当前位置:首页 » 废水回用 » 丙烷脱氢废水处理

丙烷脱氢废水处理

发布时间: 2021-03-29 21:34:13

1. 山梨醇到底是不是防腐剂

山梨醇不是防腐剂,山梨酸钾才是防腐剂。山梨醇可作为营养型甜味剂版、湿润剂、螯权合剂和稳定剂使用。使用山梨糖醇的食品,可供糖尿病、肝病、胆囊炎患者食用。除用作甜味剂以外,山梨糖醇还具有保湿、螯合金属离子、改进组织(使蛋糕细腻、防止淀粉老化)的作用。

山梨酸钾有很强的抑制腐败菌和霉菌的作用,其毒性远低于其他防腐剂,目前被广泛使用。山梨酸钾在酸性介质中能充分发挥防腐作用,在中性条件下防腐作用小。

(1)丙烷脱氢废水处理扩展阅读:

糖醇类甜味剂是糖的衍生物,目前已开发包括山梨糖醇、甘露糖醇、麦芽糖醇、乳糖醇、木糖醇等不同产品,其甜度约为蔗糖的25%~100%。糖醇类甜味剂提供的能量比糖少,不会导致明显血糖反应,且可以显著降低蛀牙风险,主要用来增加无糖糖果、饼干和口香糖的甜味。

甜味剂的水溶性和加工稳定性好,在食品加工中使用方便。目前,市场上有很多使用甜味剂的低糖、无糖食品和饮料,为需要减糖和控糖的消费者提供了更多选择。

2. 请问在化工行业PDH是什么意思

在化工行业PDH是指丙烷脱氢(即Propane Dehydrogenation,英文简称为PDH),是丙烷在催化剂的作用下脱氢生成丙烯的工艺。

通常丙烯是在炼制成品油过程中或裂解生产乙烯过程中的副产品,丙烷脱氢提供了一种新的技术路径,即以丙烷替代各种馏分油为原料来集中生产丙烯。

由丙烷进行丙烷脱氢制成丙烯单体,是制丙烯的一种重要方式。以丙烷制作丙烯需要进行脱氢装置的处理,其中原料丙烷的费用约占总成本的90%。

该方法的经济性主要决定于丙烷和丙烯的差价,我国丙烷大部分依赖国外进口,目前在建的丙烷脱氢项目基本都是与国外生产商签订了协议的项目。

(2)丙烷脱氢废水处理扩展阅读:

PDH介绍:

在数字通信系统中,传送的信号都是数字化的脉冲序列。这些数字信号流在数字交换设备之间传输时,其速率必须完全保持一致,才能保证信息传送的准确无误,这就叫做“同步”。

在数字传输系统中,有两种数字传输系列,一种叫“准同步数字系列”(Plesiochronous Digital Hierarchy),简称PDH;另一种叫“同步数字体系”(Synchronous Digital Hierarchy),简称SDH。

速率不同的低次群分路信号若直接复用成高次群信号会在高次群信号中产生码元的重叠错位,使接收端无法正常分接、恢复低次群分路信号。

因此,速率不同的低次群分路信号不能直接复用,要在复用之前对各分路信号速率进行统一的调整,使各分路信号速率达到同步。调整方法通常采用正码速调整法,即在各分路信号中插入一些脉冲,通过控制插入脉冲的多少来调整各分路信号的速率。

3. 丙烯颜料和水粉调色的区别

丙烯颜料和水粉调色是一样的,只是用途不一样,丙烯颜料多用于墙体绘画,丙烯颜料有以下特性:
1、无毒无甲醛:丙稀颜料是水性调和颜料,没有甲醛等毒性挥发物质,对人体无害;
2、稀释性强:丙稀颜料可以用水调和,可根据需要调节稀稠;
3、表现力强:丙稀颜料颜色鲜艳,饱和度高;
4、快干且防水:丙稀颜料用水稀释,但只溶于一次水,干后就不再溶于水了,所以画面保持的时间更长,平时墙面怎么打理都行。
5、随心换:如果您看腻了已有图案,只需要把原先的图案粉刷乳胶漆就可以重新绘制您想要的图案,想换其他墙面装饰也可以。

4. 1,n二酮类化合物什么时候脱酯键,什么时候发生酯的水解

一、醇羟基中氢的反应 醇的反应在醇分子中,由于氧原子的电负性较强,故与氧原子相连的键有极性: 但碳氧键的可极化性并不强,所以,在水溶液中不能形成碳正离子和羟基负离子。可是由于碳、氧、氢各原子的电负性不同,在反应中有碳氧键和氢氧键断裂的两种可能。可以把醇看成是烷基化的水,即水中的一个氢原子被烷基取代了的产物。因此可以设想它应该有与水相似的性质。例如,水可以离解出氢离子(氢离子浓度为1×10-7 mol??L-1),与金属钠反应,产生氢气和氢氧化钠。醇与金属钠反应也可发生氢氧键的断裂,放出氢气,并生成与氢氧化钠类似的产物,称为醇化钠或醇钠:但该反应比钠与水的反应慢,说明醇是比水弱的酸。碳的电负性比氧弱,碳氧键电子偏向氧,因此烷基是给电子基团,与水相比,羟基中的氢难以电离(氢离子浓度为1×10-9 mol??L-1),即烷氧负离子的碱性比羟基负离子强,所以,醇钠加入水中,全部水解,马上得回醇和氢氧化钠:因为强碱与“酸”相遇,“酸”把质子给予强碱。虽然如此,在工业上制甲醇钠或乙醇钠还是用醇与氢氧化钠反应,然后想法把水除去,使平衡有利于醇钠一方。常用的方法是利用形成共沸混合物,如苯、乙醇、水可形成共沸混合物,将水带走转移平衡。所谓共沸混合物,如几种沸点不同而又完全互溶的液体混合物,由于分子间的作用力,它们在蒸馏过程不能一一分开,而是得到具有最低沸点(比所有组分沸点都低)或最高沸点(比所有组分沸点都高)的馏出物,这些馏出物组成与溶液组成相同,沸点也一直恒定,直到蒸完,冷凝后的液体,称为共沸混合物。如乙醇-苯-水组成三元共沸混合物,其沸点为64.9℃(乙醇18.5%,苯74%,水7.5%),苯-乙醇组成二元共沸混合物,其沸点为68.3℃(乙醇32.4%,苯67.6%)。如乙醇中含有少量的水,由于乙醇-水形成共沸混合物,其沸点为78℃(乙醇95.57%,水4.43%),不能通过蒸馏方法除去,可计算加入比形成乙醇-苯-水三元共沸混合物稍过量的苯,将水除去,过量苯与乙醇形成二元共沸混合物除去,剩下为无水乙醇。醇钠的醇溶液,可通过上述去水方法得到。醇钠及其类似物在有机合成中是一类重要的试剂,并常作为碱使用。根据在气相下研究一系列醇的酸性次序是:(CH3)3CCH2OH>(CH)3COH>(CH3)2CHOH>CH3CH2OH>CH3OH>H2O说明烷基是吸电子基团,但在液相中测定醇的酸性次序正好相反,CH3OH>RCH2OH>R2CHOH>R3COH这解释为醇在气态,分子处于隔离状态,烷基吸电子是反映了分子内在的本质;但在液相中有溶剂化作用,R3CO-由于R3C体积大,溶剂化作用小,而RCH2O-体积小,溶剂化作用大。RCH2O-溶剂化作用大、稳定,因此RCH2OH中的质子易于离解,酸性大;R3CO-溶剂化作用小,不如RCH2O-稳定,因此R3COH中质子不易离解,酸性校一般pKa值是在液相测定的,根据各类醇酸性的大小顺序,因此认为烷基是给电子的。各类醇的其轭酸在水中酸性的强弱,也由它们的共轭酸在水中的稳定性来决定,共轭酸的空间位阻小,与水形成氢键而溶剂化的程度愈大,这个共轭酸就稳定,质子不易离去,酸性就较低。如空间位阻大,溶剂化作用小,质子易离去,酸性强。习题9-6将下列化合物按酸性由大到小排列成序:CH3CH2C≡CH,CH3CH2CH2CH3 习题9-7将下列化合物按碱性由大到小排列成序:二、碳氧键断裂——羟基被置换 1.与氢卤酸反应氢卤酸与醇反应生成卤代烷,反应中醇羟基被卤离子取代:ROH+HX→RX+H2O 醇羟基不是一个好的离去基团,需要酸的帮助,使羟基质子化后以水的形式易于离去。由于卤离子的亲核能力I->Br ->Cl-,故氢卤酸的反应性HI>HBr>HCl。各种醇的反应性3°>2°>1°。举例如下:CH3(CH2)3OH+HI(57% )→CH3(CH2)3I+H2O 氢碘酸是强酸,一级醇很易与它反应;氢溴酸的酸性较氢碘酸弱,因此需硫酸增强酸性;也可用溴化钠和硫酸代替氢溴酸,这是从一级醇制卤代烷的最常用的方法;浓盐酸的酸性更弱一些,需用氯化锌与其混合使用,称卢卡斯(Lucas)试剂,氯化锌是强的路易斯酸,其作用与质子酸类似。三级醇易反应,只需浓盐酸在室温振荡即可反应,氢溴酸在低温也能与三级醇进行反应。如用氯化氢、溴化氢气体在0℃通过三级醇,反应在几分钟内就可完成,这是制三级卤代烷的常用方法,除非极敏感的化合物,一般可避免发生重排。氢卤酸与大多数一级醇按SN2机制进行反应:氢卤酸与大多数二级、三级醇按SN1机制进行反应:习题9-8请提出一个用HCl-ZnCl2与一级醇(SN2)、三级醇(SN1)的反应机制。如果按SN1机制反应,就有重排产物产生,如2-戊醇与溴氢酸反应有86%2-溴戊烷与14%3-溴戊烷;异丁醇在氢溴酸与硫酸中加热反应,有80%异丁基溴与20%三级丁基溴,新戊醇由于β位位阻太大,得到的是重排产物2-甲基-2-溴丁烷。邻基参与效应当有光活性的赤型的β-溴代醇(i)用浓氢溴酸处理,得内消旋的二溴化物(ii),如有光活性的苏型的β-溴代醇(iii)用浓氢溴酸处理,得外消旋体二溴化物(iv)、(v):当(iii)形成(iv)时,两个手性碳构型均不变,当(iii)形成(v)时,两个手性碳构型均发生转化。这是因为β位的溴参与醇羟基的反应,这种相邻基团在排除离去基团时所作的帮助,称为邻基参与效应。当分子内要形成一个缺电子的碳正离子(除碳外,还可包括氧与氮)时,相邻基团作为一个内部的亲核试剂向这个反应中心的碳进攻,帮助离去基团离去,这样形成了中间体环正离子,然后外部的亲核试剂进攻,形成产物,相邻基团可以通过环正离子迁移到离去基团的碳上,这时两个手性碳的构型均转化,如相邻基团仍回到原来位置,两个手性碳的构型均不变:邻基参与效应,可以从上述的立体化学表现出来,也可以从反应速率(特别快)表现出来,因为相邻基团的空间位置合适,而且是分子内的反应,因此容易发生反应,比分子间的反应快。习题9-9请说明有光活性的赤-3-溴-2-丁醇和氢溴酸反应的立体化学过程。习题9-10完成下列反应:CH3CH2CH=CHCH2Br混合物,请提出一个合理的解释。习题 9-12预测下列二组醇与氢溴酸进行SN1反应的相对速率:习题9-13 2-环丁基-2-丙醇与HCl反应得1,1-二甲基-2-氯环戊烷;而2-环丙基-2-丙醇与HCl反应得2-环丙基-2-氯丙烷而不是1,1-二甲基-2-氯环丁烷,请提出一个合理的解释。 2.与卤化磷反应:醇与卤化磷反应生成卤代烷 3CH3CH2OH+PBr3→3CH3CH2Br+H3PO3 反应过程如下: CH3CH2OH+PBr3→CH3CH2OPBr2+HBr醇羟基是一个不好的离去基团,与三溴化磷作用形成CH3CH2OPBr2,Br-进攻烷基的碳原子-OPBr2作为离去基团离去。-OPBr2中还有两个溴原子,可继续与醇发生反应。碘代烷可由三碘化磷与醇制备,但通常三碘化磷是用红磷与碘代替,将醇、红磷和碘放在一起加热,先生成三碘化磷,再与醇进行反应:氯代烷常用五氯化磷与醇反应制备: CH3CH2OH+PCl5→CH3CH2Cl+HCl+POCl3 上述方法中,最常用的是三溴化磷与一级醇、β位有支链的一级醇、二级醇生成相应溴代烷,在用二级醇及有些易发生重排反应的一级醇时温度需低于0℃,以避免重排。红磷与碘常用于一级醇制相应碘代烷。习题9-14请写明下列醇转化为相应卤代烷的试剂及反应条件: 3.与亚硫酰氯反应若用亚硫酰氯和醇反应,可直接得到氯代烷,同时生成二氧化硫和氯化氢两种气体,在反应过程中这些气体都离开了反应体系,这有利于反应向生成产物的方向进行,该反应不仅速率快,反应条件温和,产率高,而且不生成其它副产物。一般用过量的亚硫酰氯并保持微沸,是一个很好的制氯代烷的方法:亚硫酰氯bp79℃反应机制如下:从上式中可以看出反应过程中先生成氯代亚硫酸酯,然后分解为紧密离子对,Cl-作为离去基因(-OSOCl)中的一部分,向碳正离子正面进攻,即“内返”,得到构型保持的产物氯代烷。在低温时,可以分离出该中间产物氯代亚硫酸酯,经加热分解成氯代烷和二氧化硫。这说明上述反应机制与实际相符,而且取代犹如在分子内进行的,所以叫它分子内取代,以SNi表示(SubstitutionNucleophilic internal),不过这种取代较少。经过反应,原羟基所在的碳原子仍然保持着原来的构型,只是氯原子占据了羟基所在的位置。但在醇和亚硫酰氯的混合液中加入弱亲核试剂吡啶,即会发生构型的转化,因为中间产物氯代亚硫酸酯以及反应中生成的氯化氢均可和吡啶反应分别生成下列产物:上述二产物都含有“自由”的氯负离子,它可从碳氧键的背面向碳原子进攻,从而使该碳原子的构型发生转化:三级胺(R3N)和吡啶一样可对此反应起催化作用,因为有利于氯离子的形成:亚硫酰氯和吡啶,常用于一级醇,β位有侧链的一级醇、二级醇制相应的氯代烷,此试剂有很多优点,因此是常用的方法。亚硫酰溴因不稳定而很难得,故不用它制溴代烷。习题9-15完成下列反应,写出主要产物:三、氢氧键断裂与酯的形式醇与含氧无机酸或有机酸及它们的酰氯和酸酐反应,都生成酯,酯相当于醇和酸的两种分子间失去一分子水,并相互结合成为一个分子,如下式所示:在上列反应过程中,是醇分子作为亲核试剂进攻酸或其衍生物的带正电荷部分,而后醇分子的氢氧键断裂,例如:对甲苯磺酰氯(TsCl)是由对甲苯磺酸(TsOH)与五氯化磷或亚硫酰氯作用制得:醇羟基必须在酸或路易斯酸催化下才可进行取代反应,而苯磺酸酯中酸根部分是很好的离去基团,因此这类酯比醇容易进行亲核取代反应,如:这样将一级或二级醇通过形成磺酸酯再转为卤代烷,纯度很好。上述反应醇羟基所连碳原子为手性碳原子,磺化一步构型不变,与卤离子反应一步构型转化,二步最终得到构型转化的产物。1-丁醇-1-d中由于H与D的差别很小,所以光活性的差别也很小,只有[α]D=0.5°。习题9-16由苯、甲苯以及必要的有机及无机试剂合成:的甲醇溶液)制成对甲苯磺酸二级丁酯,然后用碱水解,得(S)-(+)-2-化学过程,并加以解释。四、醇的氧化一级醇及二级醇的醇羟基相连的碳原子上有氢,可以被氧化成醛、酮或酸;三级醇的醇羟基相连的碳原子上没有氢,不易被氧化,如在酸性条件下,易脱水成烯,然后碳碳键氧化断裂,形成小分子化合物。1.用高锰酸钾或二氧化锰氧化醇不为冷、稀、中性的高锰酸钾的水溶液所氧化,一级醇、二级醇在比较强烈的条件下(如加热)可被氧化。一级醇生成羧酸钾盐,溶于水,并有二氧化锰沉淀析出,中和后可得羧酸:二级醇可氧化为酮:在二级醇用高锰酸钾氧化为酮时,易进一步氧化使碳碳键断裂,故很少用于合成酮。三级醇在中性、碱性条件下不易为高锰酸钾氧化,在酸性条件下,则能脱水成烯,再发生碳碳键断裂,生成小分子化合物,如:高锰酸钾与硫酸锰在碱性条件下可制得二氧化锰,新制的二氧化锰可将β碳上为不饱和键的一级醇、二级醇氧化为相应的醛和酮,不饱和键可不受影响: 2KMnO4+3MnSO4+4NaOH→5MnO2↓+K2SO4+2Na2SO4+2H2O CH2=CHCH2OH→CH2=CHCHO 丙烯醛 HOCH2CH2CH=CHCH2OH→HOCH2CH2CH=CHCHO 2.用铬酸氧化可作为氧化剂的铬酸形式有:Na2Cr2O7与40%~50%硫酸混合液、CrO3的冰醋酸溶液、CrO3与吡啶的络合物等一级醇常用Na2Cr2O7与40%~50%硫酸混合液氧化,先得醛,醛进一步氧化为酸,如:如控制合适的氧化条件,在氧化成醛后立即从反应体系中蒸出,可避免进一步被氧化为酸,反应需在低于醇的沸点,高于醛的沸点温度下进行,如:将丙醇滴加到温度为~75℃的Na2Cr2O7,H2SO4,H2O的溶液中,一旦生成丙醛,就被蒸馏出来。这种反应产率不高,因为总有一部分醛氧化为酸。醛的沸点低于100℃才能用此法,因此此法用途是非常有限的。二级醇常用上述几种铬酸氧化剂氧化,酮在此条件下比较稳定。因此是比较有用的方法。用铬酐(CrO3)与吡啶形成的铬酐-双吡啶络合物是吸潮性红色结晶,称沙瑞特(Sarrett,L.H.)试剂,可使一级醇氧化为醛,二级醇氧化为酮,产率很高,因为吡啶是碱性的,对在酸中不稳定的醇是一种很好的氧化剂,反应一般在二氯甲烷中于25℃左右进行。如:分子中有双键、叁键,氧化时不受影响。不饱和的二级醇也可用琼斯(Jones)试剂氧化成相应的酮而双键不受影响,该试剂是把铬酐溶于稀硫酸中,然后滴加到要被氧化的醇的丙酮溶液中,反应在15~20℃进行,可得较高产率的酮,如:醇与铬酸的反应机制,认为如下所示:上述的水作为碱。也可以不是外来的碱,而是通过环状机制,把一个H+传给氧的:其余的醇也被氧化:R2CHOH+Cr(IV)→R2COH+Cr(III) R2COH+Cr(VI)→R2C=O+Cr(V)最终将 Cr(VI)还原为 Cr(III)。如用过量铬酸并反应条件强烈,双键也被氧化成酮或酸。3.用硝酸氧化一级醇能在稀硝酸中氧化为酸。二级醇、三级醇需在较浓的硝酸中氧化,同时碳碳键断裂,成为小分子的酸。环醇氧化,碳碳键断裂成为二元酸: 4.欧芬脑尔(Oppenauer,R.V)氧化法另一种有选择性的氧化醇的方法叫做欧芬脑尔氧化法,即在碱如三级丁醇铝或异丙醇铝的存在下,二级醇和丙酮(或甲乙酮、环己酮)一起反应(有时需加入苯或甲苯做溶剂),醇把两个氢原子转移给丙酮,醇变成酮,丙酮被还原成异丙醇。该反应的特点是,只在醇和酮之间发生氢原子的转移,而不涉及分子的其它部分。所以在分子中含有碳碳双键或其它对酸不稳定的基团时,利用此法较为适宜。因此该法也是由一个不饱和二级醇制备不饱和酮的有效方法。醇铝可用下法制备:反应举例如下:该反应是通过一个环状中间体进行的。这是一个可逆反应,故也可由酮制醇(参看10.16,4)。为使上一反应向生成酮的方向进行,需加入大量的丙酮。使(i)尽可能与丙酮络合,将丙酮还原为异丙醇;而其逆反应则需加大量异丙醇,同时把产生的丙酮从反应体系中移走。使用上述氧化法一级醇虽也可氧化成相应的醛,但效果并不太好,因在碱存在下,生成的醛常易进行羟醛缩合反应。5.用费兹纳-莫发特试剂氧化一级醇在近来发现的费兹纳(Pfitzner,K.E.)及莫发特(Moffatt,J.G.)试剂的作用下,可以得到产率非常高的醛。这个试剂是二甲亚砜和二环己基碳二亚胺,二环己基碳二亚胺英文名叫dicyclohexyl carbodiimide,简称为DC是二取代脲的失水产物:这是一个非常重要的失水剂。如对硝基苯甲醇,用这个试剂在磷酸作用下,得到92%产率的对硝基苯甲醛:反应过程如下:在这个反应中,二环己基碳二亚胺接受一分子水,变为脲的衍生物,而二甲亚砜变为二甲硫醚。这个氧化剂也可用于氧化二级醇。在进行氧化反应时,必须注意许多有机物与强氧化剂接触时,会发生强烈的爆炸,因此在使用高锰酸钾、高氯酸以及类似氧化剂进行反应时,一定要在溶剂中进行,因为溶剂可使放出的大量热消散,减缓反应速率。 五、醇的脱氢一级醇、二级醇可以在脱氢试剂的作用下,失去氢形成羰基化合物,醇的脱氢一般用于工业生产,常用铜或铜铬氧化物等作脱氢剂,在300℃下使醇蒸气通过催化剂即可生成醛或酮。此外Pd等也可作脱氢试剂醇除以上所讨论的各种反应外,也像水一样,和干燥剂如氯化钙可形成结晶醇。例如甲醇和乙醇与氯化钙作用,分别形成CaCl2??4CH3OH和CaCl2??6C2H5OH。因此乙醇溶液不能用氯化钙干燥。

5. 高中化学必修2总结{在线等.最好有例题}

1 化学元素周期表 元素周期律 化学键:
元素周期表是元素周期律用表格表达的具体形式,它反映元素原子的内部结构和它们之间相互联系的规律。元素周期表简称周期表。元素周期表有很多种表达形式,目前最常用的是维尔纳长式周期表。元素周期表有7个周期,有16个族和4个区。元素在周期表中的位置能反映该元素的原子结构。周期表中同一横列元素构成一个周期。同周期元素原子的电子层数等于该周期的序数。同一纵行(第Ⅷ族包括3个纵行)的元素称“族”。族是原子内部外电子层构型的反映。例如外电子构型,IA族是ns1,IIIA族是ns2 np1,O族是ns2 np4, IIIB族是(n-1) d1·ns2等。元素周期表能形象地体现元素周期律。根据元素周期表可以推测各种元素的原子结构以及元素及其化合物性质的递变规律。当年,门捷列夫根据元素周期表中未知元素的周围元素和化合物的性质,经过综合推测,成功地预言未知元素及其化合物的性质。现在科学家利用元素周期表,指导寻找制取半导体、催化剂、化学农药、新型材料的元素及化合物。
现代化学的元素周期律是1869年俄国科学家德米特里·伊万诺维奇·门捷列夫(Dmitri Ivanovich Mendeleev )首先整理,他将当时已知的63种元素依原子量大小并以表的形式排列,把有相似化学性质的元素放在同一行,就是元素周期表的雏形。利用周期表,门捷列夫成功的预测当时尚未发现的元素的特性(镓、钪、锗)。1913年英国科学家莫色勒利用阴极射线撞击金属产生X射线,发现原子序越大,X射线的频率就越高,因此他认为核的正电荷决定了元素的化学性质,并把元素依照核内正电荷(即质子数或原子序)排列,经过多年修订后才成为当代的周期表。当然还有未知元素等待我们探索.
这张表揭示了物质世界的秘密,把一些看来似乎互不相关的元素统一起来,组成了一个完整的自然体系。
[编辑本段]元素周期表的记忆
先背熟元素周期表,然后就会慢慢找出各族元素的规律,以后见到没有学过的元素,只要是同一族的都会知道有什么特点,有什么化学性质,那就不是可以举一反三了。
元素周期表中元素及其化合物的递变性规律
1 原子半径
(1)除第1周期外,其他周期元素(惰性气体元素除外)的原子半径随原子序数的递增而减小;
(2)同一族的元素从上到下,随电子层数增多,原子半径增大。
2 元素化合价
(1)除第1周期外,同周期从左到右,元素最高正价由碱金属+1递增到+7,非金属元素负价由碳族-4递增到-1(氟无正价,氧无+6价,除外);
(2)同一主族的元素的最高正价、负价均相同
(3) 所有单质都显零价
3 单质的熔点
(1)同一周期元素随原子序数的递增,元素组成的金属单质的熔点递增,非金属单质的熔点递减;
(2)同一族元素从上到下,元素组成的金属单质的熔点递减,非金属单质的熔点递增
4 元素的金属性与非金属性
(1)同一周期的元素电子层数相同。因此随着核电荷数的增加,原子越容易得电子,从左到右金属性递减,非金属性递增;
(2)同一主族元素最外层电子数相同,因此随着电子层数的增加,原子越容易失电子,从上到下金属性递增,非金属性递减。
5 最高价氧化物和水化物的酸碱性
元素的金属性越强,其最高价氧化物的水化物的碱性越强;元素的非金属性越强,最高价氧化物的水化物的酸性越强。
6 非金属气态氢化物
元素非金属性越强,气态氢化物越稳定。同周期非金属元素的非金属性越强,其气态氢化物水溶液一般酸性越强;同主族非金属元素的非金属性越强,其气态氢化物水溶液的酸性越弱。
7 单质的氧化性、还原性
一般元素的金属性越强,其单质的还原性越强,其氧化物的阳离子氧化性越弱;元素的非金属性越强,其单质的氧化性越强,其简单阴离子的还原性越弱。
[编辑本段]推断元素位置的规律
判断元素在周期表中位置应牢记的规律:
(1)元素周期数等于核外电子层数;
(2)主族元素的序数等于最外层电子数。
阴阳离子的半径大小辨别规律
由于阴离子是电子最外层得到了电子 而阳离子是失去了电子
所以, 总的说来
(1) 阳离子半径<原子半径
(2) 阴离子半径>原子半径
(3) 阴离子半径>阳离子半径
(4)或者一句话总结,对于具有相同核外电子排布的离子,原子序数越大,其离子半径越小。
以上不适合用于稀有气体!
化学键(chemical bond)是指分子或晶体内相邻原子(或离子)间强烈的相互作用。
例如,在水分子H2O中2个氢原子和1个氧原子通过化学键结合成水分子 。化学键有3种极限类型 ,即离子键、共价键和金属键。离子键是由异性电荷产生的吸引作用,例如氯和钠以离子键结合成NaCl。共价键是两个或几个原子通过共用电子对产生的吸引作用,典型的共价键是两个原子借吸引一对成键电子而形成的。例如,两个氢核同时吸引一对电子,形成稳定的氢分子。金属键则是使金属原子结合在一起的相互作用,可以看成是高度离域的共价键。定位于两个原子之间的化学键称为定域键。由多个原子共有电子形成的多中心键称为离域键。除此以外,还有过渡类型的化学键:由于粒子对电子吸引力大小的不同,使键电子偏向一方的共价键称为极性键,由一方提供成键电子的化学键称为配位键。极性键的两端极限是离子键和非极性键,离域键的两端极限是定域键和金属键。
1、离子键[1]是右正负离子之间通过静电引力吸引而形成的,正负离子为球形或者近似球形,电荷球形对称分布,那么离子键就可以在各个方向上发生静电作用,因此是没有方向性的。
2、一个离子可以同时与多个带相反电荷的离子互相吸引成键,虽然在离子晶体中,一个离子只能与几个带相反电荷的离子直接作用(如NaCl中Na+可以与6个Cl-直接作用),但是这是由于空间因素造成的。在距离较远的地方,同样有比较弱的作用存在,因此是没有饱和性的。
化学键的概念是在总结长期实践经验的基础上建立和发展起来的,用来概括观察到的大量化学事实,特别是用来说明原子为何以一定的比例结合成具有确定几何形状的、相对稳定和相对独立的、性质与其组成原子完全不同的分子。开始时,人们在相互结合的两个原子之间画一根短线作为化学键的符号 ;电子发现以后 ,1916年G.N.路易斯提出通过填满电子稳定壳层形成离子和离子键或者通过两个原子共有一对电子形成共价键的概念,建立化学键的电子理论。
量子理论建立以后,1927年 W.H.海特勒和F.W.伦敦通过氢分子的量子力学处理,说明了氢分子稳定存在的原因 ,原则上阐明了化学键的本质。通过以后许多人 ,物别是L.C.鲍林和R.S.马利肯的工作,化学键的理论解释已日趋完善。
1、共价键的形成是成键电子的原子轨道发生重叠,并且要使共价键稳定,必须重叠部分最大。由于除了s轨道之外,其他轨道都有一定伸展方向,因此成键时除了s-s的σ键(如H2)在任何方向都能最大重叠外,其他轨道所成的键都只有沿着一定方向才能达到最大重叠。
2、旧理论:共价键形成的条件是原子中必须有成单电子,自旋方向必须相反,由于一个原子的一个成单电子只能与另一个成单电子配对,因此共价键有饱和性。如原子与Cl原子形成HCl分子后,不能再与另外一个Cl形成HCl2了。
3、新理论:共价键形成时,成键电子所在的原子轨道发生重叠并分裂,成键电子填入能量较低的轨道即成键轨道。如果还有其他的原子参与成键的话,其所提供的电子将会填入能量较高的反键轨道,形成的分子也将不稳定。 像HCL这样的共用电子对形成分子的化合物叫做共价化合物
2。化学能与热能 化学能与电能 反应速率及限度:
用眼睛不能直接观察到反应中的热量变化,那么,你将采取哪些简单易行的办法
化学反应中的能量变化经常表现为热量的变化,有的放热,有的吸热。 1、中和反应都是放热反应。
2、三个反应的化学方程式虽然不同,反应物也不同,但本质是相同的,都是氢离
子与氢氧根离子反应生成水的反应,属于中和反应。由于三个反应中氢离子与氢氧根离子的量都相等,生成水的量也相等,所以放出的热量也相等。
3、中和热:酸与碱发生中和反应生成1mol水所释放的热量称为中和热。
4、要精确地测定反应中的能量变化,一是要注重“量的问题”,二是要最大限度地
减小实验误差。 化学反应的本质是反应物中化学键的断裂和生成物中化学键的形成。化学键是物质内部微粒之间强烈的相互作用,断开反应物中的化学键需要吸收能量,形成生成物中的化学键要放出能量。氢气和氯气反应的本质是在一定的条件下,氢气分子和氯气分子中的H-H键和Cl-Cl键断开,氢原子和氯原子通过形成H-Cl键而结合成HCl分子。1molH2中含有1molH-H键,1mol Cl2中含有1mol Cl-Cl键,在25℃和101kPa的条件下,断开1molH-H键要吸收436kJ的能量,断开1mol Cl-Cl键要吸收242 kJ的能量,而形成1molHCl分子中的H-Cl键会放出431 kJ的能量。这样,由于破坏旧键吸收的能量少于形成新键放出的能量,根据“能量守恒定律”,多余的能量就会以热量的形式释放出来。
[归纳小结]
1、 化学键的断裂和形成是化学反应中能量变化的主要原因。
2、 能量是守恒的。

补充练习
1、下列反应中属吸热反应的是 ( )
A 镁与盐酸反应放出氢气 B 氢氧化钠与盐酸的反应
C 硫在空气或氧气中燃烧 D Ba(OH)2•8H2O与NH4Cl反应
2、下列说法不正确的是 ( )
A 化学反应除了生成新物质外,还伴随着能量的变化
B 放热反应不需要加热即可发生
C 需要加热条件的化学反应都是吸热反应
D 1mol硫酸与足量氢氧化钠发生中和反应生成水所释放的热量称为中和热。
3、 城市使用的燃料,现大多为煤气、液化石油气。煤气的主要成分是CO、H2的混合气体,它由煤炭与水蒸气在高温下反应制得,故又称水煤气。试回答:
(1) 写出制取水煤气的主要化学方程式————————————,该反应是——————反应(填吸热、放热)。
(2) 设液化石油气的主要成分为丙烷(C3H8 ),其充分燃烧后产物为CO2和 H2O,试比较完全燃烧等质量的C3H8及CO所需氧气的质量比。
4、 比较完全燃烧同体积下列气体需要的空气体积的大小:
天然气(以甲烷计)、石油液化气(以丁烷C4H10计)、水煤气(以CO、H2体积比1:1计)
5、 两位同学讨论放热和吸热反应。甲说加热后才能发生的化学反应是吸热反应,乙说
反应中要持续加热才能进行的反应是吸热反应。你认为他们的说法正确吗?为什么?
答案:1.D2.BC3.(1)C+H2O CO+H2 吸热 (2) 70:11 4.石油液化气>天然气>水煤气5.略
第一节 化学能与热能
第2课时
教学目标:
1、能从化学键的角度理解化学反应中能量变化的主要原因,初步学会热化学方程式的书写。
2、能从微观的角度来解释宏观化学现象,进一步发展想象能力。
2、 通过化学能与热能的相互转变,理解“能量守恒定律”,初步建立起科学的能量观,
加深对化学在解决能源问题中重要作用的认识。
重点难点:
1.化学能与热能的内在联系及相互转变。
2.从本质上理解化学反应中能量的变化,从而建立起科学的能量变化观。
[总结]
化学反应伴随能量变化是化学反应的一大特征。我们可以利用化学能与热能及其它
能量的相互转变为人类的生产、生活及科学研究服务。化学在能源的开发、利用及解决
日益严重的全球能源危机中必将起带越来越重要的作用,同学们平时可以通过各种渠道来关心、了解这方面的进展,从而深切体会化学的实用性和创造性。
补充练习:
1、下列说法不正确的是 ( )
A 化学反应除了生成新物质外,还伴随着能量的变化
B 物质燃烧和中和反应均放出热量
C 分解反应肯定是吸热反应
D 化学反应是吸热还是放热决定于生成物具有的总能量和反应物具有的总能量
2、已知金刚石在一定条件下转化为石墨是放热的。据此,以下判断或说法正确的是( )
A 需要加热方能发生的反应一定是吸热反应 B 放热反应在常温下一定很容易发生
C 反应是放热还是吸热,必须看反应物和生成物所具有的总能量的相对大小
D吸热反应在一定条件下也能发生
3、有专家指出,如果将燃烧产物如CO2、H2O、N2等利用太阳能使它们重新组合变成CH4、CH3OH、NH3等的构想能够成为现实,则下列说法中,错误的是 ( )
A 可消除对大气的污染 B可节约燃料
C 可缓解能源危机 D此题中的CH4、CH3OH、NH3等为一级能源
4、已知破坏1mol N≡N键、H-H键和N-H键分别需要吸收的能量为946kJ、436kJ、391kJ。试计算1molN2(g)和3 molH2(g)完全转化为 NH3(g)的反应热的理论值,并写出反应的热化学方程式。

答案:1.C 2.CD 3.B 4. 92KJ N2(g)+3H2(g)=2NH3(g) △H=-92KJ/mol
第二节 化学能与电能
负极 Zn-2e-=Zn2+(氧化反应) Zn+2H+=Zn2++H2↑
正极 2H++2e-=H2↑(还原反应) 电子流向 Zn → Cu 电流流向 Cu→ Zn
组成原电池的条件 原电池:能把化学能转变成电能的装置
①有两种活动性不同的金属(或一种是非金属导体)作电极,活泼的作负极失电子
②活泼的金属与电解质溶液发生氧化还原反应 ③两极相连形成闭合电路
二次电池:可充电的电池 二次能源:经过一次能源加工、转换得到的能源
常见电池 干电池 铅蓄电池 银锌电池 镉镍电池 燃料电池
第三节 化学反应的速率和极限
化学反应速率的概念:用单位时间里反应物浓度的减少或生成物浓度的增加来表示。
单位:mol/(L·s)或mol/(L·min) 表达式 v(B) =△C/△t
同一反应中:用不同的物质所表示的表速率与反应方程式的系数成正比
影响化学反应速率的内因(主要因素):参加反应的物质的化学性质
外因 浓度 压强 温度 催化剂 颗粒大小
变化 大 高 高 加入 越小表面积越大
速率影响 快 快 快 快 快
化学反应的限度:研究可逆反应进行的程度(不能进行到底)
反应所能达到的限度:当可逆反应进行到正反应速率与逆反应速率相等时,反应物与生成物浓度不在改变,达到表面上静止的一种“平衡状态”。
影响化学平衡的条件 浓度、 压强、 温度
化学反应条件的控制
尽可能使燃料充分燃烧提高原料利用率,通常需要考虑两点:
一是燃烧时要有足够的空气;二是燃料与空气要有足够大的接触面
●主干知识整合
1.外界条件对可逆反应速率的影响规律
升温,v(正)、v(逆)一般均加快,吸热反应增加的倍数大于放热反应增加的倍数;降温,v(正)、v(逆)一般均减小,吸热反应减小的倍数大于放热反应减小的倍数。加压对有气体参加的反应,v(正)、v(逆)均增大,气体体积之和大的一侧增加倍数大于气体体积之和小的一侧增加的倍数;降压,v(正)、v(逆)均减小,气体体积之和大的一侧减小的倍数大于气体体积之和小的一侧减小的倍数。增加反应物的浓度,v(正)急剧增大,
v(逆)逐渐增大。加催化剂可同倍地改变v(正)、v(逆)。
思考讨论
对于合成氨反应,N2、H2的消耗速率逐渐减慢而NH3的生成速率是否逐渐加快?
答:N2、H2的消耗与NH3的生成是同一反应方向,只要N2、H2的消耗速率逐渐减慢,NH3的生成速率必然随之减慢。
2.改变条件对化学平衡的影响规律
(1)在相同温度下,对有气体参加的化学反应,压强越大,到达平衡所需的时间
越短。在相同压强下,温度越高,到达平衡所需的时间越短。
(2)平衡向正反应方向移动,生成物的物质的量增加。而生成物的浓度、生成物的质量分数以及反应物的转化率都不一定增加或提高。
(3)加催化剂,只能同倍改变正、逆反应速率,改变到达平衡所需时间,不影响化学平衡。
(4)同一反应中,未达平衡以前,同一段时间间隔内,高温时生成物含量总比低温时生成物含量大(其他条件相同)。高压时生成物的含量总比低压时生成物的含量大(其他条件相同)。
(5)在其他条件不变时,如将已达平衡的反应容器体积缩小到原来的 ,压强将大于原来的压强,但小于或等于原来压强的2倍。
3.反应物用量的改变对平衡转化率的影响规律
若反应物只有一种时,如:aA(g)b B(g)+cC(g),增加A的量,平衡向正反应方向移动,但该反应物A的转化率的变化与气体物质的计量数有关:
(1)若a=b+c A的转化率不变
(2)若a>b+c A的转化率增大
(3)若a<b+c A的转化率减小
若反应物不止一种时,如:aA(g)+bB(g) cC(g)+dD(g)
(1)若只增加A的量,平衡向正反应方向移动,而A的转化率减小,B的转化率增大。
(2)若按原比例同倍数地增加反应物A和B的量,则平衡向正反应方向移动,而反应物转化率与气体反应物计量数有关。如a+b=c+d,A、B的转化率都不变;如a+b<c+d,A、B的转化率都减小;如a+b>c+d,A、B的转化率都增大。
第三章 有机化合物
第一节 最简单的有机化合物—甲烷
氧化反应 CH4(g)+2O2(g) → CO2(g)+2H2O(l)
取代反应 CH4+Cl2(g) → CH3Cl+HCl
烷烃的通式:CnH2n+2 n≤4为气体 、所有1-4个碳内的烃为气体,都难溶于水,比水轻
碳原子数在十以下的,依次用甲、乙、丙、丁、戊、己、庚、辛、壬、癸
同系物:结构相似,在分子组成上相差一个或若干个CH2原子团的物质互称为同系物
同分异构体:具有同分异构现象的化合物互称为同分异构
同素异形体:同种元素形成不同的单质
同位素:相同的质子数不同的中子数的同一类元素的原子
乙烯 C2H4 含不饱和的C=C双键,能使KMnO4溶液和溴的溶液褪色
氧化反应 2C2H4+3O2 →2CO2+2H2O
加成反应 CH2=CH2+Br2 →CH2Br-CH2Br 先断后接,变内接为外接
加聚反应 nCH2=CH2 → [ CH2 - CH2 ]n 高分子化合物,难降解,白色污染
石油化工最重要的基本原料,植物生长调节剂和果实的催熟剂,
乙烯的产量是衡量国家石油化工发展水平的标志
苯是一种无色、有特殊气味的液体,有毒,不溶于水,良好的有机溶剂
苯的结构特点:苯分子中的碳碳键是介于单键和双键之间的一种独特的键
氧化反应 2 C6H6+15 O2→12 CO2+ 6 H2O
取代反应 溴代反应 + Br2 → -Br + H Br
硝化反应 + HNO3 → -NO2 + H2O
加成反应 +3 H2 →

第三节 生活中两种常见的有机物
乙醇物理性质:无色、透明,具有特殊香味的液体,密度小于水沸点低于水,易挥发。
良好的有机溶剂,溶解多种有机物和无机物,与水以任意比互溶,醇官能团为羟基-OH
与金属钠的反应 2CH3CH2OH+Na→ 2CH3CHONa+H2
氧化反应 完全氧化 CH3CH2OH+3O2→ 2CO2+3H2O
不完全氧化 2CH3CH2OH+O2→ 2CH3CHO+2H2O Cu作催化剂
乙酸 CH3COOH 官能团:羧基-COOH 无水乙酸又称冰乙酸或冰醋酸。
弱酸性,比碳酸强 CH3COOH+NaOH→CH3COONa+H2O 2CH3COOH+CaCO3→Ca(CH3COO)2+H2O+CO2↑
酯化反应 醇与酸作用生成酯和水的反应称为酯化反应。原理 酸脱羟基醇脱氢。
CH3COOH+C2H5OH→CH3COOC2H5+H2O
第四节 基本营养物质
糖类:是绿色植物光合作用的产物,是动植物所需能量的重要来源。又叫碳水化合物
单糖 C6H12O6 葡萄糖 多羟基醛 CH2OH-CHOH-CHOH-CHOH-CHOH-CHO
果糖 多羟基酮
双糖 C12H22O11 蔗糖 无醛基 水解生成一分子葡萄糖和一分子果糖:
麦芽糖 有醛基 水解生成两分子葡萄糖
多糖 (C6H10O5)n 淀粉 无醛基 n不同不是同分异构 遇碘变蓝 水解最终产物为葡萄糖
纤维素 无醛基
油脂:比水轻(密度在之间),不溶于水。是产生能量最高的营养物质
植物油 C17H33-较多,不饱和 液态 油脂水解产物为高级脂肪酸和丙三醇(甘油),油脂在碱性条件下的水解反应叫皂化反应
脂肪 C17H35、C15H31较多 固态
蛋白质是由多种氨基酸脱水缩合而成的天然高分子化合物
蛋白质水解产物是氨基酸,人体必需的氨基酸有8种,非必需的氨基酸有12种
蛋白质的性质
盐析:提纯 变性:失去生理活性 显色反应:加浓硝酸显黄色 灼烧:呈焦羽毛味
误服重金属盐:服用含丰富蛋白质的新鲜牛奶或豆浆
主要用途:组成细胞的基础物质、人类营养物质、工业上有广泛应用、酶是特殊蛋白质
第四章 化学与可持续发展
开发利用金属资源
电解法 很活泼的金属 K-Al MgCl2 = Mg + Cl2
热还原法 比较活泼的金属 Zn-Cu Fe2O3+3CO = 2Fe+3CO2
3Fe3O4+8Al = 9Fe+4Al2O3 铝热反应
热分解法 不活泼的金属 Hg-Au 2HgO = Hg + O2
海水资源的开发和利用
海水淡化的方法 蒸馏法 电渗析法 离子交换
制盐 提钾 提溴用氯气 提碘 提取铀和重水、开发海洋药物、利用潮汐能、波浪能
镁盐晶提取 Mg2+----- Mg(OH)2 -------MgCl2
氯碱工业 2NaCl+2H2O = H2↑+2 NaOH + Cl2↑
化学与资源综合利用
煤 由有机物和无机物组成 主要含有碳元素
干馏 煤隔绝空气加强热使它分解 煤焦油 焦炭
液化 C(s)+H2O(g)→ CO(g)+H2(g)
汽化 CO(g)+2H2→ CH3OH
焦炉气 CO、H2、CH4、C2H4 水煤气 CO、H2
天然气 甲烷水合物“可燃冰”水合甲烷晶体(CH4·nH2O)
石油 烷烃、环烷烃和环烷烃所组成 主要含有碳和氢元素
分馏 利用原油中各成分沸点不同,将复杂的混合物分离成较简单更有用的混合物的过程。
裂化 在一定条件下,把分子量大、沸点高的烃断裂为分子量小、沸点低的烃的过程。
环境问题 不合理开发和利用自然资源,工农业和人类生活造成的环境污染
三废 废气、废水、废渣
酸雨: SO2、、NOx、 臭氧层空洞 :氟氯烃 赤潮、水华 :水富营养化N、P
绿色化学是指化学反应和过程以“原子经济性”为基本原则 只有一种产物的反应。
够吗?

6. 高含盐废水处理方法

1、驯化处理:

在盐度小于2g/L条件下,可能通过驯化处理含盐污水。但是驯化盐度浓度必须逐渐提高,分阶段的将系统驯化到要求盐度水平。突然高盐环境会造成驯化的失败和启动的延迟。

2、稀释进水盐度:

既然高盐成为微生物的抑制和毒害剂,那么将进水进行稀释,使盐度低于毒域值,生物处理就不会收到抑制。这种方法简单,易于操作和管理;其缺点就是增加处理规模,增加基建投资,增加运行费用,浪费水资源。

3、蒸发浓缩除盐:

在盐度大于2g/L时,蒸发浓缩除盐是最经济也是最有效的可行办法。其它的方法如培养含盐菌等的方法都存在工业实践难以运行的问题。

4、生物方法:

许多研究表明,生物方法可以处理高含盐废水。但由低盐到高盐,微生物有一个适应期。从淡水环境到高盐环境时,由于盐的变化可能引起微生物代谢途径的改变,菌种选择的结果使适应高盐的菌种较少,只有当微生物经培养驯化后,才能产生适应高盐的菌种,以耐受一定的盐浓度。

(6)丙烷脱氢废水处理扩展阅读:

高含盐废水的生化处理:

高含盐废水生物处理流程的选择高含盐废水生物处理流程与普通生物处理流程基本一样,主要包括调节池、曝气池、二沉池、污泥回流、剩余污泥脱水、投加营养盐等。

(1)调节池。含盐废水调节池考虑的主要因素是废水盐浓度的变化,除生产波动周期、冲击因素外,应重点考虑水中盐浓度的变化和如何进行调整,如低含盐水量的减少或过高含盐来水的冲击。

(2)曝气池。根据废水中含盐类型不同,曝气池选择也应有所不同。生物处理含CaCL2较高的废水,应采用传统曝气方式。钙离子能增加活性污泥的絮体强度,高CaCL2可使污泥中灰分达到40%~50%,污泥密度增加,曝气池中的污泥浓度可在5000mg/L以上。因此,应采用提升力较大的传统曝气、深井曝气、流化床曝气等曝气方法。曝气也应选用气泡较大、提升力较强的散流曝气器等曝气方式。

(3)二沉池。二沉池表面负荷应有一定的余量,主要是考虑废水密度增加,不利于污泥沉淀,尤其是含NaCl废水。处理水量较大时,特别是含CaCL2废水,最好采用周边传动式刮泥机,以适应污泥浓度高、密度大的特点。在采用传统活性污泥法处理高CaCL2废水时,应适当加大污泥回流量,以减少废水波动造成的冲击,提高系统的稳定性。

(4)污泥脱水。由于含CaCL2废水生物处理的剩余污泥含钙盐多,有利于脱水,可不用加絮凝剂。经浓缩后的污泥浓度可大于50g/L。剩余污泥量与普通废水处理的剩余污泥类似,设计参数可参考普通污泥脱水。

热点内容
丁度巴拉斯情人电影推荐 发布:2024-08-19 09:13:07 浏览:886
类似深水的露点电影 发布:2024-08-19 09:10:12 浏览:80
《消失的眼角膜》2电影 发布:2024-08-19 08:34:43 浏览:878
私人影院什么电影好看 发布:2024-08-19 08:33:32 浏览:593
干 B 发布:2024-08-19 08:30:21 浏览:910
夜晚看片网站 发布:2024-08-19 08:20:59 浏览:440
台湾男同电影《越界》 发布:2024-08-19 08:04:35 浏览:290
看电影选座位追女孩 发布:2024-08-19 07:54:42 浏览:975
日本a级爱情 发布:2024-08-19 07:30:38 浏览:832
生活中的玛丽类似电影 发布:2024-08-19 07:26:46 浏览:239