jdk8用G1回收器吗
① java从入门到精通用JDK8.0的可以吗
不建议用8,jdk不是版本越新就越好,还是从基础的来,现在项目中大部分都是1.6,1.7的。
以下摘自网络知道:
如果你是个人兴趣研究,那么jdk7比较适合。如果是想找工作之类的就先选jdk6,然后jdk7。
jdk7相比jdk6增加了一些功能、优化了性能以及简化了语法,比如:
1.更简单的异常处理语句
2.字符串支持switch
3.二进制值定义
4.泛型类型推断
5.多线程中增加了并行分解框架(fork/join),以前看的时候这个还在测试
6.jvm优化、支持非java语言、正式支持G1垃圾收集器
http://..com/question/527542608.html?fr=iks&word=%B0%E6%B1%BE+jdk%CA%C7+%D0%C2%CA%D6&ie=gbk
② java虚拟机常见的几种垃圾收集算法
1、垃圾收集器概述
垃圾收集器是垃圾回收算法(标记-清除算法、复制算法、标记-整理算法、火车算法)的具体实现,不同商家、不同版本的JVM所提供的垃圾收集器可能会有很在差别,本文主要介绍HotSpot虚拟机中的垃圾收集器。
1-1、垃圾收集器组合
JDK7/8后,HotSpot虚拟机所有收集器及组合(连线),如下图:
(A)、图中展示了7种不同分代的收集器:
Serial、ParNew、Parallel Scavenge、Serial Old、Parallel Old、CMS、G1;
(B)、而它们所处区域,则表明其是属于新生代收集器还是老年代收集器:
新生代收集器:Serial、ParNew、Parallel Scavenge;
老年代收集器:Serial Old、Parallel Old、CMS;
整堆收集器:G1;
(C)、两个收集器间有连线,表明它们可以搭配使用:
Serial/Serial Old、Serial/CMS、ParNew/Serial Old、ParNew/CMS、Parallel Scavenge/Serial Old、Parallel Scavenge/Parallel Old、G1;
(D)、其中Serial Old作为CMS出现"Concurrent Mode Failure"失败的后备预案(后面介绍);
1-2、并发垃圾收集和并行垃圾收集的区别
(A)、并行(Parallel)
指多条垃圾收集线程并行工作,但此时用户线程仍然处于等待状态;
如ParNew、Parallel Scavenge、Parallel Old;
(B)、并发(Concurrent)
指用户线程与垃圾收集线程同时执行(但不一定是并行的,可能会交替执行);
用户程序在继续运行,而垃圾收集程序线程运行于另一个CPU上;
如CMS、G1(也有并行);
1-3、Minor GC和Full GC的区别
(A)、Minor GC
又称新生代GC,指发生在新生代的垃圾收集动作;
因为Java对象大多是朝生夕灭,所以Minor GC非常频繁,一般回收速度也比较快;
(B)、Full GC
又称Major GC或老年代GC,指发生在老年代的GC;
出现Full GC经常会伴随至少一次的Minor GC(不是绝对,Parallel Sacvenge收集器就可以选择设置Major GC策略);
Major GC速度一般比Minor GC慢10倍以上;
③ java垃圾是怎么回收的,回收算法
Java ,C#语言与C/C++语言一个很大的区别是java与C#具有自动垃圾回收机制。C++程序员经常需要绞尽脑汁的分析哪里出现了内存泄漏。而在java,C#中,虽然有时也会出现内存泄漏,但大部分情况下程序员不需要考虑对象或者数据何时需要被销毁。因此程序员不会因为错误的释放内存而导致程序崩溃。垃圾回收的缺点是加大了程序的负担,有可能影响程序的性能。
1.垃圾收集器的主要功能有
(1) 定期发现那些对象不再被引用,并把这些对象占据的堆空间释放出来。
(2) 类似于操作系统的内存管理,垃圾收集器还需要处理由于对象动态生成与销毁产生的堆碎块,以便更有效的利用虚拟机内存。
2.区分活动对象与垃圾的算法
(1)引用计数法
堆中每一个对象都有一个引用计数。当新创建一个对象,或者有变量被赋值为这个对象的引用,则这个对象的引用计数加1;当一个对象的引用超过生存期或者被设置一个新的值时,这个对象的引用计数减1。当对象的引用计数变为0时,就可以被当作垃圾收集。
这种方法的好处是垃圾收集较快,适用于实时环境。缺点是这种方法无法监测出循环引用。例如对象A引用对象B,对象B也引用对象A,则这两个对象可能无法被垃圾收集器收集。因此这种方法是垃圾收集的早期策略,现在很少使用。
(2)跟踪法
这种方法把每个对象看作图中一个节点,对象之间的引用关系为图中各节点的邻接关系。垃圾收集器从一个或数个根结点遍历对象图,如果有些对象节点永远无法到达,则这个对象可以被当作垃圾回收。
容易发现,这种方法可以检测出循环引用,避免了引用计数法的缺点,较为常用。
3.常用垃圾回收机制
(1)标记-清除收集器
这种收集器首先遍历对象图并标记可到达的对象,然后扫描堆栈以寻找未标记对象并释放它们的内存。这种收集器一般使用单线程工作并停止其他操作。
(2)标记-压缩收集器
有时也叫标记-清除-压缩收集器,与标记-清除收集器有相同的标记阶段。在第二阶段,则把标记对象复制到堆栈的新域中以便压缩堆栈。这种收集器也停止其他操作。
(3)复制收集器
这种收集器将堆栈分为两个域,常称为半空间。每次仅使用一半的空间,虚拟机生成的新对象则放在另一半空间中。垃圾回收器运行时,它把可到达对象复制到另一半空间,没有被复制的的对象都是不可达对象,可以被回收。这种方法适用于短生存期的对象,持续复制长生存期的对象由于多次拷贝,导致效率降低。缺点是只有一半的虚拟机空间得到使用。
(4)增量收集器
增量收集器把堆栈分为多个域,每次仅从一个域收集垃圾。这会造成较小的应用程序中断。
(5)分代收集器
这种收集器把堆栈分为两个或多个域,用以存放不同寿命的对象。虚拟机生成的新对象一般放在其中的某个域中。过一段时间,继续存在的对象将获得使用期并转入更长寿命的域中。分代收集器对不同的域使用不同的算法以优化性能。这样可以减少复制对象的时间。
(6)并发收集器
并发收集器与应用程序同时运行。这些收集器在某点上(比如压缩时)一般都不得不停止其他操作以完成特定的任务,但是因为其他应用程序可进行其他的后台操作,所以中断其他处理的实际时间大大降低。
(7)并行收集器
并行收集器使用某种传统的算法并使用多线程并行的执行它们的工作。在多CPU机器上使用多线程技术可以显著的提高java应用程序的可扩展性。
(8)自适应收集器
根据程序运行状况以及堆的使用状况,自动选一种合适的垃圾回收算法。这样可以不局限与一种垃圾回收算法。
4. 火车算法
垃圾收集算法一个很大的缺点就是难以控制垃圾回收所占用的CPU时间,以及何时需要进行垃圾回收。火车算法是分代收集器所用的算法,目的是在成熟对象空间中提供限定时间的渐进收集。目前应用于SUN公司的Hotspot虚拟机上。
在火车算法中,内存被分为块,多个块组成一个集合。为了形象化,一节车厢代表一个块,一列火车代表一个集合,见图一
注意每个车厢大小相等,但每个火车包含的车厢数不一定相等。垃圾收集以车厢为单位,收集顺序依次为1.1,1.2,1.3,1.4,2.1,2.2,2.3,3.1,3.2,3.3。这个顺序也是块被创建的先后顺序。
垃圾收集器先从块1.1开始扫描直到1.4,如果火车1四个块中的所有对象没有被火车2和火车3的对象引用,而只有火车1内部的对象相互引用,则整个火车1都是垃圾,可以被回收。
如图二,车厢1.1中有对象A和对象B,1.3中有对象C,1.4中有对象D,车厢2.2中有对象E,车厢3.3中有对象F。在火车1中,对象C引用对象A,对象B引用对象D,可见,火车2和火车3没有引用火车1的对象,则整个火车1都是垃圾。
如果火车1中有对象被其它火车引用,见图三,扫描车厢1.1时发现对象A被火车2中的E引用,则将对象A从车厢1.1转移到车厢2.2,然后扫描A引用的对象D,把D也转移到车厢2.2,然后扫描D,看D是否引用其它对象,如果引用了其它对象则也要转移,依次类推。扫描完火车1的所有对象后,剩下的没有转移的对象都是垃圾,可以把整个火车1都作为垃圾回收。注意如果在转移时,如果车厢2.2空间满了,则要在火车2末尾开辟新的车厢2.4,将新转移的对象都放到2.4,即火车的尾部)
补充说明:垃圾回收器一次只扫描一个车厢。图三中的对象B与C并不是立即被回收,而是先会被转移到火车1的尾部车厢。即扫描完1.1后,B被转移到火车1尾部,扫描完1.3后,C被转移到车尾。等垃圾收集器扫描到火车1尾部时,如果仍然没有外部对象引用它们,则B和C会被收集。
火车算法最大的好处是它可以保证大的循环结构可以被完全收集,因为成为垃圾的循环结构中的对象,无论多大,都会被移入同一列火车,最终一起被收集。还有一个好处是这种算法在大多数情况下可以保证一次垃圾收集所耗时间在一定限度之内,因为一次垃圾回收只收集一个车厢,而车厢的大小是有限度的。
④ jdk1.6默认使用哪一种垃圾回收算法和策略
using parallel threads in the new generation.
using thread-local object allocation.
Concurrent Mark-Sweep GC
Heap Configuration:
MinHeapFreeRatio = 40
MaxHeapFreeRatio = 70
...
根据这里提到的Conc Mark&Sweep,再查表,可以知道新生代使用的是ParNew GC,老生代使用的是ConcurrentMarkSweep GC。
事实上从表中可以得知新生代和老生代的组合其实是固定的那么几种,而且是双射的,所以只要知道其中一种就能查表得出另外一种。
⑤ 生产中 java 垃圾回收为什么不用g1
垃圾回收是Java语言的一大特性,方便了编程,是以消耗性能为代价的,Java语言对内存的分配管理是通过JVM内部机制决定的。
Java虚拟机中有个称之为垃圾回收器的东西,实际上这个东西也许真正不存在,或者是已经集成到JVM中了,但这无关紧要,仍然可以称为为垃圾回收器。
垃圾回收器的作用是查找和回收(清理)无用的对象。以便让JVM更有效的使用内存。
垃圾回收器的运行时间是不确定的,由JVM决定,在运行时是间歇执行的。虽然可以通过System.gc()来强制回收垃圾,但是这个命令下达后无法保证JVM会立即响应执行,但经验表明,下达命令后,会在短期内执行你的请求。JVM通常会感到内存紧缺时候去执行垃圾回收操作。
垃圾回收过于频繁会导致性能下降,过于稀疏会导致内存紧缺。这个JVM会将其控制到最好,不用程序员担心。但有些程序在短期会吃掉大量内存,而这些恐怖的对象很快使用结束了,这时候也许有必要强制下达一条垃圾回命令,这是很有必要的,以便有更多可用的物理内存。
垃圾回收器仅仅能做的是尽可能保证可用内存的使用效率,让可用内存得到高效的管理。程序员可以影响垃圾回收的执行,但不能控制。
总之,在Java语言中,判断一块内存空间是否符合垃圾收集器收集标准的标准只有两个:
1.给对象赋予了空值null,以下再没有调用过。
2.给对象赋予了新值,既重新分配了内存空间。
⑥ JAVA垃圾回收器如何工作
java回收器有gc
以下是工作原理:
强引用(StrongReference)
这个就不多说,我们写代码天天在用的就是强引用。如果一个对象被被人拥有强引用,那么垃圾回收器绝不会回收它。当内存空间不足,Java 虚拟机宁愿抛出 OutOfMemoryError 错误,使程序异常终止,也不会靠随意回收具有强引用的对象来解决内存不足问题。
Java 的对象是位于 heap 中的,heap 中对象有强可及对象、软可及对象、弱可及对象、虚可及对象和不可到达对象。应用的强弱顺序是强、软、弱、和虚。对于对象是属于哪种可及的对象,由他的最强的引用决定。如下
代码:
String abc=newString("abc");//1
SoftReference<String> softRef=newSoftReference<String>(abc);//2
WeakReference<String> weakRef =newWeakReference<String>(abc);//3
abc=null;//4
softRef.clear();//5
第一行在 heap 堆中创建内容为“abc”的对象,并建立 abc 到该对象的强引用,该对象是强可及的。
第二行和第三行分别建立对 heap 中对象的软引用和弱引用,此时 heap 中的 abc 对象已经有 3 个引用,显然此时 abc 对象仍是强可及的。
第四行之后 heap 中对象不再是强可及的,变成软可及的。
第五行执行之后变成弱可及的。
软引用(SoftReference)
如果一个对象只具有软引用,那么如果内存空间足够,垃圾回收器就不会回收它,如果内存空间不足了,就会回收这些对象的内存。只要垃圾回收器没有回收它,该对象就可以被程序使用。软引用可用来实现内存敏感的高速缓存。
软引用可以和一个引用队列(ReferenceQueue)联合使用,如果软引用所引用的对象被垃圾回收,Java 虚拟机就会把这个软引用加入到与之关联的引用队列中。
软引用是主要用于内存敏感的高速缓存。在 jvm 报告内存不足之前会清除所有的软引用,这样以来 gc 就有可能收集软可及的对象,可能解决内存吃紧问题,避免内存溢出。什么时候会被收集取决于 gc 的算法和 gc 运行时可用内存的大小。当 gc 决定要收集软引用时执行以下过程,以上面的 softRef 为例:
1 首先将 softRef 的 referent(abc)设置为 null,不再引用 heap 中的 new String("abc")对象。
2 将 heap 中的 new String("abc")对象设置为可结束的(finalizable)。
3 当 heap 中的 new String("abc")对象的 finalize()方法被运行而且该对象占用的内存被释放, softRef
被添加到它的 ReferenceQueue(如果有的话)中。
注意:对 ReferenceQueue 软引用和弱引用可以有可无,但是虚引用必须有。
被 Soft Reference 指到的对象,即使没有任何 Direct Reference,也不会被清除。一直要到 JVM 内存
不足且没有 Direct Reference 时才会清除,SoftReference 是用来设计 object-cache 之用的。如此一来
SoftReference 不但可以把对象 cache 起来,也不会造成内存不足的错误 (OutOfMemoryError)。
弱引用(WeakReference)
如果一个对象只具有弱引用, 那该类就是可有可无的对象, 因为只要该对象被 gc 扫描到了随时都会把它干掉。弱引用与软引用的区别在于:只具有弱引用的对象拥有更短暂的生命周期。在垃圾回收器线程扫描它所管辖的内存区域的过程中,一旦发现了只具有弱引用的对象,不管当前内存空间足够与否,都会回收它的内存。不过,由于垃圾回收器是一个优先级很低的线程, 因此不一定会很快发现那些只具有弱引用的对象。弱引用可以和一个引用队列(ReferenceQueue)联合使用,如果弱引用所引用的对象被垃圾回收,Java 虚拟机就会把这个弱引用加入到与之关联的引用队列中。
虚引用(PhantomReference)
"虚引用"顾名思义,就是形同虚设,与其他几种引用都不同,虚引用并不会决定对象的生命周期。如果一个
对象仅持有虚引用,那么它就和没有任何引用一样,在任何时候都可能被垃圾回收。虚引用主要用来跟踪对象被
垃圾回收的活动。
虚引用与软引用和弱引用的一个区别在于:虚引用必须和引用队列(ReferenceQueue)联合使用。当垃圾回收器准备回收一个对象时,如果发现它还有虚引用,就会在回收对象的内存之前,把这个虚引用加入到与之关联的引用队列中。程序可以通过判断引用队列中是否已经加入了虚引用,来了解被引用的对象是否将要被垃圾回收。程序如果发现某个虚引用已经被加入到引用队列,那么就可以在所引用的对象的内存被回收之前采取必要的行动。
建立虚引用之后通过 get 方法返回结果始终为 null,通过源代码你会发现,虚引用通向会把引用的对象写进
referent,只是 get 方法返回结果为 null。先看一下和 gc 交互的过程再说一下他的作用。
1 不把 referent 设置为 null, 直接把 heap 中的 new String("abc")对象设置为可结束的(finalizable)。
2 与软引用和弱引用不同, 先把 PhantomRefrence 对象添加到它的 ReferenceQueue 中.然后在释放虚可及的对象。
⑦ java垃圾回收器什么时候开始回收,等到内存满了,把没用的对象回收呢,还是自动回收呢
垃圾回收机制相当于守护进程。
⑧ jdk8中,GC用到的的算法有哪些
其实垃圾回收算法就是分代回收,复制算法和标记整理和标记清除,java8一样
⑨ Oracle JDK从8以后将会实行收费,那么你还知道哪些JDK的产品可以作为替代产品
1、jdk有很多版本的,例如还有Microsoft的jdk,还有radhat的jdk ,直接搜索就可以找到对应链接。
⑩ 如何查看jvm当前使用的是什么垃圾回收器
windows: java -XX:+PrintFlagsFinal -version |FINDSTR /i ":"
Linux:java -XX:+PrintFlagsFinal -version | grep :