磁化污水处理
① 磁化水处理中的概念
磁化水是一种被磁场磁化了的水。让普通水以一定流速,沿着与磁力线平行的方向,通过一定强度的磁场,普通水就会变成磁化水。磁化水有种种神奇的效能,在工业、农业和医学等领域有广泛的应用。
在工业上,人们最初只是用磁场处理少量的锅炉用水,以减少水垢。现在磁化水已被广泛用于各种高温炉的冷却系统,对于提高冷却效率、延长炉子寿命起了很重要的作用。许多化工厂用磁化水加快化学反应速度,提高产量。建筑行业用磁化水搅拌混凝土,大大提高了混凝土强度。纺织厂用磁化水褪浆,印染厂用磁化水调色,都取得了很好的经济效益。
在农业上,用磁化水浸种育秧,能使种子出芽快,发芽率高,幼苗具有株高、茎粗、根长等优点;用磁化水灌田,可使土质疏松,加快有机肥分解,刺激农作物生长。通过实践人们发现,常浇磁化水的大豆、玉米等农作物和萝卜、黄瓜等蔬菜,产量可提高10~45%,水稻、小麦、油菜等作物可增产11~18%。此外,有些畜牧场用磁化水喂养家禽家畜,可使禽畜疾病减少、增重快。
在医学上,磁化水不仅可以杀死多种细菌和病毒,还能治疗多种疾病。例如磁化水对治疗各种结石病症(胆结石、膀胱结石、肾结石等)、胃病、高血压、糖尿病及感冒等均有疗效。对于没病的人来说,常饮磁化水还能起到防病健身的作用。
在日常生活中,用经过磁化的洗衣粉溶液洗衣,可把衣服洗得更干净。有趣的是,不用洗衣粉而单用磁化水洗衣,洗涤效果也很令人满意。
磁化水为什么会有如此神奇的作用呢?这是一个至今尚未揭开的谜。一些科学家认为,水分子本身就是一个小磁体,由于异性磁极相吸,因而普通水中许多水分子就会首先相吸,连结成庞大的“分子团”。这种“分子团”会减弱水的多种物理化学性质。当普通水经过磁场作用后,冲破了原先连接的“分子团”,使它变成单个的有活力的水分子。当然,要彻底揭开磁化水的奥秘,还有待于人们继续研究和探索。
磁化水但不能滤除水中的氯化物,重金属及杂质
② 磁化效应的结论
磁处理广泛应用于农业、医学、养殖、工业等诸多领域,尤其生命科学。基于这些经验,我们提出将磁处理技术与人工生态系统相结合应用于有机废水的净化处理,并着重对磁处理问题开展了一系列的实验分析和实际应用,从中获得一些有益的认识。
(a)有机废水磁处理,在水体有氧条件下,污水瞬间通过合适的磁场 (0.315~0.368T)后,视水质成分的差异,可直接去除COD8%~25%,且不受水温影响,但连续反复磁化,每次的去除率会随磁化次数急剧下降。实际应用初步表明,磁处理器相隔的水力滞留时间以2~3d为宜。磁处理直接去除COD的原因,是污水被磁化中产生的h2O2等强氧化剂所致,并非生物酶作用或有机物分子结合键直接断裂的结果。
(b)厌氧条件下,污水磁化对COD降解也很显著,实验表明,水温40℃在上述适宜磁场下,可使COD的去除率比不磁化的提高21 %~28% ,但其机理尚需进一步研究。
(c)污水磁化,直接灭菌率可达 70%~80%(可能是形体很小的病毒、细菌等),但不能使所有的微生物死亡,尤其功能微生物,生存下来的还会被激活,以更大的活力提高污水净化能力 (初步实验约17%)。
(d)磁处理的污水,有利于菌藻系统生长和光合作用,可使水体产氧率和藻类 (绿藻 )生产力增加一倍之多,从而促进生物链对污水的净化作用。
(e)磁处理宜与人工生态系统联合使用,上述污水处理站就是这一结合的成功范例,处理效率高,运行费用低,污水资源化和变废为宝,为可持续发展和推广展示了广阔的应用前景。
磁化效应在含酚废水处理中的应用
由于各工厂含酚废水的具体生成过程千差万别,其组成和性质各不相同,并非任一处理方法都适用,需相应地根据实际情况寻求和采取有效的治理方法和技术。由于磁化效应能够改善混凝效果和促进化学反应(8),所以采取先将含酚废水经过微弱磁场的磁化后,再运用絮凝氧化法进行处理会提高其处理的效果。含酚废水在经过微弱磁场的磁化作用后,再运用絮凝氧化法处理,处理效果与未经磁化的废水相比略有差别,而且随着磁化条件的改变存在不同的变化规律。
主要结论就是废水经磁化后,与未经磁化相比絮凝效果和氧化处理大都有不同程度的提高。相对而言,较小的磁化流量对提高絮凝沉淀处理效果有利,而较大的磁化流速有利于获得较高的氧化去酚率。增加废水的磁化次数能够使絮凝去酚率略有提高,对氧化去酚率的增加不很明显。一般地可使废水经过3~ 4个磁化器即可。无论磁化与否,氧化去酚率均随着氧化剂ClO2使用量的增加而提高。但废水比较高的流速经磁化后,在相同的氧化量条件下,其氧化去酚率均比未磁化的要高。这有利于减少氧化剂消耗量和处理费用,而不影响总处理效果。磁化效应能够改变水的微观状态和结构从而影响其物理、化学性质。在适当的条件下可以明显改善污水的处理效果。因此将磁化技术和工业废水处理过程相结合的新处理手段值得进行研究和推广应用。
磁化在的Fe3O4吸附溶液中的铬的应用
关于Fe3O4吸附阴离子的机理已有研究,Fe3O4在水中由于水解呈正电性,对阴离子的的吸附平衡可以用形式与Langmuir等温式相类似的的函数关系式描述,但吸附很难得到最大值。将Fe3O4粉末和磁性介质置于磁场中,磁化Fe3O4粉末聚集在具有磁力线密度不等的磁束的磁性介质附近,导致磁化的Fe3O4对Cr6+产生了磁力,通过提高磁场强度,增大Fe3O4的磁力,从而增加对Cr6+吸附量。但另一方面,在磁化Fe3O4的表面吸附量的增加,因为被吸附的粒子电性相同,斥力增大,抵消了一部分磁力,造成了在较小的磁场强度下,吸附质增大到一定程度后,吸附量反而下降。由此可见,在磁场作用下,磁化的Fe3O4表面的吸附量是磁力和电性斥力作用的结果,并形成多分子吸附。
③ 磁化水处理器能处理多大硬度的水
不一样\r\n从使用效果来看离子交换自动软水器效果要有保证些,目前国内关于磁化水处理器的效果褒贬不一
④ 现在用着磁化水处理器的把你们的感受说一下。
磁化水是让水通过高频电磁场,这种水也叫活化水,是相对于死水而言的,水的粘度降低,人体更容易吸收,对便秘确实有一定功效。而且这种水不易结垢,所以是比较好的水。跟牌子关系不大,原理都差不多。
⑤ 超磁分离技术可以取代污水处理哪个工艺段
磁分离利用废水中杂质颗粒的磁性进行分离,对于水中非磁性或弱磁性的颗粒版,利用磁性接种技术可使它们权具有磁性。借助外力磁场的作用,将废水中有磁性的悬浮固体分离出来,从而达到净化水的目的。
与沉降、过滤等常规方法相比较,磁力分离法具有处理能力大、效率高、能量消耗少、设备
简单紧凑等一系列优点。山东博斯达环保 为您解答,谢谢
⑥ 磁化水处理器可以将硬水处理成软水吗
不能.
磁化水指的是被特殊磁化过的水,性质很奇特,养猪可以使猪增长,人饮用可以排除结石.和软水的性质并不一样.
把硬水变成软水最简单的方法就是煮沸,初中课本上就有.
⑦ 如何设计一个电磁铁用来制取磁化水
水系的磁化及其机理,是到目前为止,人类还未彻底搞清的物理、问题。但是,科学家们早就发现了磁化水具有几十种可利用的独特的性质。上世纪80年代,我买到前苏联的《磁化水》译本,他总结了全世界对磁化水的研究和应用概况,展示了几十种“磁化器”的结构构造、和实际应用的效果对比。你如果能够搞到这本书,你完全掌握了几十种“磁化器”的制造和应用技术。
应该指出,世界“磁化水专家”多数都提示:经过“大于3000高斯的磁化器处理的磁化水对人体健康有害”!大于3000高斯的磁化器,常用来进行石油管道除蜡、大型造纸废液悬浮物的促沉、城市的污水处理等等,这相技术胜利油田、大庆油田目前仍在大量使用。我的《磁化水》一书,现在不在我的手上,无法告诉你书号,“十一”后可以取回,再告诉你书号。我想你现在可以积极去找。
其实,只要让水垂直流过磁场(随着磁力线的方向不会起作用),就是一个“磁化器”。你可以按照besscar - 魔法师介介绍的方法去做,也可以根据我理论上的意见,你自己去发挥。注意,现在,人们早已不再使用铁淦氧、碳钢、稀土钴和镍铁铝磁性材料了,几乎全部使用“稀土钕铁硼”(N30、N46、N50等几个型号的)磁铁。要记住:“只要让水垂直穿过磁力线这个条件没有变,不管其他结构如何,都是一个不错的磁化器”,多级串联的效果更佳。
补充回复:10万高斯即10T,目前,发达国家的国家重点实验室以及中科院物理研究所,都还没有能够创造出“可连续工作的10T的电磁铁”(超导装置、爆炸发电机和磁压缩技术除外)。
⑧ 哪有好的超强磁化除垢磁水处理器
决绝污水难题,可以免费寄样品
⑨ 污水处理油的处理方法
本发明涉及污水处理领域,尤其是涉及一种含油污水处理方法。本发明提供的含油污水处理方法是将含油污水注入集水罐并曝气;曝气后的含油污水进行磁化处理;磁化后的含油污水中添加破乳剂进行破乳;对经过加药的水进行混合反应;释放混合后产生的絮凝产物;将释放过絮凝产物的水进行过滤得到最终处理好的净水。本发明提供的含油污水处理方法,通过在经过磁化后再进行破乳处理,之后才进行过滤,进而能够彻底解决了滤料板结的问题,同时提高了过滤精度和除油效果,节省了能耗和水耗,使污水中的油可以不被分解而排出系统,使污水中的油能够进行再次利用,提高了资源利用率。
摘要附图
权利要求书
1.一种含油污水处理方法,其特征在于,将含油污水注入集水罐并曝气;曝气后的含油污水进行磁化处理;磁化后的含油污水中添加破乳剂进行破乳;对经过加药的水进行混合反应;释放混合后产生的絮凝产物;将释放过絮凝产物的水进行过滤得到最终处理好的净水。
2.根据权利要求1所述的含油污水处理方法,其特征在于,对释放过絮凝产物的水进行过滤时,使用微滤罐进行过滤。
3.根据权利要求1所述的含油污水处理方法,其特征在于,对释放过絮凝产物的水进行的过滤为至少两次。
4.根据权利要求3所述的含油污水处理方法,其特征在于,在释放混合后产生的絮凝产物后,通过提升泵将水位提高,以便于进行多次过滤操作。
5.根据权利要求1所述的含油污水处理方法,其特征在于,对经过加药的水进行混合反应的容器为超声波混合罐。
6.根据权利要求1所述的含油污水处理方法,其特征在于,在破乳后,先使用PAC将水中的胶体进行絮凝后,再使用PAM将反应后的细小繁花进行团聚,之后再进行混合。
7.根据权利要求1所述的含油污水处理方法,其特征在于,在经过加药的水进行混合反应后,先使用PAC将水中的胶体进行絮凝后,再使用PAM将反应后的细小繁花进行团聚,之后再进行释放混合后产生的絮凝产物。
8.根据权利要求1所述的含油污水处理方法,其特征在于,在含油污水进入到集气罐之前先进行强氧化处理。
9.根据权利要求1所述的含油污水处理方法,其特征在于,在释放混合后产生的絮凝产物的同时,在水中进行曝气。
10.根据权利要求1所述的含油污水处理方法,其特征在于,对含油污水进行磁化处理在管道型磁化器中进行。
说明书
一种含油污水处理方法
技术领域
本发明涉及污水处理领域,尤其是涉及一种含油污水处理方法。
背景技术
含油污水的范围包括了油田污水处理,也包括了油田用于回灌到地下保持地层压力的回注水处理。相比之下,回注水处理技术要求最高,而且处理的目的是将原油与水进行有效分离,同时对悬浮物的去除要求也最高。
传统的油田回注水处理一般采用的工艺为:
1、来水-聚合氯化铝-沉降-核桃壳-一级石英砂-出水
2、来水-聚合氯化铝-沉降-核桃壳-一级石英砂-二级石英砂-出水
3、来水-生化-超滤膜
4、来水-预处理-陶瓷膜
聚合氯化铝的作用在于凝聚溶解性胶体和细小悬浮物,核桃壳的作用在于吸附油,石英砂过滤的作用在于滤出悬浮物,一般过滤精度大于10μm。
传统的油田回注水处理一般采用的工艺存在的问题是:
1、仅仅添加聚合氯化铝或相类似的通用性药剂,对于去除水中溶解性胶体类物质作用有限,其原因在于很多含油污水里面含有不同离子型胶体,通用药剂对此没有作用或作用有限。
2、采用核桃壳吸附油工艺具有普遍性,也确实可以起到很大作用。但是对于油田污水,因为所含油为原油,非常粘,类似铺设马路的沥青。因此很容易将核桃壳粘连在一起,用水很难清洗,后来人们采用添加各种除油剂进行脱附,以期希望恢复吸附原油的能力,而事实上很难做到这一点,也就是没有长期稳定吸附油的能力,反冲洗效果有限,原油粘连核桃壳是老大难问题。
3、石英砂过滤是水处理行业普遍应用的设备,已经有近百年的历史,因其结构简单价格便宜而延续至今,但是石英砂过滤也不是万能的,在油田使用中已经普遍表现为不适应,具体为:
反冲洗水量大,一般为产水量的20%左右;反冲洗耗电大,例如直径3米的石英砂过滤罐,反洗水泵一般为55KW;反洗效果有限,流量逐渐衰减;滤料板结粘连,使得过滤功能逐渐失效;过滤精度低,一般高于10微米,过滤出水悬浮物指标大于10mg/L,难以达到油田中后期普遍希望的高指标,既出水悬浮物5mg/L,粒径中值2微米的要求,更难以达到出水悬浮物1mg/L,粒径中值1微米的要求。
来水-生化-超滤膜工艺可以达到回注水最高标准,存在的问题是生化耗能较高,实际上是用耗电催生微生物,然后用微生物分解油,这样得不偿失,因为电和油都是能源,因此而造成很大浪费,特别是超滤膜的寿命有限,一般为2-3年,这样就需要不断的重复投资。
来水-预处理-陶瓷膜工艺也可以达到回注水最高标准,但是致命的缺陷是流量衰减太快,一般在6个月左右流量会衰减50%左右,投资和运行费用昂贵。
发明内容
本发明的目的在于提供一种含油污水处理方法,以解决现有技术中存在的技术问题。
本发明提供的含油污水处理方法,将含油污水注入集水罐并曝气;曝气后的含油污水进行磁化处理;磁化后的含油污水中添加破乳剂进行破乳;对经过加药的水进行混合反应;释放混合后产生的絮凝产物;将释放过絮凝产物的水进行过滤得到最终处理好的净水。
进一步的,对释放过絮凝产物的水进行过滤时,使用微滤罐进行过滤。
进一步的,对释放过絮凝产物的水进行的过滤为至少两次。
进一步的,在释放混合后产生的絮凝产物后,通过提升泵将水位提高,以便于进行多次过滤操作。
进一步的,对经过加药的水进行混合反应的容器为超声波混合罐。
进一步的,在破乳后,先使用PAC将水中的胶体进行絮凝后,再使用PAM将反应后的细小繁花进行团聚,之后再进行混合。
进一步的,在经过加药的水进行混合反应后,先使用PAC将水中的胶体进行絮凝后,再使用PAM将反应后的细小繁花进行团聚,之后再进行释放混合后产生的絮凝产物。
进一步的,在含油污水进入到集气罐之前先进行强氧化处理。
进一步的,在释放混合后产生的絮凝产物的同时,在水中进行曝气。
进一步的,对含油污水进行磁化处理在管道型磁化器中进行。
本发明提供的含油污水处理方法,通过在经过磁化后再进行破乳处理,之后才进行过滤,进而能够彻底解决了滤料板结的问题,同时提高了过滤精度和除油效果,节省了能耗和水耗,使污水中的油可以不被分解而排出系统,使污水中的油能够进行再次利用,提高了资源利用率。