当前位置:首页 » 废水回用 » 啤酒厂废水处理实验法

啤酒厂废水处理实验法

发布时间: 2021-03-24 15:34:32

1. 啤酒厂废水处理中 UASB+CASS 和 UASB+生物接触氧化 哪个工艺的BOD,COD处理效率更好些啊

两者处复理效果差不多制的,其实;但是UASB+生物接触氧化工艺更紧凑些,控制也方便;UASB+CASS控制复杂,并且CASS池的选择区容积比较大,不如UASB+生物接触氧化工艺更紧凑些。

我个人更倾向UASB+生物接触氧化。

2. 啤酒厂废水COD测定中几个应注意的问题

1 关键性因素—样抄品的代表性
由于要监测的水样极不均匀(特别是处理前水样),要想得到准确的COD(化学需氧量) 监测结果, 关键是取样要有代表性。需要注意以下几点。
1.1 充分振摇水样
1.2 水样摇匀后立即取样
1.3 取样量不能太少
1.4 改造移液管,修正刻度线
1.5 使用上述方法后仍然出现数据精密度差
效果不好时,可以使用超声波均化仪来均匀化水样,根据资料显示超声波均化仪对生活废水, 啤酒厂废水均化效果很好。
2 调整重铬酸钾标准溶液的浓度或加入量
在标准C O D 分析方法中, 重铬酸钾浓度一般为0.25mo1/L,在样品测定时的加入量为 10.00ml,废水取样量为20.00ml。当废水的
COD 浓度较高时,一般采用少取样品或稀释样品的方法来满足以上条件对实验的限制。
3 调整滴定液硫酸亚铁按标准溶液的浓度
在强酸性溶液中,用重铬酸钾将水样中的还原性物质(主要是有机物)氧化,过量的重铬酸钾溶液以试亚铁灵作指示剂,用硫酸亚铁钱溶液回滴。根据所消耗的重铬酸钾量算出水样中的化学需氧量。
4 调整硫酸汞用量
更多问题可以继续咨询,希望能够帮助到您。

3. 啤酒厂污水处理污水为何发黄

啤酒废水主要来自麦芽车间(浸麦废水),糖化车间(糖化,过滤洗涤废水),发酵车间(发酵罐洗涤,过滤洗涤废水),灌装车间(洗瓶,灭菌废水及瓶子破碎流出的啤酒)以及生产用冷却废水等。其水质及变幅范围一般为:pH=5.5~7.0(显微酸性),水温为20~25℃,CODCr=1200~2300mg/L, BOD5=700~1400mg/L, SS=300~600mg/L, TN=30~70mg/L。水量为每生产1t啤酒废水排放量为10~20m3,平均约15m3,目前全国啤酒废水年排放量在2.5亿m3以上。
啤酒废水按有机物含量可分为3类:①清洁废水如冷冻机冷却水,麦汁冷却水等。这类废水基本上未受污染。②清洗废水如漂洗酵母水、洗瓶水、生产装置清洗水等,这类废水受到不同程度污染。③含渣废水如麦糟液、冷热凝固物。剩余酵母等,这类废水含有大量有机悬浮性固体。啤酒工业废水主要含糖类,醇类等有机物,有机物浓度较高,虽然无毒,但易于腐败,排入水体要消耗大量的溶解氧,对水体环境造成严重危害。

啤酒废水的主要特点之一是BOD5/CODCr值高,一般在50%及以上,非常有利于生化处理,同时生化处理与普通物化法、化学法相比较:一是处理工艺比较成熟;二是处理效率高,CODCr、BOD5去除率高,一般可达80%~90%以上;三是处理成本低(运行费用省)。

4. 求啤酒废水处理工艺中 UASB+SBR法的范例

摘 要

处理规模:总设计规模3500m3/d。

2、设计水质:CODCr=1200mg/L;BOD5 =800mg/L;
SS=150mg/L;pH=6~9。

3、排放标准 CODCr≤100mg/L;BOD5≤20mg/L;SS≤70mg/L;
pH=6~9。

4、工艺流程概况:

废水 格栅井 调节池 UASB反应罐 SBR反应池 达标排放

5、工程投资:239.51万元;
6、工程占地:1632m2;
7、运行成本:0.91元/m3
8、劳动定员:2人
9、建设工期:3个月

1.概 述
啤酒生产主要以大麦和大米为原料,辅以啤酒花和鲜酵母,经长时间发酵酿造而成。
该公司在生产过程中产生的废水主要来源于玉米洗涤浸泡等工艺过程。该污水具有污染物浓度较高、pH值低等特征,若不经处理直接排入水体中,会导致水体严重富营养化,破坏水体的生态平衡,对环境造成严重污染。
公司领导和员工本着发展经济促进企业效益与治理污染、保护环境协调发展的思想,为树立企业良好的社会形象,消除企业健康发展的隐患,决定在上级环保部门的监督管理和支持下,按照我国环境管理的要求,委托专业环保公司,选择技术先进、运行稳定、投资合理的污水处理技术治理其生产污水。

2.废水水质水量
2.1 设计水量
本工程设计规模:3500m3/d,平均流量:146m3/hr;

2.2 设计水质
参考同类工程的数据和业主提供的水质指标,确定本工程设计水质如下:
CODCr=1200mg/L;BOD5 =700mg/L; SS=400mg/L;
PH=5~6。

3.排放标准
根据当地环保部门要求,处理后的水质要求达到《污染物综合排放标准》(GB8978-1996)一级排放标准。即:
CODCr≤100mg/L;BOD5≤20mg/L;SS≤70mg/L,PH=6~9。

4.编制依据
业主提供的相关资料和要求
《污染物综合排放标准》(GB8978-1996)
《室外排水设计规范》 (2000年版)
《给水排水设计手册》
《混凝土结构设计规范》GB50010-2002

5.工艺方案选择与论述
5.1废水水质分析
啤酒生产以大麦和大米为原料,辅以啤酒花和鲜酵母,经较长时间发酵酿造而成,废水主要来源于麦芽制造、糖化、发酵、洗瓶及灌装等工序。啤酒废水富含糖类、蛋白质、淀粉、果胶、醇酸类、矿物盐、纤维素以及多种维生素,是一种中等浓度的有机废水,可生化性好。废水连续排放,水质水量有一定波动。

5.2工艺选择
啤酒废水属中高浓度有机废水,有很好的可生化性,但生产季节性较强,排放不连续,尤其是地面冲洗水,水量和浓度波动较大。该厂将各车间的废水汇集到一起,因无机负荷并不高,不适合目前国内常用的“厌氧+好氧”方法中对原水COD>6000mg/L的要求。
啤酒废水中含有大量有机碳而氮源含量较少,在进行传统的生化处理中,其含氮量远远低于BOD:N:100:5(质量比)的要求,致使有些啤酒厂采用传统活性污泥法时,在不补充氮源情况下处理效果很差,甚至无法运行。经多种方案比较,确定采用CASS法处理啤酒废水。
在好氧单元中,经过对膜法工艺和普通活性污泥法的综合比较后我们认为:较膜法工艺来说,由于CASS法省去了沉淀池,它们的总投资和运行成本基本相同,但应用于工程中,CASS工艺较膜法工艺更加稳定可靠,而且其使用寿命长;而较普通活性污泥法,SBR应用在此工程中不管在投资还是运行费用等方面的优势更加明显,因此我们选择CASS工艺。
循环活性污泥系统简称为CASS(Cyclic Activated Sludge System)工艺,是一种在SBR工艺和氧化沟技术的基础上开发出的新工艺。CASS池是系统的核心。污水中的大部分污染物在此降解、去除。它将生物反应过程和泥水分离过程集中在同一个池内进行。CASS反应池分为生物选择区、兼氧区和好氧区。选择区的基本功能是防止污泥膨胀,污水中溶解性有机物能够通过酶反应而被污泥颗粒吸附除去,回流泥中的硝酸盐可在该选择区内得以反硝化;在兼氧区内,有微量曝气,基本处于缺氧状态,有机物在此区内得到初步降解,同时也可除去部分硝态氮;好氧区为曝气区,主要进行硝化和降解有机物,同时也进行硝化反硝化过程。CASS池是一个间歇反应器,在此反应器内不断重复地进行曝气与非曝气过程。污水按一定周期和阶段得到处理,每一循环有下列各个阶段组成:进水/曝气/污泥回流阶段——完成生物降解过程;非曝气/沉淀阶段——实现泥水分离;滗水/剩余污泥排除阶段——排出上清液;闲置阶段——恢复活性污泥活性。
上述各阶段组成一个循环操作周期,根据污水水量和浓度,它的运转方式可采取6周期/天、4周期/天、3周期/天的形式,每周期运行时间分别为4、6、8小时。循环过程中,首先进行充水、曝气和污泥回流,CASS池内的水位随进水而由初始的设计最低水位逐渐上升至最高设计水位。当经过一定时间曝气与混合后停止曝气,在静止的条件下使活性污泥絮凝并进行泥水分离。沉淀结束后通过移动堰表面滗水器排出上清液并使水位恢复至设计最低水位,然后重复运行。为保证系统在最佳条件下运行,必须定时排泥,排出剩余污泥的过程一般在沉淀结束后进行,污泥浓度可高达10g/L,所排出的剩余污泥量要比传统的活性污泥处理工艺少得多。

5.3工艺流程框图
栅渣 鼓风机

啤酒废水 格栅机 集水井 提升泵 调节池 CASS反应池 接触池

泥饼外运 污泥脱水机 螺杆泵 污泥贮池

图1 污水处理工艺流程方框图

5.4工艺流程说明
废水经格栅除去粗大杂物后,进入集水池内,经水泵提升进入CASS反应池中,使废水中的大部分污染物在池中得到降解和去除。废水在这里得到生化处理,处理后的废水排入接触池,经消毒后排人水体。CASS反应的剩余污泥排人污泥贮池中,经污泥泵打入污泥浓缩脱水一体机脱水,脱水后的干污泥外运,压滤机滤出水返回集水池内。
5.5处理效果预测
污水从调节池进入CASS池,再由CASS池出水,几乎所有的污染物均在CASS池内去除,结果见表4。
表1 主要构筑物进出水水质及去除率
名称 水质 进水mg/L 出水mg/L 去除率%
CASS池 生物选择吸附区 CODcr 1200 450 63
BOD5 700 200 71
SS 400 180 55
兼氧区 CODcr 450 200 56
BOD5 200 150 15
SS 180 140 22
主曝气区 CODcr 200 70 65
BOD5 150 30 80
SS 140 70 50
接触池 CODcr 80 40 50
BOD5 30 10 67
SS 70 30 57
总去除率 CODcr 1200 70 94以上
BOD5 700 10 98以上
SS 400 30 92以上
6.电气自控
6.1 动力配电
污水处理站总装机容量约219.87kW,其中运行功率约为134.0kW。动力线由厂区内配电房引入至污水处理站内配电柜。
6.2 自控系统
污水处理站采用PLC自动控制和就地按钮箱手动控制。在操作台上设有转换开关,当转换开关处于自动位置时,由PLC按预先编好的程序自动控制;当转换开关处于就地按钮箱手动位置时,可在机旁人工控制。
各提升泵可据液位高低利用自控系统控制水泵开启与关闭,当池内的污水量较小由一个水泵运转或间歇运转,当池内的污水量较大由两个水泵运转或其中一个间歇运转避免因无水而损坏水泵或因单个水泵的流量不足而引起的污水外溢。
CASS池利用PLC及电动阀根据时间控制自动切换工作状态,实现进水、曝气、滗水等一系列动作,从而两池自动交替运行,也可以根据情况切换到手动状态,进行人为干预以便调整两池的运行状态。

7. 主要建构筑物设备一览表
7.1主要构(建)筑物一览表
序号 构(建)筑物名称 工艺尺寸(m) 主要设计参数 数 量
1 集水井 L*B*H=2.0×2.0×4.0 总容积:16m3
结构形式:地下式钢混 1座
2 格栅间 L*B*H=3.0×2.0×3.0 总容积:18m3
结构形式:半地上式钢混 1座
2 调节池 L*B*H=16.2×9.0×4.5 总容积:656m3
结构形式:半地上式钢混 1座
3 CASS反应池 L*B*H=19.0×9.0×5.0 总容积:855m3
结构形式:半地上式钢混
容积负荷:
0.24kgBOD/m3·d 2座
4 污泥贮池 L*B*H=4.0x3.0x3.0 总容积:36m3
结构形式:半地上式钢混
HRT = 16hr 1座
5 接触池 L*B*H=6.0x3.0x3.0 总容积:54m3
结构形式:半地上式钢混
HRT = 15min 1座
6 污泥脱水机房 建筑面积:27m2 结构形式:砖混结构 1座
7 工房 建筑面积:60m2 结构形式:砖混结构 1座
说明:本设计不含站区围墙、地面绿化及道路硬化。

7.2主要设备一览表

序号 设备名称 设备型号 主要参数 单位 数量 备注
1 机械细格栅 RAG-500 栅条间隙10mm
功率:0.37kW 套 1 不锈钢
2 污水泵 CT-5-11-100 功率:11kW 套 2 配自耦
3 潜水搅拌器 QJB15/4 功率:15kw 台 2
4 污水泵 CT-5-11-100 功率:11kW 台 2 配自耦
5 污泥回流泵 CT-51.5-65 功率:1.5kW 台 4 配自耦
6 鼓风机 SSR200 风量:32m3/min
电机功率:45kW 台 3 2用1备
7 曝气器 KKI215/D90 / 套 1200 含空气支架、管件
8 滗水器 XPS-560 滗水能力560m3/h 套 2
9 污泥泵
10 浓缩压滤脱水一体机
11 电控系统 / / 套 1 含电气仪表

8.工程投资估算及经济技术分析
8.1 工程投资估算

8.1.1 土建投资估算

表8.1 土建投资估算表
序 名 称 单位 数量 型 号 规 格 总 价 备 注
号 ( m ) (万元)
1 格栅井 座 1 2.5×1.0×3.0 0.56 钢砼
2 集水井 座 1 2.0×2.0×4.0 1.20 钢砼
3 调节池 座 1 16.2×9.0×4.5 49.20 钢砼
4 CASS反应池 座 2 16.0×9.0×5.0 54.00 钢砼
5 污泥贮池 座 1 4.0×3.0×3.0 2.70 钢砼
6 污泥脱水机房 m2 1 27 2.16 砖混
7 工房 m2 1 60 4.80 砖混
8 小计(T1) 114.62

8.1.2 设备投资估算

表8.2 设备投资估算表
序号 设备名称 设备型号 单位 数量 单价 总价 备注
1 机械细格栅 BG4820-5 台 1 0.97 0.97 不锈钢
2 污水泵 CT-51.5-65 台 2 0.41 0.82 含自耦
3 污泥泵 CT-51.5-65 台 1 0.31 0.31
4 污水泵 CT-52.2-80 台 2 0.46 0.92 含自耦
6 污泥泵 CT-52.2-80 台 2 0.46 0.92 含自耦
7 水下鼓风机 WRC-100 台 2 5.10 10.20 含消音器等配套附件
8 曝气器 KKI215/D90 套 400 0.02 6.00 含空气支管、管件
9 滗水器 200m3/h 台 2 4.76 9.52
10 螺杆泵 I-1B2' 台 1 0.38 0.38
11 带式压滤机 XMY25/6300 台 1 2.86 2.86 含配套附件
12 加药系统 / 套 2 2.47 4.94 含计量泵
13 电控系统 / 套 1 11.60 11.60 含电气仪表
小计(T2) 157.48

8.1.3 工程总投资估算

表8.3 工程总投资估算表
号 项 目 名 称 构 成 方 式 费 用 备 注
(万元)
一 土建工程 114.62
二 工艺设备 157.48
三 设备配套、运杂费 (二)×3% 4.72
四 安装工程 (二)×13.5% 21.26
五 本工程直接费合计 (一)+(二)+(三)+(四) 211.64
六 本工程直接费税金 (五)×3.4% 5.51
七 本工程间接费
1 工程设计费 (五) ×5% 10.58
2 工程调试、培训费 (五) ×5% 10.58 含技术培训
3 本工程间接费合计 1+2 21.16
八 工程税金 [(七)]×5.6% 1.19
九 本工程总投资估算 (五)+(六)+(七)+(八) 239.51

备注:
1.本工程总投资只包括污水处理站内部分;
2.土建投资估算不包括除主体构筑物之外的其它附属设施及措施费等相关费用,预算以施工图纸为准;
3.标准排放口按当地环保部门要求,业主自行解决;
4.化验仪器由业主根据工程需要自行采购;
8.2 运行成本分析
8.2.1 运行成本计算
电费
本工程装机容量约为219.87kW,其中运转功率为134.0kW,电费按0.62元/kW计,处理水量按3500 m3/d计:
E1=134.0×24×0.62÷3500=0.57元/m3污水
(2)药剂费
每天投加PAM的量为5.95kg,单价为30元/kg;
则加药费用为:0.05元/m3污水。
(3)人工费
人均工资福利按20元/天·人计,定员3人,则
E3=20×3÷3500=0.02元/m3污水
(4) 自来水耗
用于配药及实验室的自来水量每天约为20吨,吨水费用约为2.0元,则每天水费约为:
E3=20×2.0÷3500=0.01元/m3污水
(5)总运行费用为:
E4=E1+E2+E3 =0.57+0.05+0.02+0.01=0.65元/m3污水(不含折旧费及维修费)
8.2.2 经济效益分析
经核算,沼气的产生量约为2250m3/d,按热值计算,每10000m3相当于8吨标煤,每吨标煤按400元计,则全年沼气产生的效益约为:
2250×365×10-4×8×0.04=26.28万元/年

8.3工程实施计划
工程实施计划表
工程阶段 11月 12月 1月 2月 3月
可行性研究
施工图设计
土建施工
安装工程

9.质量保证
9.1确保处理水达标排放;
9.2处理系统运行稳定、安全、可靠;
9.3按环保样板工程设计,达到优质工程质量标准;
9.4终身有偿服务;终身提供免费技术咨询。

表8.2.1 电耗一览表
序号 设备名称 功率(kW) 运转时间(h) 单位 数量 备注
1 机械细格栅 0.12kW 6 台 1
2 污水泵 1.5kW 24 台 2 一用一备
3 污泥泵 1.5kW 2 台 1
4 污水泵 2.2kW 24 台 2 一用一备
5 污泥泵 2.2kW 1.5h 台 2
6 水下鼓风机 11kW 18h 台 2
7 滗水器 1.1kW 3h 台 2
8 螺杆泵 2kW 3 台 1
9 带式压滤机 4.0kW 3 台 1
10

SBR是Sequencing Batch Reactor的简称,我国通常称为序批式活性污泥法。1969年荷兰国立卫生工程研究所将处理医院污水的连续流氧化沟改为间歇运行,取得了令人注目的效果。从中得到启发,世界各国学者开始着手间歇式活性污泥法的研究开发。1979年美国R. Irvine等人根据试验结果首先提出SBR工艺。
近年来,伴随着监控与测试技术的飞速发展和SBR法专用设备滗水器的研制成功,以及电动阀、气动阀、电磁阀、水位计、泥位计、自动计时器,特别是计算机自动控制系统的应用,使监控手段趋于自动化,SBR工艺的优势才充分显露出来,引起广泛重视,得以迅速推广应用。
SBR法工艺简单,不设二次沉淀池,间歇(或连续)进水,间歇排水。在单一反应池中完成进水、反应、沉淀、滗水、闲置五道工序。
与传统活性污泥工艺比较,SBR法具有下述工艺特点:
1.工艺流程简单,节省投资。
2.生化反应推力大,处理能力强。研究表明,SBR反应器中的活性污泥具有较高的生物活性,其微生物核糖核酸(RNA)是普通活性污泥的3~4倍。在SBR反应器中,随着曝气进行有机物(F)逐渐减少,而生物固体(M)逐渐增加,污泥负荷(F/M)随时间减小,生化反应在时间上呈推流状态,F/M梯度也达到理想的最大,具有较强的污染物去除能力。
3.不会发生污泥膨胀,运行效果稳定。污泥膨胀多为丝状细菌过剩繁殖,绝大多数丝状菌,如球衣菌属等都是专性的好氧菌。在SBR反应池中,沉淀滗水阶段的缺氧或厌氧环境与反应阶段的好氧环境不断交替,能有效抑制专性好氧细菌的过量繁殖,因此能形成以絮凝性微生物为主体的生物絮体,不发生污泥膨胀,运行效果稳定。
4.耐冲击负荷,操作弹性大。
5.SBR法停曝后在理想静止状态下进行沉淀,泥水分离效果好。
5.5废水处理效果分析
各工艺阶段的处理效果预测如下:
表5-2:处理效果分析表
名称 单位 竖流沉淀池 UASB反应池 SBR反应池 总处理率
进水 出水 进水 出水 进水 出水
CODcr mg/L 12000 <10000 10000 <1000 1000 <100 >99%
BOD5 mg/L 8000 <7000 7000 <400 400 <20 >99.7%
悬浮物 mg/L 2500 <750 750 <500 700 <70 >97%

5. 啤酒废水处理工艺,用UASB+接触氧化池工艺的特点是啥,请说详细一些 还有说一下啤酒废水的特点

啤酒废水的水质特点是CODcr高,约1000--2000mg/L;BOD5高,SS高,约有600--800mg/L.废水B/C比值高,可生化性强。啤酒废水处理主要采用内好容氧处理的技术,如活性污泥法、高负荷生物过滤法和接触氧化法、SBR和氧化沟处理工艺等。

由于啤酒废水进水CODc,浓度高,所以一般采用二级接触氧化工艺,采用接触氧化工艺代替传统的活性污泥法,可以防止高糖含量废水易引起污泥膨胀的现象,并且不用投配N、P营养。用生物接触氧化法,可以选择的负荷范围是1.0—1.5kSBODs/(1213.d);用鼓风曝气,每去除lkgBOD5约需空气80m3。

UASB其实是升流式厌氧反应器,它的特点是工艺结构紧凑, 处理能力大, 无机械搅拌装置, 处理效果好及投资省等特点,能负荷污水高COD值的冲击,反应器内 以甲烷菌为主体的厌氧微生物形成了粒径为 1~ 5mm的颗粒污泥, 即污泥的颗粒化是 UASB的基本特征。

接触氧化池工艺是常规的好氧生化过程,进一步降低COD等。

6. 啤酒污水处理急!!!!!!!

说的太复杂

污水沉淀,,污泥浓缩,,污泥脱水,

7. 关于啤酒厂废水处理工艺的问题

啤酒废水可生化性不错,不要被大的COD,BOD吓住了,不难的,2000多的废水直接好氧问题不大,先厌氧也可以,但考虑到毕业设计越简单你也越好做,建议是主体工艺就直接好氧,其余无非就是预处理的问题

8. 啤酒厂的废水咋处理

污水处理复工艺就是对城市生活污制水和工业废水的各种经济、合理、科学、行之有效的工艺方法。污水处理被广泛应用于建筑、农业,交通、能源、石化、环保、城市景观、医疗、餐饮等各个领域。城市污水处理工艺应根据处理规模、水质特性、受纳水体的环境功能及当地的实际情况和要求,经全面技术经济比较后优选确定。

热点内容
丁度巴拉斯情人电影推荐 发布:2024-08-19 09:13:07 浏览:886
类似深水的露点电影 发布:2024-08-19 09:10:12 浏览:80
《消失的眼角膜》2电影 发布:2024-08-19 08:34:43 浏览:878
私人影院什么电影好看 发布:2024-08-19 08:33:32 浏览:593
干 B 发布:2024-08-19 08:30:21 浏览:910
夜晚看片网站 发布:2024-08-19 08:20:59 浏览:440
台湾男同电影《越界》 发布:2024-08-19 08:04:35 浏览:290
看电影选座位追女孩 发布:2024-08-19 07:54:42 浏览:975
日本a级爱情 发布:2024-08-19 07:30:38 浏览:832
生活中的玛丽类似电影 发布:2024-08-19 07:26:46 浏览:239