冷却水回用标准
Ⅰ 关于珍惜水源的资料
最佳答案
最佳答案建设节约型社会”是我们珍惜、节约资源时喊的一个口号。可是,又该怎样才能真正做到节约资源呢?为什么要大力推荐节约呢?下面请听听我的心声吧!
先说水资源。我国水资源总量为2.8万亿立平方米左右,居世界第六位,人均占水量为2100多立方米,只占世界人均水平的四分之一,属于缺水国家,全国600多座城市中就有400多座缺水。特别是西部地区缺水非常严重,一些山区地方连人、畜饮水都非常困难。
我国的用水面临着严峻的问题,所以我们要珍惜水资源,节约用水。比如:用完水后,要拧紧水龙头,以免造成“一江清水向东流”的浪费现象,如果发现水龙头坏了,要及时修理,避免损失大量的水,大家也别小看废弃的电池,因为一粒纽扣电池会污染600吨的水,如果你把它扔到水里,水将无法饮用。我们应该把电池收集起来,送往回收站,这样既可以避免污染水源,又使电池得到回收,一举两得。大家不能只是口头说说而已,要行动起来呀!
不仅仅要节约用水,还要节省森林资源。我国森林资源总量不足,森林覆盖率只有18.21%,相当于世界森林平均覆盖率的61.52%;全国人均森林面积和人均森林蓄积分别不到世界人均水平的四分之一和六分之一。森林质量不高,平均每公顷蓄积量只有84.73立方米,相当于世界平均水平的84.86%。
这就是森林资源向我们发出的警报!我们要节约利用森林资源,首先,不能乱扔稿纸,也不拿没写过的纸张折飞机之类的小工艺品,更不要乱砍乱伐,任意践踏花草树木,要植树造林,爱护花草树木;不使用一次性的东西,如纸杯、木块等等。在学校,我们要建立“绿色银行”,捡起以前丢弃的纸屑、小手帕等。外出就餐时,自带勺子、筷子。同学们,我们一起行动起来,节约利用我们有限的森林资源。
我们生活中到处都离不开电。电,给我们带来各种便利,但是我们要节约用电,因为电几乎是由烧标准煤产生的,而在我国储藏的煤只够开采100年了!大家想想,100年以后,我们的子孙后代该怎么办呢?所以,我们要节约用电。首先,从自我做起,我牢记“人来灯开,人走灯灭”,盛夏时节,开空调时,不要把温度调得太低,适合就可以了。平时的照明灯,尽可能用节能灯,因为普通灯泡把大量的电能转化为了热量,只有小数转为光线,而节能灯把电能几乎转化为了光明。
Ⅱ 回用水用作工业循环冷却水时可能会产生哪些危害
微电解循环冷却系统水温较高经凉水塔降温时相当于为水充氧室外设置的凉水塔和循环水池受到阳光照射后为滋生藻类创造了条件。城市污水或工业废水经过深度处理后仍含有少量的无机、有机污染物和微生物为循环冷却系统异养菌的繁殖提供了养分和菌种。回用水用作工业循环冷却水时可能会产生的危害主要有以下几个方面 ⑴生物粘泥经过深度处理后的城市污水或工业废水必然含有少量活性污泥碎片及碳、氮、磷等微生物营养成分。因此细菌和藻类的繁殖使生物粘泥指标不合格是循环冷却水系统最突出的一个问题需要定期或连续投加杀菌剂予以杀灭有时还需要定期更换杀菌剂。 ⑵氨氮回用水中往往含有一定数量的氨氮而氨氮对铜具有很大的腐蚀性因此如果换热器为铜质材料就有可能带来严重的腐蚀问题。同时氨氮的存在会增加杀菌处理时的氯用量有时需要通过凉水塔吹脱或硝化除氨。 ⑶无机盐回用水中含有比自来水更多的无机盐种类如钙、镁、硫酸盐、磷酸盐、氯化物、硫酸盐等可以带来比使用自来水时更多的腐蚀和结垢问题比如氯化物可以对不锈钢产生应力腐蚀。因此 使用回用水的过程中需要投加更多或更高级的缓蚀剂和阻垢剂不仅增加成本而且为工业生产的正常进行带来了隐患。 ⑷泡沫人们日常生活和某些工业生产中使用的大量洗涤剂类物品中含有各类难以生物降解的表面活性剂 回用水可以将这些物质带到循环冷却水系统由于凉水塔对水流的剧烈搅动或风机的抽吸作用可以在凉水塔或循环水池中产生大量的泡沫。 ⑸对健康的影响尽管致病微生物可以被换热过程产生的中温、定期或连续投加的杀菌剂和阳光所杀但由于污水生物处理过程中微生物微电解的多样性可以带到循环冷却水中从凉水塔释放出来的水雾中仍然有可能含有某种病原微生物从而引起疾病的传播。 你可能感兴趣的: 《污水综合排放标准》的主要内容是什么
Ⅲ 中水达标后回用做冷却水后能不能直接排放
达到饮用标准是不可能的,成本太高
一般来说,达到一级A标准即可作为中水回用,比如回用为冷却水,灌溉水等,当然,如一些有重金属类的工业废水例外
Ⅳ 雨水回用成空调冷却水的一般处理过程是
这就是是中水回用工艺拉。
一般流程如下:
雨水——格栅——雨水弃流装置—回—初沉——砂滤—答—碳滤——消毒——水箱
初沉可以采用絮凝剂PAC+斜管沉淀
消毒可以采用二氧化氯发生器、紫外线消毒器
过滤可以也采用一体化净水器,如果雨水比较干净也可以直接采用精密过滤器、袋式过滤器
PH值和硬度也要检测下,超过循化水标准也要处理。
Ⅳ 中水回用处理流程中,用到的板式换热器,起到什么作用呀
板式换热器的广泛应用
一 民用
1:集中供热
板式换热器应其结构紧凑,操作维护简便,传热效率高等特点,已成为城市集中供热工程中换热站的首选换热产品,适用于水-水换热系统,汽-水换热系统及生活热水供应系统,对合理分配热能,提高热管理水平起到重要作用。
2:空调系统
板式换热器广泛用于空调系统中冷冻水的换热,在冷却塔与冷凝器之间靠近冷凝器处安装板式换热器可以起到冷凝器的作用,防止设备腐蚀或堵塞,并可在过渡季节节省冷水机组的运行时间。
3:高层建筑的压力阻断器
在高层建筑中,以水,乙二醇等为换热介质的暖通空调系统常会具有极高的静压力,采用板式换热器做为压力阻断器,可将较高的静压分解为几部分较小的压力,从而降低系统对泵,阀,冷热水机组等设备的压力要求,节约设备的投资费用及运营成本。
4:冰蓄冷系统
采用板式换热器的冰蓄系统对电网起到削峰填谷的调节作用。即利用冷水机组在夜间制冷,在蓄冰罐里蓄冰,满足次日的冷量需求,降低空调的负荷峰值,从而有效地节约能源,节省运行费用。
5:废热回收
在各个领域内,每天均有大量的热量随着废弃的热介质(如排放的生活热水,洗浴热水,工艺冷却水等)而排放入周围大气环境中,造成了能源的巨大浪费,由于板式换热器的投资成本低,热效率高,对冷热介质的温差要求极低,可将废热回收转换为二次可利用热能,并将其用于预热工况中。具有良好的社会效益和经济效益。
二 工业
机械工程 电站 钢铁工业 废热回收
机器冷却 循环水冷却 铁模冷却 洗染废液回收
乳液冷却 冲洗冷却剂冷却 连铸机冷却 食品加工废油排液
液压油冷却 润滑油冷却 液压油冷却 纸浆清洗排液
润磨油冷却 发电机转子与定子水冷却 炉水冷却 蒸汽冷凝水回收
窑炉水冷却 变压油冷却 焦化厂水冷却
传动油冷却 电缆油冷却 乳液冷却
蒸压器冷却 氨浴液冷却
发动机冷却 淬火油冷却
辊水冷却 压缩机冷却剂冷却
循环水冷却
活塞和涡轮机 表面处理 纺织工业 造纸工业
发动机冷却 电解液冷却 纺织清洗剂热量回收 废水冷却
柴油发电机站热量回收 油漆冷却 毛料清洗液加热 清洗水冷却
气轮机冷却 电镀液冷却 染料厂废液加热 废水蒸发
压缩机冷却 除油液加热 水溶液冷却
磷化液加热 纺织机润滑油冷却
化纤工艺冷却
食品及饮料 食品油加工 医药卫生 化学工业 油脂化工
原果汁加热 食用油加热及冷却 乳液冷却 碱液冷却 石蜡冷却
果酱加热 脂肪酸冷却 悬浮液加热 酸液冷却 肥皂液冷却
萃取水加热 玉米油冷却 血浆加热 氯溶液冷却 矿物油冷却
碳酸气果汁加热 椰子油冷却 柠檬酸加热 盐水预热 内脂溶液冷却
糖浆加热 花生油冷却 输液冷却 碳酸钾溶液冷却 洗发膏冷却
果汁加热 棉花籽油冷却 硼酸液加热 制漆工艺冷却
木瓜醇加热及冷却 棕榈油冷却 抗菌素液加热
各种酒类加热及冷却 淀粉液加热
船用和发动机 离岸和近海 汽车工业
中央冷却 中央冷却 淬火油冷却
润滑油冷却 润滑油冷却 油漆冷却
活塞冷却剂冷却 过程冷却 磷酸盐处理液冷却
传动油冷却
重燃料油预热
柴油预热
海水升温
1 传热 :
传热,即热量的传递,是自然界中普遍存在的物理现象。凡是有温度差存在的物
系之间,就会导致热量从高温处向低温处的传递的传热过程。
解决传热问题,都需要从总的传热速率方程出发,即:
Q--冷流体吸收或热流体放出的热流量,W;
K--传热系数,
A--传热面积,;
--平均传热温差,℃。
传热的基本方式
根据热量传递机理的不同,传热基本方式有三种,即热传导、对流和辐射。
·热传导:
热传导又称导热。是指热量从物体的高温部分向同一物体的低温部分、或者从一个高温物体向一个与它直接接触的低温物体传热的过程。
·对流传热:
对流传热是依靠流体的宏观位移,将热量由一处带到另一处的传递现象。在化工生产中的对流传热,往往是指流体与固体壁面直接接触时的热量传递。
·辐射传热:
又称为热辐射,是指因热的原因而产生的电磁波在空间的传递。物体将热能变为辐射能,以电磁波的形式在空中传播,当遇到另一物体时,又被全部或部分地吸收而变为热能。
作为换热设备,我们主要关心的热传导和对流传热。
对流传热大多是指流体与固体壁面之间的传热,其传热速率与流体性质及边界层的状况密切相关。如图在靠近壁面处引起温度的变化形成温度边界层。温度差主要集中在层流底层中。假设流体与壁面的温度差全部集中在厚度为δ1'的有效膜内,该膜既不是热边界层,也非流动边界层,而是一集中了全部传热温差并以导热方式传热的虚拟膜。对流传热速率方程可用牛顿冷却定律来描述,该定律是一个实验定律:
2 对流传热:
对流传热大多是指流体与固体壁面之间的传热,其传热速率与流体性质及边界层的状况密切相关。如图在靠近壁面处引起温度的变化形成温度边界层。温度差主要集中在层流底层中。假设流体与壁面的温度差全部集中在厚度为δ1'的有效膜内,该膜既不是热边界层,也非流动边界层,而是一集中了全部传热温差并以导热方式传热的虚拟膜。对流传热速率方程可用牛顿冷却定律来描述,该定律是一个实验定律:
对两侧流体,均可使用牛顿冷却定律,即:
Q=αAΔt
式中:Q----对流传热的热流量,W;
A----对流传热面积,m2;
Δt----壁面温度与壁面法向上流体的平均温度之差,K;
α----比例系数,称为表面传热系数,W/(m².K)
对流传热过程的计算,归结为如何获取。一般由实验 测定,采用科学的试验方法。
3 特征数:
对流传热的分类:
无相变化传热: 强制对流、自然对流
有相变传热: 蒸汽冷凝、液体沸腾
无相变化时对流传热过程的因次分析
利用因次分析的方法可获得描述对流传热的几个重要的特征数:
(努塞尔数)
(雷诺数)
(普朗特数
Ⅵ 达标污水回用到循环冷却补充水的处理工艺
个人觉得这个出水水质可以直接进RO膜,淡水进行回用不需要稀释,RO膜产生的浓水需要考虑如何处回置,如答能排放至市政污水处理厂,那最好,如不能,需要再进行委外处理或者蒸发处理。绿化用水有限定总溶解固体含量的指标,所以浓水是无法进行绿化的。
Ⅶ 一级A出水需要再经怎样的处理才能回用于电厂做循环冷却用水
电厂的锅炉补给水属于给水的范畴了,你那一级A是排放标准,不是一个层面的,差远了。后面起码还得预处理一下,然后过沙滤碳滤(或者UF),然后RO,脱气,这才敢进锅炉呢
Ⅷ 地球年龄怎么测
地球究竟高寿几何呢? 中国古人推测:“自开辟至于获麟(指公元前481年),凡三百二十六万七千年”。 17世纪西方国家的一个神甫宜称,地球是上帝在公元前4004年创造的。如此等等说法,纯属臆想,毫无科学根据。 最早尝试用科学方法探究地球年龄的是英国物理学家哈雷。他提出,研究大洋盐度的起源,可能提供解决地球年龄问题的依据。1854年,德国伟大的科学家赫尔姆霍茨根据他对太阳能量的估算,认为地球的年龄不超过2500万年。1862年,英国著名物理学家汤姆生说,地球从早期炽热状态中冷却到如今的状态,需要2000万至4000万年。这些数字远远小于地球的实际年龄,但作为早斯尝试还是有益的。 到了20世纪,科学家发明了同位素地质测定法,这是测定地球年龄的最佳方法,是计算地球历史的标准时钟.根据这种办法,科学家找到的最古老的岩石,有38亿岁。然而,最古老岩石并不是地球出世时留下来的最早证据,不能代表地球的整个历史。这是因为,婴儿时代的地球是一个炽热的熔融球体,最古老岩石是地球冷却下来形成坚硬的地壳后保存下来的。 本世纪60年代末,科学家测定取自月球表面的岩石标本,发现月球的年龄在44至46亿年之间。于是,根据目前最流行的太阳系起源的星云说,太阳系的天体是在差不多时间内凝结而成的观点,便可以认为地球是在46亿年前形成的。然而,这是依靠间接证据推测出来的。事实上,至今人们还没有在地球自身上发现确凿的“档案”,来证明地球活了46亿年。