%,相应截留分子量范围在100~1000,故纳滤膜能对小分子有机物等与水、无机盐进行分离,实现脱盐与浓缩的同时进行。
反渗透(RO)
是利用反渗透膜只能透过溶剂(通常是水)而截留离子物质或小分子物质的选择透过性,以膜两侧静压为推动力,而实现的对液体混合物分离的膜过程。反渗透是膜分离技术的一个重要组成部分,因具有产水水质高、运行成本低、无污染、操作方便运行可靠等诸多优点
,而成为海水和苦咸水淡化,以及纯水制备的最节能、最简便的技术.已广泛应用于医药、电子、化工、食品、海水淡化等诸多行业。反渗透技术已成为现代工业中首选的水处理技术。
反渗透的截留对象是所有的离子,仅让水透过膜,对NaCl的截留率在98%以上,出水为无离子水。反渗透法能够去除可溶性的金属盐、有机物、细菌、胶体粒子、发热物质,也即能截留所有的离子,在生产纯净水、软化水、无离子水、产品浓缩、废水处理方面反渗透膜已经应用广泛,如垃圾渗滤液的处理。
Ⅶ 常见的膜分离有哪些
膜分离的方法有:
1.微滤:指大于0.1um的微粒或可溶物被截留的压力驱动膜的过程。
2.超滤:指小于0.1um大于2nm的微粒或可溶物被截留的压力驱动膜的过程。
3.纳滤:一种介于反渗透和超滤之间压力驱动的膜分离过程(小于2nm的微粒子)
4.反渗透:以高透过性薄膜为分离介质,在超过溶液渗透压的情况下,使溶液中的溶剂透过薄膜,同时使溶质和不溶物阻截在膜前。
Ⅷ 膜分离的分离技术
第一、超滤膜分离方法。根据分子的形状和不同性质利用大气压力的作用专,将其进行有效的筛选属和分离。这项技术通过我国的多年研究和使用,除污效果显著,能有效的对污水中的病原体进行处理。因此超滤膜分离技术在我国各项污水处理中得到广泛的使用。
第二、纳滤膜分离方法。在20世纪70年代的中后期形成的纳滤膜分离技术就是在保证无机盐分离时不受电势和化学梯度的影响,通过(实际压力小于或等于1.5MPa)的作用将直径大约为1纳米的分子进行有效的筛选和分离,从而达到污水处理的效果。
第三、液膜分离方法。在20世纪60年代被提出一直到80年代中后期才被广泛应用的液膜分离技术,分为乳状液膜和支撑液膜,其中乳液液膜在污水处理技术中被广泛应用。第四、膜生物反应器。就是原水在进入生物反应器与生物发生充分反应之后,利用循环泵,使水流经膜组件,水得到排放的同时生物相又重新流入生物反应器,该技术是通过把膜件与生物反应器进行结合而形成的一种新型去污技术。
Ⅸ 现在食品分离技术主要有哪些膜分离方法
纳滤膜分离在常温下进行,无相变,无化学反应,不破坏生物活性,能有效地版截留二价及权高价离子和相对分子质量高于200的有机小分子,而使大部分一价无机盐透过,可分离同类氨基酸和蛋白质,实现高分子量和低分子量有机物的分离,且成本比传统工艺低,因而被广泛应用于超纯水的制备、食品、化工、医药、生化、环保、冶金等领域的各种浓缩和分离过程。
Ⅹ 先进膜分离法有哪些
这个问题过于笼统了。
传统的膜分离技术在反渗透、超滤、微滤等水处理方面已经应用了很久。
氢气膜分离、膜法制氮、膜法富氧技术也已经用了很多年。
90年代后期有机蒸汽膜分离技术迅速发展,10多年来也已经相当成熟,主要应用于石油化工领域中有机气体排放(排放包括循环排放气、尾气回收排放、装卸车过程挥发)过程的回收及氮气纯化。
包括膜法油气回收技术(加油站、油库等汽油挥发)也属于有机蒸汽膜技术的一种。
膜法天然气处理技术包含了膜法脱二氧化碳,膜法脱烃、水(膜法烃水露点控制)也是近几年快速发展的一个膜技术分支。
建议查看相关资料。