单组份硅溶胶树脂生产
㈠ 事起无机涂料采用了,环保硅溶胶,矿物粉料,制造成功,
成分不同:乳胶漆成分是以有机物为主,无机涂料是以无机物为主。来源不同:乳胶漆来源于树脂,而无机涂料来源于石英质矿石。无机涂料:无机涂料是一种以无机材料为主要成膜物质的涂料。是全无机矿物涂料的简称,广泛用于建筑、绘画等日常生活领域。在建筑工程中常用的涂料是碱金属硅酸盐水溶液和胶体二氧化硅的水分散液。 用以上两种成膜物,可制成硅酸盐和硅溶胶(胶体二氧化硅)无机涂料,再加入颜料、填料以及各种助剂,可制成硅酸盐和硅溶胶(胶体二氧化硅)无机涂料,具有良好的耐水、耐碱、耐污染、耐气性能。 无机涂料是由无机聚合物和经过分散活化的金属、金属氧化物纳米材料、稀土超微粉体组成的无机聚合物涂料,能与钢结构表面铁原子快速反应,生成具有物理、化学双重保护作用,通过化学键与基体牢固结合的无机聚合物防腐涂层,对环境无污染,使用寿命长,防腐性能达到国际先进水平,是符合环保要求的高科技换代产品。乳胶漆:乳胶漆是乳胶涂料的俗称,诞生于二十世纪七十年代中下期,是以丙烯酸酯共聚乳液为代表的一大类合成树脂乳液涂料。乳胶漆是水分散性涂料,它 是以合成树脂乳液为基料,填料经过研磨分散后加入各种助剂精制而成的涂料。乳胶漆具备了与传统墙面涂料不同的众多优点,如易于涂刷、干燥迅速、漆膜耐水、耐擦洗性好等。在我国,人们习惯上把合成树脂乳液为基料,以水为分散介质,加入颜料、填料(亦称体质颜料)和助剂,经一定工艺过程制成的涂料,叫做乳胶漆,也叫乳胶涂料。
㈡ 硅溶胶生产和使用有哪些注意事项
硅溶胶主要用于有机,无机化工,医药,农药,印染,冶金,还原剂,催化剂等行业。
硅溶胶可以用作在氢化钠,硅钡白,甲醛化次硫酸钠脱水,还原剂,染料中间体等制作,其用于很多,具有较粗的颗粒大小比硅溶胶上的涂层是用于与具有平均颗粒尺寸10-12?米。
硅的防腐蚀保护涂层的制备。由钢构成的抗腐蚀金属硅具有热镀,电镀,热喷涂,富硅涂料,粉末涂料等的主要用途和涂料的方法,其中,热浸是领先的方法。富硅漆和电镀主要用于大型结构,如大型户外钢结构(包括海洋工程,桥梁,管道,高速公路护栏等),船舶,集装箱和其他涂料。根据不同的成膜粘合剂,富硅涂料可分为有机富硅漆和无机富硅涂料。有机富硅涂料通常使用环氧酯,环氧树脂,氯化橡胶,乙烯类和聚氨基甲酸乙酯树脂作为成膜粘合剂。硅溶胶的含量高达85百分比-92百分比的干燥膜。无机富硅涂料通常使用含水的硅酸锂,水性硅酸钾,原硅酸乙酯或水泥浆料作为粘合剂,其中,所述硅溶胶含量占92百分比的干燥膜。硅溶胶,它是用在涂料包括2-3-10米和5-7-10米的平均粒度。其粉末是在窄的粒径分布,并具有良好的分散性。
硅金属粉主要用于生产螺钉,铁钉,铁丝,紧固件和其他机械镀硅。我公司生产的精炼硅溶胶生产机械镀的硅,其中,从300目到1500目和主要规格的气流速度多级粒度范围的有5#,6#,8#和10#,其中为适合不同层次的技术标准机械镀的硅生产的,具有光滑的包覆层。此外,特殊的硅溶胶,符合我公司生产的扩散涂层技术的要求具有粒度均匀,且不易使用时氧化。
硅溶胶可在纯化溶液中使用,更换和回收金属等,例如,它可以在 金,银白色和有色使用
㈢ 水溶性丙烯酸树脂中加入酸性硅溶胶还是碱性硅溶胶好
要看下PH值是呈碱性还是酸性的,这个好像是弱碱性的吧 那就比较适合用碱性硅溶胶了,酸性的硅溶胶不稳定加入后与碱性的丙烯酸树脂很容易产生沉淀物的。
㈣ 生产硅溶胶用那种离子交换树脂型号
用离复子交换法生产硅溶胶是制美国的NALCO公司在上世纪40年代开发,后由美国杜邦公司等在五,六十年代完善,目前为最成熟也是最为广泛使用的工艺。我公司生产的C151和A451树脂是生产硅溶胶的离子交换树脂,此工艺生产的硅溶胶除了被大量使用在铸造等行业,且能在制备精密抛光,催化剂等许多要求更高的领域中使用。
㈤ 硅溶胶的制备工艺
制备硅溶胶的工艺有:离子交换树脂处理硅酸钠稀溶液的方法;用硫酸中和水玻璃稀溶液的方法;水解硅酸酯的方法等等。其基本原理都是去掉易溶于水的钠离子。举例如下: a 离子交换树脂。阳离子交换树脂采用强酸性苯乙烯阳离子交换树脂;阴离子交换树指采用弱碱性苯乙烯系阴离子交换树脂。
b 生产工艺
将模数为3.5的硅酸钠溶液用水稀调整至含SiO24%,Na201.15%;将液通过填装阳离子交换树脂的闪换柱,得含SIO23.6%,NA200.005%,SiO2/Na2O摩尔比703,PH值2.5的硅酸胶稀液。
离子交换是一个平衡反应,反应的过程是:当把含有Na+的硅酸溶液通过交换树指时Na+取代了阳离子交换树脂上的H+。
于是水玻璃中的Na+已被除去,H+阳离子与硅离子与硅酸钠中的SiO3生成具有活性的硅溶胶稀溶液流出。
硅溶胶的离子交换质量与下列因素有关:
树脂再生的程度、平衡性质、树脂的高度、流入深度、离子大小等。
把通过阳离子交换柱的硅溶胶稀深再通过弱碱性阴离子树脂交换柱,去除液体中的阴离子CL-,以达到更加稳定的状态。以交换柱流出来的稀硅深胶浓渡很低,需进行浓缩,为了防止浓缩时胶凝,浓缩前必须迅速加入稳定剂。稳定剂常的为MOH(M为L,Na,K,Rb,Cs,NH4.NH2等)稳定剂的用量应该恰当,若小于SiO2摩尔数的1%则难于起到稳定作用;若超过5%则将降低制品的纯度。取5kg上述硅溶胶用10%NAOH溶液调PH值至78。取900g调整液注信减压器中进行真这减压浓缩。并以保持容器内液面恒定为原则,徐徐加入剩余的4100g调整液。浓缩温度保持78℃,最后制得900g含SiO220%,Na200.33%PH为9.6的硅溶胶,其平均粒径约16mum。
离子交换树脂进行离子交换后,已失去交换能力。需用盐酸稀液洗涤,用HCL中的H9+取代树脂上的Na+。而使离子交换树脂的活性基团氧化,使树脂再生,恢复交换能力。再生后和离子交换树指必须用蒸馏水冲洗至规定的PH值为止,备下次使用。
硅溶胶的技术性能:
SiO2含量地20%30%(以H2SiO3计含量>26%)水分70%80%比重1.141.21Na2O含量0。4%0.5%粘度(涂4)10.9S可存期一年 用酸中和水玻璃时首先选取含有-(CH2)nCH3.R-CH2-R及含亲水基的物质,经过化学反应制得一种产物A,用此产物A 再与钠水玻璃及H2SO4进行反应,最后制提改性水玻璃B。此产物溶于水中的稳定期不少于三个月,失水成膜后,遇水不再溶解。
㈥ 硅溶胶怎样制成的
制备硅溶胶的工艺有:离子交换树脂处理硅酸钠稀溶液的方法;用硫专酸中和水玻璃稀溶液属的方法;水解硅酸酯的方法等等。其基本原理都是去掉易溶于水的钠离子。举例如下:
离子交换法
a 离子交换树脂。阳离子交换树脂采用强酸性苯乙烯阳离子交换树脂;阴离子交换树指采用弱碱性苯乙烯系阴离子交换树脂。
b 生产工艺 将模数为3.5的硅酸钠溶液用水稀调整至含SiO24%,Na201.15%;将液通过填装阳离子交换树脂的闪换柱,得含SIO23.6%,NA200.005%,SiO2/Na2O摩尔比703,PH值2.5的硅酸胶稀液。
离子交换是一个平衡反应,反应的过程是:当把含有Na+的硅酸溶液通过交换树指时Ma+取代了阳离子交换树脂上的H+。 于是水玻璃中的NAa+已被除去,H+阳离子与硅离子与硅酸钠中的SiO3生成具有活性的硅溶胶稀溶液流出。
㈦ 树脂加入硅溶胶热固后影响韧性吗
增韧剂(toughener)是指能增加胶黏剂膜层柔韧性的物质。某些热固性树脂胶黏剂,如环氧树脂、酚醛树脂和不饱和聚酯树脂胶黏剂固化后伸长率低,脆性较大,当粘接部位承受外力时很容易产生裂纹,并迅速扩展,导致胶层开裂,不耐疲劳,不能作为结构粘接之用。 因此,必须设法降低脆性,增大韧性,提高承载强度。凡能减低脆性,增加韧性,而又不影响胶黏剂其他主要性能的物质称为增韧剂。增韧剂二般都含有活性基团,能与树脂发生化学反应,固化后不完全相容,有时还要分相,会获得较理想的增韧效果,使热变形温度不变或下降甚微,而抗冲击性能又明显改善。一些低分子液体或称之为增塑剂之物加入树脂之中,虽然也能降低脆性,但刚性、强度、热变形温度却大幅度下降,不能满足结构粘接要求,因此,增塑剂与增韧剂是完全不同的。 有些线型高分子化合物,能与树脂混溶,含有活性基团,可以参与树脂的固化反应,提高断裂伸长率和冲击强度,但热变形温度有所下降,这种物质称之为增柔剂(flexibizer),常用的有液体聚硫橡胶、液体丁腈橡胶,由于它们与树脂适量配合,可以制成结构胶黏剂,所以也将增柔剂归人增韧剂之类。增柔与增韧虽是相互关联又不相同的概念,但实际上却很难严格区分开来。从理论上讲增韧与增柔不同,增韧它不使材料整体柔化,而是将环氧树脂固化物均相体系变成一个多相体系,即增韧剂聚集成球形颗粒在环氧树脂的交联网络构成的连续相中形成分散相,抗开裂性能发生突变,断裂韧性显著提高,但力学性能、耐热性损失较小。[1]
㈧ 水溶性羟基丙烯酸树脂和硅溶胶互溶吗
下午好,水性丙烯酸树脂与水分散的碱性硅溶胶互溶,与溶剂型硅胶和硅酮树脂胶版不能互溶,请参考权。水性丙烯酸树脂和碱性硅溶胶互溶后呈现略半透明态,在光线照射时显现出淡蓝色,碱性硅溶胶可作为丙烯酸树脂的补强剂,可增加漆膜的韧性和拉伸强度。
㈨ 酸中和法制备硅溶胶,用硫酸加硅酸钠中和,用乙醇洗去钠离子,中和过程的最适温度是多少啊, 在线等,急求
离子交换一般用强酸型阳离子交换树脂与稀释后的水玻璃进行离子交换,以除去水玻璃中的钠离子和其他阳离子杂质制得聚硅酸溶液。再用阴离子交换树脂进行离子交换,除去溶液中的阴离子杂质,制得高纯的聚硅酸溶液。此时得到的聚硅酸溶液稳定性较差,溶液偏弱酸性,可用少量的NaOH或其他试剂作为稳定剂,将溶液的pH值调节在8.5-10.5的碱性范围内,该范围是制得溶胶溶液的稳定区域,必要时在低温(4-10℃)下保存。
1.酸性硅溶胶的制备工艺
1.1.离子交换法
该法是目前研究最多、技术最成熟的制备工艺。该种方法采用水玻璃为原料,通常可分为三个步骤:制备活性硅酸,制备碱性硅溶胶和阳离子交换。常用制备工艺如下:将市售水玻璃通过稀释并与阳离子交换树脂进行交换,得到活性硅酸;将硅酸用碱液处理至碱性;再将该碱性的硅酸溶液进行加热缩合反应并浓缩,制得碱性硅溶胶;最后将碱性硅溶胶经过阳离子树脂进行阳离子交换,同时加入适量的酸进行调节,得到相应酸值下的酸性硅溶胶。
早在1941年,美国人Bird在其专利发明中提到利用离子交换法制备酸性硅溶胶,即将水玻璃溶液经过氢型的阳离子交换柱,使水玻璃中的碱金属同氢发生交换,其产品是高纯度酸性硅溶胶,pH 为2.0~4.0。此后Albrecht和William L改进了Bird 制备酸性硅溶胶的工艺,提出采用混合树脂床来生产更适合使用的酸性硅溶胶。
上世纪80年代,多数硅溶胶生产厂家均沿袭离子交换法制备酸性硅溶胶。如国内的湖北美华日用化工厂从1985年7月就开始着手研制酸性硅溶胶,他们采用离子交换法用自产碱性硅溶胶制备出酸性硅溶胶,其具体工艺是:将所需碱性硅溶胶稀释、过滤后,向其中投入氢型阳离子交换树脂,边投入边搅拌,当pH到达2~3时,停止投入树脂,静置让其彻底交换。用上述方法制得的酸性硅溶胶中二氧化硅的含量为大于10 %,粒径为10~20 nm,pH达2~3,稳定期为3~6个月。
许念强等将制得的活性硅酸陈化24~48h后再制成碱性硅溶胶,然后与强酸型阳离子树脂得到酸性硅溶胶。他们分析了pH、二氧化硅粒径、电解质盐浓度对酸性硅溶胶稳定性的影响,强调要制备高浓度、高稳定性、低黏度的酸性硅溶胶,首先要提高二氧化硅颗粒的粒径。
离子交换法的优点是根据不同的工艺组合可合成不同性能的硅溶胶,缺点是起始原料水玻璃的浓度不能很高,致使后面浓缩过程时间长,能耗大,而且再生离子交换树脂时产生的大量废水需加以处理。
1.2 电解电渗析法
该法制备硅溶胶是一种电化学方法。其原理是硅酸钠在水溶液中发生水解反应:
Na2H2SiO4 + H2O→2Na+ + H3SiO4– + OH–
随着反应的进行,在电场的作用下槽内的离子会定向迁移,由离子交换膜滤出杂质离子;当阳极室内生成的硅酸浓度大于其溶解度时就会发生缩聚反应,生成硅溶胶。通过调节槽内pH即可得到相应的硅溶胶。该方法制备硅溶胶时,要注意控制电渗析反应的电流密度、温度等反应条件。
日本的OKETA YUTAKA在其专利中提到利用离子交换膜电渗析法来制备脱盐酸性硅溶胶。在制备过程中,电渗析器内会交替形成一个脱盐室和一个浓缩室;用阴、阳离子交换膜将阳极和阴极分开,然后进行电渗析。脱盐室中水溶液的温度保持在5~20 ℃。
电解电渗析法是用酸中和硅酸钠水溶液,经陈化后,再通过半透膜渗析钠离子。该方法缺点是渗析所需时间太长,不适于工业化生产。
1.3.分散法
该法是利用机械将SiO2微粒分散在水中制备硅溶胶的物理方法。具体步骤如下:量取定量的去离子水加入到塑料杯中,将其固定于高速分散机上。开动高速分散机,将定量的气相SiO2粉末连续加到杯中。SiO2 粉末加完后,补加定量的去离子水,调节高速分散速度,经过一定时间制得SiO2水分散液。将SiO2水分散液陈化过夜后,高速分散并加入添加剂,继续高速分散数小时,用300目滤网过滤得到性能良好的硅溶胶。
傅朝春利用该方法制备的酸性硅溶胶能够有效替代微生物用于人、禽畜粪便、垃圾处理,可祛除恶臭、制备高效有机肥料。其具体工艺是:将一定浓度的硫酸和 200 目以下的分散剂SiO2置于一个塑料容器内进行搅拌;用NaOH调节pH为2~4;采用金属板做电极,联结一整流电源,置于上述塑料容器中通电;施以100 V电压,通电 450 mA的电流2~5 min;切断整流电源后,搅拌一段时间,等反应物呈胶状就停止搅拌。利用该方法制得的酸性硅溶胶中SiO2 的含量为25 %~35 %,粒径为1~12 nm。
由于该方法所制的酸性硅溶胶是用作特殊用途的,因而没有考虑某些杂质离子如Na+、SO42–等对其纯度的影响,故该方法对于酸性硅溶胶的制备不具有普遍适应性。
1.4.单质硅热氧化法
有研究表明,硅的热氧化物的生长通常是在900~1200℃之间的石英管中进行,或是在干燥氧气条件下,或是在含有水蒸气的湿氧条件下,或是让干燥的氧气和氮气通过接近沸腾的水所形成的蒸汽中。资料介绍,单质硅在湿氧或是水蒸汽氛围中的氧化比干燥氧气中进行得快。热氧化的总反应是:
Si + O2(gas) → SiO2 Si + 2H2O(gas) → SiO2 + 2H2(gas)
在干燥的氧化过程中第一个反应占主要地位,而在湿的氧化过程中第二个反应占主要地位。
2.酸性硅溶胶的胶团结构及其稳定性研究
我国早在1958年就开始了硅溶胶的研制和生产,如南京大学配位化学研究所、兰州化学工业公司化工研究院、青岛海洋化工厂等都从事了相关的研究和开发,但品种和产量都与国外有很大差距,尤其是酸、碱性硅溶胶的比例不合理,这样的局面到20世纪80年代才有所改善。酸性硅溶胶处于亚稳状态,在放置过程中会逐渐发生胶凝作用,稳定期一般为3~6个月,较碱性硅溶胶的稳定期短。因此,如何提高酸性硅溶胶的稳定性就成为众多研究者关心的问题。
2.1.酸性硅溶胶的胶团结构
酸性硅溶胶又称硅酸水溶胶,是高分子SiO2微粒分散于水中的胶体溶液,无臭、无毒,分子式可表示为mSiO2·nH2O(式中:m,n很大,且m<<n),外观为乳白色半透明液体。硅溶胶粒子的内部结构为硅氧烷键(-Si-O-Si),表面层由许多硅氧醇基(-SiOH)和羟基(-OH)所覆盖。由于硅溶胶中SiO2颗粒表面含大量羟基,具有较大的反应活性,因此被广泛用于纺织、橡胶、陶瓷、涂料、精密铸造、耐火材料、造纸、石油化工、电子等行业。
胶团结构如图1所示:当A+为Na+等金属离子时,表示碱性硅溶胶;当A+为H+时,表示酸性硅溶胶。在运动过程中,由胶核和吸附层组成的胶粒作为一个整体运动,这样扩散层与周围的电解质可以形成一种动态平衡来维持硅溶胶的稳定。
2.2 酸性硅溶胶稳定性的影响因素
2.2.1.pH对酸性硅溶胶稳定性的影响
硅溶胶的稳定性与pH之间的密切关系如图2所示。从图2可以看出,在低pH(<2.0)区域内,溶胶稳定性随pH的升高略有上升;在中部pH(2<pH<4)区域内,酸性硅溶胶具有一个较为宽阔的亚稳定区域,为制备酸性硅溶胶的可能性提供现实依据;在pH接近5~6的区域范围内时,硅溶胶的稳定性迅速下降。
王少明等认为pH与硅溶胶的稳定性有直接关系。经测定硅溶胶 pH 在2~10之间时,粒子的ξ电位为负值;pH 在2以下时,粒子的ξ电位为正值;pH=2 时为“0”电位;pH 在8.5~10范围内,为稳定区;pH>10时,硅溶胶粒子溶解为硅酸盐;pH 在4以下时为介稳区;pH=2 时,为最高介稳态。根据制备的高纯硅溶胶的特点,调节硅溶胶的pH在2.5左右,可以保持溶胶处于高介稳态,在室温下可存放2年而不凝胶。硅溶胶不稳定的主要表现之一就是发生凝胶化。
贾光耀等提到溶胶凝胶动力学可以人为控制。他们通过研究发现,硅溶胶的黏度、ξ电位以及凝胶化过程与pH有密切的关系,凝胶化过程发生在pH 为4~7之间。
2.2.2 电解质对酸性硅溶胶稳定性的影响
电解质对硅溶胶的稳定性也有一定的影响,且与pH有密切关系。因为盐类放出离子,与硅溶胶的表面电荷结合,进入紧密层的反离子增加,使分散层变薄;当电解质浓度增加到一定程度时,分散层厚度为零,引起粒子的集合而凝胶化。凝胶化的程度与使用的电解质种类、浓度、温度等因素有关。有资料报导,在pH<3.5时,电解质对硅溶胶的稳定性影响相对较小。
J. L. Trompette等提出当存在两种不同的补偿离子时,经浓缩的硅溶胶在pH为9.8时极易发生凝胶,并对凝胶动力学进行了研究。研究结果表明,离子特征对聚合动力学和溶胶—凝胶转化过程中凝胶显微结构有显著的影响。这归因于不同电解质的影响下临界凝结浓度不同。
而许念强等则认为,只有当SiO2粒子的粒径相对较小时,硅溶胶的稳定性才受到电解质盐浓度较大的影响,随着SiO2粒径增大,电解质盐浓度对硅溶胶的稳定性影响减弱。当硅溶胶中的含盐量降低到一定值时,电解质盐浓度在一定程度上不会构成制备酸性硅溶胶的主要影响因素。
杨靖等在研究了催化剂的种类、反应温度、反应时间、添加剂等因素对硅溶胶性能的影响时分析了电解质种类的影响效果:在[H+]相同的条件下,酸催化剂对溶胶粘度的影响为:
HF>HCl>HNO3>H2SO4>HAc ,对凝胶时间的影响为:HAc>H2SO4>HCl>HNO3>HF,几种溶胶固含量的大小为:H2SO4>HNO3>HCl>HAc,制备 SiO2 膜用硅溶胶较适合采用盐酸或硝酸作为催化剂。
2.2.3.粒径对酸性硅溶胶的影响
粒径是影响硅溶胶稳定的另一重要因素。硅溶胶粒子直径在一定范围内,粒径越均匀、分布范围越窄,稳定性越好。
许念强等在研究粒径对酸性硅溶胶的影响时提到,一定浓度下的酸性硅溶胶稳定性与SiO2粒径大小的关系呈现出一个斜“S”形,即在小粒径下,硅溶胶的稳定性相对很低,而随着粒径的增加,硅溶胶的稳定性迅速增强,并且粒径在10~20 nm内,硅溶胶稳定性近似与粒径大小成正比。
有学者经试验研究发现,将硅溶胶粒径控制在10~15nm范围内,既可简化工艺过程,又可保持高纯硅溶胶的稳定。
另外,SiO2粒子半径的增加,将使其粒子表面羟基基团的反应活性降低,胶粒比表面积减小,胶粒吸附能降低,从而大颗粒对小颗粒的吸附作用力降低,也是大粒径酸性硅溶胶相对于小粒径硅溶胶具有较高稳定性的原因。
此外,Janne Puputti 等在制备硅溶胶时,用乙醇取代一部分水,使其稳定性增加 3 倍。Anna Schantz Zackrisson 等通过干扰法及时间分辨小角X射线散射对硅溶胶分散体系中的聚合和凝胶化过程进行了研究,分析了离子强度对凝胶临界点的影响。