当前位置:首页 » 净水耗材 » 醌吸附树脂

醌吸附树脂

发布时间: 2021-03-24 14:50:09

Ⅰ 关于羟基蒽醌类化合物的提纯

本发明涉及植物药中有效成分的提取方法,具体涉及从植物药中提取、分离蒽醌类化合物的方法。

蒽醌(anthraquinone)是具有如下骨架的化合物的总称。

蒽醌类化合物包括了其不同还原程度的产物和二聚物,如蒽酚(anthranol)、氧化蒽酚(oxanthranol)、蒽酮(anthrone)、二蒽醌 (dianthraquinone)、二蒽酮(dianthrone)等,另外还有这些化合物的甙类。在天然产物中,蒽醌常存在于高等植物的蓼科、豆科、茜草科和低等植物地衣类和菌类的代谢产物中。现代药理研究证明,蒽醌类化合物具有很强的生物活性及药理作用。主要有①止血作用:蒽醌类化合物能促进血小板生成,明显增加纤维蛋白原,使凝血时间缩短,降低毛细血管通透性,改善血管脆性,使血管的收缩活性增加,因此能促进血液凝固。②抗菌作用:蒽醌类化合物对多种细菌均有不同程度的抑制作用,其中以葡萄球菌、链球菌最敏感,痢疾杆菌、白喉杆菌、枯草杆菌及伤寒杆菌等也较敏感。抑菌机理主要是抑制菌体糖及代谢中间产物的氧化和脱氢,并能抑制蛋白和核酸的合成,因此可避免临床上某些抗菌素的毒副反应及耐药性。③泻下作用:结合型蒽醌甙类因由糖基的保护,大部分未经吸收直接到达大肠,在肠内被细菌酶分解成甙元和糖。甙元刺激大肠粘膜,并抑制钠离子从肠腔吸收,使大肠内水分增加,蠕动亢进而致泻。④利尿作用:蒽醌类化合物能使尿量增加,并促进输尿管的蠕动,尿中钠钾亦明显增加,而产生利尿降压作用。其作用是通过减少肠道氨基酸的重吸收,抑制肝肾组织中尿素的合成,提高血中游离必需氨基酸浓度,利用体内尿素氮合成体蛋白和抑制肌蛋白的分解,以及增加尿素和肌酐的排泄来完成的。此外,随着基础理论的研究不断深入,为蒽醌类化合物的临床应用提供了理论依据。含蒽醌类化合物的中药制剂在临床上的应用已涉及到诸多疾病的治疗,如可治疗冠心病、粘膜溃疡、淋巴结核、烧烫伤、慢性胃炎、急性胆囊炎、伤骨科疾病、急性脑血管病等危急重症及杂病。
植物药中存在的蒽醌衍生物多为羟基蒽醌和它们的甙。大多数的蒽醌甙是蒽醌的羟基与糖缩合而成,也有少数是糖与蒽醌的碳原子直接连接而成。通常结合蒽醌分子量小于500,且溶于水和有机溶剂,游离蒽醌分子量约300左右,易溶于有机溶剂如:乙醚、氯仿、苯、乙醇等,还可溶于碱性水溶液如:氨水、氢氧化钠溶液等,而不溶于水。目前,从天然产物中提取含蒽醌类化合物的产品主要是中草药的粗提物,粗提物的总蒽醌含量不大于20%。中草药中蒽醌类化合物的精制常使用乙醚、苯、氯仿等有机溶剂,虽然所得中药浸膏的总蒽醌含量可达50%以上。但这些有机溶剂均为易燃易爆的有毒有害试剂,如浸膏中溶剂残留量不控制好会对人体造成很大伤害,而且该方法危险性大,对环境也有污染不适合大规模生产。

本发明的目的是要提供一种操作简便、安全、无污染、成本低,从植物药中提取的蒽醌类化合物选择性高、有效成分含量高的分离提取方法。

本发明从植物药中提取、分离蒽醌类化合物的方法是由下列步骤来实现的:
将含有蒽醌类化合物的原药材用通常方法提取获得有效成分粗提物,取粗提物加水,用碱溶液调PH至6.5-10,加入到已装有大孔吸附树脂的吸附柱中,粗提物量(g)与树脂量(ml)重量比为1:10—100;经大孔吸附树脂柱吸附,以水和洗脱液洗脱,收集洗脱液,浓缩、干燥即得含有蒽醌类化合物的浸膏,总蒽醌含量≥50%。
本发明所述的粗提物是指含有蒽醌类化合物的原药材用常规方法经水或有机溶剂提取,去药渣,提取液适当浓缩或直接浓缩至干制得的有效成分提取物。粗提物亦可用常用精制法进行预处理。粗提物蒽醌总含量为5-30%。

本发明所述的碱溶液是指氢氧化钠、氢氧化钾、氨水等碱性水溶液。

本发明所述的有机溶剂是指甲醇、乙醇、丙酮和乙酸乙酯等。

本发明所述的大孔吸附树脂为苯乙烯型、2—甲基丙烯酸酯型等大孔吸附树脂,粒度为210~10080目、比表面积为100~300cm2800cm2、/g、孔径1020~50A300A。
本发明所述的洗脱液是指甲醇、乙醇、丙酮、乙酸乙酯以及它们的混合液和氢氧化钠、氢氧化钾、氨水等碱性水溶液以及碱性水溶液与上述有机溶剂的混合液。
本发明上柱方式也可是先将粗提物用有机溶剂溶解,拌入大孔吸附树脂干粉,然后减压蒸去有机溶剂后上柱。

大网格吸附剂是70年代发展起来的一项新技术。国外最早用于废水处理、医药工业、分析化学、临床鉴定和治疗等领域。我国在70年代末开始应用大孔吸附树脂提取、分离中草药化学成分。

大孔吸附树脂一般为白色球形颗粒状,理化性质稳定,不溶于酸、碱及有机溶媒。对有机物选择较好,不受无机盐类及强离子低分子化合物存在的影响。大孔吸附树脂为吸附性和筛选性原理相结合的分离材料,与以往使用的离子交换树脂分离原理不同。它本身具有的吸附性,是由于范德华引力或产生氢键的结果。筛性原理是由于其本身多孔性结构所决定。正因为这些特性,使得有机化合物尤其是水溶性化合物的提纯得以大大的简化。从显微形状上看,大孔吸附树脂包含有许多具有微观小球组成的网状孔穴结构。当这些球体由偶极矩很小的单体聚合制得的不带任何功能基的吸附树脂为非极性吸附树脂,例如,苯乙烯—二乙烯苯体系的吸附树脂。这类吸附树脂孔表面的疏水性较强,可通过小分子内的疏水部分的相互作用吸附溶液中的有机物。而中极性吸附树脂系指含酯基的吸附树脂,例如,丙烯酸酯或甲基丙烯酸酯与双甲基丙烯酸乙二醇酯等交联的一类共聚物,其表面疏水性部分和亲水性部分共存。极性吸附树脂是指含酰胺基、腈基、酚羟基等含氮、氧、硫极性功能基的吸附树脂。除此之外,有时把含氮、氧、硫等配体基团的离子交换树脂称作强极性吸附树脂。由于吸附性和筛性原理,有机化合物根据吸附力的不同及分子量的大小,在大孔吸附树脂上经一定的溶剂洗脱而分开。本发明就是利用了大孔吸附树脂中非极性和中性树脂的特点,将植物药中的游离蒽醌和结合蒽醌分离和纯化。

本发明用大孔吸附树脂吸附法替代有机溶剂萃取法,从中药粗提物中提纯、精制蒽醌类化合物,避免使用有毒有害溶剂,操作工艺简单、成本低、产品质量易于控制,并适用于大规模生产。使中药制剂有效成分明确、有效成分含量提高到较高水平,为中药制剂走向国际、走向现代化提供了方便。

实施例一:从大黄中提取蒽醌类化合物
取大黄生药粗粉500g,加适量95%乙醇浸泡12小时后,加热回流提取三次,(三次95%乙醇提取液的量和提取时间分别为800ml、1小时;500ml、0.5小时;500ml、0.5小时),合并提取液,过滤,滤液浓缩至一定体积,上聚酰胺柱,以水和95%乙醇洗脱,收集醇洗脱液,浓缩、干燥得大黄粗提物。取大黄粗提物10g5g,用无水乙醇溶解拌样上大孔吸附树脂柱(树脂结构为苯乙烯型、粒度5020~80目、比表面300cm2400cm2/g、孔径30A100A),以水和95%乙醇洗脱,收集醇洗脱液,浓缩,干燥即得,总蒽醌含量≥58%,收率>3.5%。

实施例二:从虎杖中提取蒽醌类化合物
取虎杖生药粗粉500g,加适量95%乙醇浸泡12小时后,加热回流提取三次,(三次95%,乙醇提取液的量和提取时间分别为800ml、1小时;500ml、0.5小时;500ml、0.5小时),合并提取液,过滤,滤液浓缩至一定体积,上聚酰胺柱,以水和95%乙醇洗脱,收集醇洗脱液,浓缩、干燥得虎杖粗提物。取虎杖粗提物10g5g,用无水乙醇溶解拌样上大孔吸附树脂柱(树脂结构为苯乙烯型、粒度50目、比表面300cm2400cm2/g、孔径30A100A),以水和95%乙醇洗脱,收集醇洗脱液,浓缩,干燥即得,总蒽醌含量≥52%,收率>3.5%。

实施例三:从何首乌中提取蒽醌类化合物
取何首乌生药粗粉500g,加适量80%乙醇浸泡12小时后,加热回流提取三次,(三次80%乙醇提取液的量和提取时间分别为800ml、1小时;500ml、0.5小时;500ml、0.5小时),合并提取液,过滤,滤液浓缩至一定体积,上聚酰胺柱,以水和95%乙醇洗脱,收集醇洗脱液,浓缩、干燥得何首乌粗提物。取何首乌粗提物10g5g,用无水乙醇溶解拌样上大孔吸附树脂柱(树脂结构为苯乙烯型、粒度5020~80目、比表面300cm2400cm2/g、孔径30A100A,以水和95%乙醇洗脱,收集醇洗脱液,浓缩,干燥即得,总蒽醌含量≥55%,收率≥3.5%。

实施例一:从大黄中提取蒽醌类化合物
取已处理好的大孔吸附树脂(树脂结构为苯乙烯型、粒度5020~80目、比表面300400cm2、孔径30100A)120ml,湿法装柱。另取大黄粗提物5g,加水100ml,用4%氢氧化纳调节pH至7~8,搅拌溶解后上样,流速8~15滴/分,待样品全部加完,先用水洗至流出液几乎无色或淡黄色不再改变,换95%乙醇洗脱液洗脱,收集醇洗脱液,浓缩,干燥即得,总蒽醌含量≥58%,收率≥3.5%。

实施例二:从虎杖中提取蒽醌类化合物
取已处理好的大孔吸附树脂(树脂结构为苯乙烯型、粒度5020~80目、比表面3400cm2、孔径30100A)120ml,湿法装柱。另取虎杖粗提物5g,加水100ml,用4%氢氧化纳调节pH至7~8,搅拌溶解后上样,流速8~15滴/分,待样品全部加完,先用水洗至流出液几乎无色或淡黄色不再改变,换95%乙醇洗脱液洗脱,收集醇洗脱液,浓缩,干燥即得,总蒽醌含量≥52%,收率≥3.5%。

实施例三:从何首乌中提取蒽醌类化合物
取已处理好的大孔吸附树脂(树脂结构为苯乙烯型、粒度520~80目、比表面3400cm2、孔径3100A)120ml,湿法装柱。另取何首乌粗提物5g,加水100ml,用4%氢氧化纳调节pH至7~8,搅拌溶解后上样,流速8~15滴/分,待样品全部加完,先用水洗至流出液几乎无色或淡黄色不再改变,换95%乙醇洗脱液洗脱,收集醇洗脱液,浓缩,干燥即得,总蒽醌含量≥55%,收率≥3.5%。

1、一种从植物药中提取、分离蒽醌类化合物的方法,其特征在于该方法为:将含有蒽醌类化合物的原药材用通常方法提取获得有效成分粗提物,取粗提物加水,用碱溶液调PH至6.5-10,加入到已装有大孔吸附树脂的吸附柱中,粗提物量(g)与树脂量(ml)重量比为1:10—100;经大孔吸附树脂柱吸附,以水和洗脱液洗脱,收集洗脱液,浓缩、干燥即得含有蒽醌类化合物的浸膏,总蒽醌含量≥50%。
2、一种如权利要求1所述的从植物药中提取、分离蒽醌类化合物的方法,其特征在于其中所述的大孔吸附树脂为苯乙烯型、2—甲基丙烯酸酯型等大孔吸附树脂,粒度为2010~80100目、比表面积为100~300cm2800cm2/g、孔径10~50A400A。
3、一种如权利要求1所述的从植物药中提取、分离蒽醌类化合物的方法,其特征在于其中所述的洗脱液是指甲醇、乙醇、丙酮、乙酸乙酯以及它们的混合液和氢氧化钠、氢氧化钾、氨水等碱性水溶液以及碱性水溶液与上述有机溶剂的混合液。

本发明涉及从植物药中提取、分离蒽醌类化合物的方法。本发明用大孔吸附树脂吸附法替代有机溶剂萃取法,从中药粗提物中提纯、精制蒽醌类化合物,总蒽醌含量≥50%,避免使用了有毒有害溶剂,操作工艺简单、成本低、产品质量易于控制,并适用于大规模生产。

Ⅱ 物理吸附剂和化学吸附剂的区别

飞秒检测发现物理吸附的吸附力是分子间力,包含:
(1) 极性吸附剂:如回硅胶、氧化铝。可去答除亲水性色素。
(2) 非极性吸附剂:如活性炭,纸浆、滑石粉、硅藻土。可去除亲脂性色素。活性炭是一种优良的吸附剂,它对色素、细菌、热原等杂质有很强的吸附能力,并且其还有助滤作用。 其内部有大量的微孔和空隙,表面积可达200-500m2/g。吸附原理:由于大多数色素具有共扼双键结构,易吸附。 使用方法:冷吸附法,热吸附法,炭层助滤法,柱层析吸附法。
化学吸附则包括:
(1)例如可用碱性氧化铝去除一些黄酮、蒽醌等酚酸性色素。
(2)离子交换树脂法:例如黄酮、蒽醌等酚酸性色素可以用阴离子交换树脂除去。
3.半化学吸附:聚酰胺与大孔树脂。吸附原理为氢键作用,大孔树脂还有部分范德华力作用。 聚酰胺可通过分子中的酰胺羰基与酚类、黄酮类的酚羟基形成氢键。也可一通过酰胺键上的游离胺基与醌类、脂肪羧酸上的羰基形成氢键。

Ⅲ 蒽醌水解实验为了防止报废要加入什么东西

本发明涉及植物药中有效成分的提取方法,具体涉及从植物药中提取、分离蒽醌类化合物的方法。蒽醌(anthraquinone)是具有如下骨架的化合物的总称。蒽醌类化合物包括了其不同还原程度的产物和二聚物,如蒽酚(anthranol)、氧化蒽酚(oxanthranol)、蒽酮(anthrone)、二蒽醌(dianthraquinone)、二蒽酮(dianthrone)等,另外还有这些化合物的甙类。在天然产物中,蒽醌常存在于高等植物的蓼科、豆科、茜草科和低等植物地衣类和菌类的代谢产物中。现代药理研究证明,蒽醌类化合物具有很强的生物活性及药理作用。主要有①止血作用:蒽醌类化合物能促进血小板生成,明显增加纤维蛋白原,使凝血时间缩短,降低毛细血管通透性,改善血管脆性,使血管的收缩活性增加,因此能促进血液凝固。②抗菌作用:蒽醌类化合物对多种细菌均有不同程度的抑制作用,其中以葡萄球菌、链球菌最敏感,痢疾杆菌、白喉杆菌、枯草杆菌及伤寒杆菌等也较敏感。抑菌机理主要是抑制菌体糖及代谢中间产物的氧化和脱氢,并能抑制蛋白和核酸的合成,因此可避免临床上某些抗菌素的毒副反应及耐药性。③泻下作用:结合型蒽醌甙类因由糖基的保护,大部分未经吸收直接到达大肠,在肠内被细菌酶分解成甙元和糖。甙元刺激大肠粘膜,并抑制钠离子从肠腔吸收,使大肠内水分增加,蠕动亢进而致泻。④利尿作用:蒽醌类化合物能使尿量增加,并促进输尿管的蠕动,尿中钠钾亦明显增加,而产生利尿降压作用。其作用是通过减少肠道氨基酸的重吸收,抑制肝肾组织中尿素的合成,提高血中游离必需氨基酸浓度,利用体内尿素氮合成体蛋白和抑制肌蛋白的分解,以及增加尿素和肌酐的排泄来完成的。此外,随着基础理论的研究不断深入,为蒽醌类化合物的临床应用提供了理论依据。含蒽醌类化合物的中药制剂在临床上的应用已涉及到诸多疾病的治疗,如可治疗冠心病、粘膜溃疡、淋巴结核、烧烫伤、慢性胃炎、急性胆囊炎、伤骨科疾病、急性脑血管病等危急重症及杂病。植物药中存在的蒽醌衍生物多为羟基蒽醌和它们的甙。大多数的蒽醌甙是蒽醌的羟基与糖缩合而成,也有少数是糖与蒽醌的碳原子直接连接而成。通常结合蒽醌分子量小于500,且溶于水和有机溶剂,游离蒽醌分子量约300左右,易溶于有机溶剂如:乙醚、氯仿、苯、乙醇等,还可溶于碱性水溶液如:氨水、氢氧化钠溶液等,而不溶于水。目前,从天然产物中提取含蒽醌类化合物的产品主要是中草药的粗提物,粗提物的总蒽醌含量不大于20%。中草药中蒽醌类化合物的精制常使用乙醚、苯、氯仿等有机溶剂,虽然所得中药浸膏的总蒽醌含量可达50%以上。但这些有机溶剂均为易燃易爆的有毒有害试剂,如浸膏中溶剂残留量不控制好会对人体造成很大伤害,而且该方法危险性大,对环境也有污染不适合大规模生产。本发明的目的是要提供一种操作简便、安全、无污染、成本低,从植物药中提取的蒽醌类化合物选择性高、有效成分含量高的分离提取方法。本发明从植物药中提取、分离蒽醌类化合物的方法是由下列步骤来实现的:将含有蒽醌类化合物的原药材用通常方法提取获得有效成分粗提物,取粗提物加水,用碱溶液调PH至6.5-10,加入到已装有大孔吸附树脂的吸附柱中,粗提物量(g)与树脂量(ml)重量比为1:10—100;经大孔吸附树脂柱吸附,以水和洗脱液洗脱,收集洗脱液,浓缩、干燥即得含有蒽醌类化合物的浸膏,总蒽醌含量≥50%。本发明所述的粗提物是指含有蒽醌类化合物的原药材用常规方法经水或有机溶剂提取,去药渣,提取液适当浓缩或直接浓缩至干制得的有效成分提取物。粗提物亦可用常用精制法进行预处理。粗提物蒽醌总含量为5-30%。本发明所述的碱溶液是指氢氧化钠、氢氧化钾、氨水等碱性水溶液。本发明所述的有机溶剂是指甲醇、乙醇、丙酮和乙酸乙酯等。本发明所述的大孔吸附树脂为苯乙烯型、2—甲基丙烯酸酯型等大孔吸附树脂,粒度为210~10080目、比表面积为100~300cm2800cm2、/g、孔径1020~50A300A。本发明所述的洗脱液是指甲醇、乙醇、丙酮、乙酸乙酯以及它们的混合液和氢氧化钠、氢氧化钾、氨水等碱性水溶液以及碱性水溶液与上述有机溶剂的混合液。本发明上柱方式也可是先将粗提物用有机溶剂溶解,拌入大孔吸附树脂干粉,然后减压蒸去有机溶剂后上柱。大网格吸附剂是70年代发展起来的一项新技术。国外最早用于废水处理、医药工业、分析化学、临床鉴定和治疗等领域。我国在70年代末开始应用大孔吸附树脂提取、分离中草药化学成分。大孔吸附树脂一般为白色球形颗粒状,理化性质稳定,不溶于酸、碱及有机溶媒。对有机物选择较好,不受无机盐类及强离子低分子化合物存在的影响。大孔吸附树脂为吸附性和筛选性原理相结合的分离材料,与以往使用的离子交换树脂分离原理不同。它本身具有的吸附性,是由于范德华引力或产生氢键的结果。筛性原理是由于其本身多孔性结构所决定。正因为这些特性,使得有机化合物尤其是水溶性化合物的提纯得以大大的简化。从显微形状上看,大孔吸附树脂包含有许多具有微观小球组成的网状孔穴结构。当这些球体由偶极矩很小的单体聚合制得的不带任何功能基的吸附树脂为非极性吸附树脂,例如,苯乙烯—二乙烯苯体系的吸附树脂。这类吸附树脂孔表面的疏水性较强,可通过小分子内的疏水部分的相互作用吸附溶液中的有机物。而中极性吸附树脂系指含酯基的吸附树脂,例如,丙烯酸酯或甲基丙烯酸酯与双甲基丙烯酸乙二醇酯等交联的一类共聚物,其表面疏水性部分和亲水性部分共存。极性吸附树脂是指含酰胺基、腈基、酚羟基等含氮、氧、硫极性功能基的吸附树脂。除此之外,有时把含氮、氧、硫等配体基团的离子交换树脂称作强极性吸附树脂。由于吸附性和筛性原理,有机化合物根据吸附力的不同及分子量的大小,在大孔吸附树脂上经一定的溶剂洗脱而分开。本发明就是利用了大孔吸附树脂中非极性和中性树脂的特点,将植物药中的游离蒽醌和结合蒽醌分离和纯化。本发明用大孔吸附树脂吸附法替代有机溶剂萃取法,从中药粗提物中提纯、精制蒽醌类化合物,避免使用有毒有害溶剂,操作工艺简单、成本低、产品质量易于控制,并适用于大规模生产。使中药制剂有效成分明确、有效成分含量提高到较高水平,为中药制剂走向国际、走向现代化提供了方便。实施例一:从大黄中提取蒽醌类化合物取大黄生药粗粉500g,加适量95%乙醇浸泡12小时后,加热回流提取三次,(三次95%乙醇提取液的量和提取时间分别为800ml、1小时;500ml、0.5小时;500ml、0.5小时),合并提取液,过滤,滤液浓缩至一定体积,上聚酰胺柱,以水和95%乙醇洗脱,收集醇洗脱液,浓缩、干燥得大黄粗提物。取大黄粗提物10g5g,用无水乙醇溶解拌样上大孔吸附树脂柱(树脂结构为苯乙烯型、粒度5020~80目、比表面300cm2400cm2/g、孔径30A100A),以水和95%乙醇洗脱,收集醇洗脱液,浓缩,干燥即得,总蒽醌含量≥58%,收率>3.5%。实施例二:从虎杖中提取蒽醌类化合物取虎杖生药粗粉500g,加适量95%乙醇浸泡12小时后,加热回流提取三次,(三次95%,乙醇提取液的量和提取时间分别为800ml、1小时;500ml、0.5小时;500ml、0.5小时),合并提取液,过滤,滤液浓缩至一定体积,上聚酰胺柱,以水和95%乙醇洗脱,收集醇洗脱液,浓缩、干燥得虎杖粗提物。取虎杖粗提物10g5g,用无水乙醇溶解拌样上大孔吸附树脂柱(树脂结构为苯乙烯型、粒度50目、比表面300cm2400cm2/g、孔径30A100A),以水和95%乙醇洗脱,收集醇洗脱液,浓缩,干燥即得,总蒽醌含量≥52%,收率>3.5%。实施例三:从何首乌中提取蒽醌类化合物取何首乌生药粗粉500g,加适量80%乙醇浸泡12小时后,加热回流提取三次,(三次80%乙醇提取液的量和提取时间分别为800ml、1小时;500ml、0.5小时;500ml、0.5小时),合并提取液,过滤,滤液浓缩至一定体积,上聚酰胺柱,以水和95%乙醇洗脱,收集醇洗脱液,浓缩、干燥得何首乌粗提物。取何首乌粗提物10g5g,用无水乙醇溶解拌样上大孔吸附树脂柱(树脂结构为苯乙烯型、粒度5020~80目、比表面300cm2400cm2/g、孔径30A100A,以水和95%乙醇洗脱,收集醇洗脱液,浓缩,干燥即得,总蒽醌含量≥55%,收率≥3.5%。实施例一:从大黄中提取蒽醌类化合物取已处理好的大孔吸附树脂(树脂结构为苯乙烯型、粒度5020~80目、比表面300400cm2、孔径30100A)120ml,湿法装柱。另取大黄粗提物5g,加水100ml,用4%氢氧化纳调节pH至7~8,搅拌溶解后上样,流速8~15滴/分,待样品全部加完,先用水洗至流出液几乎无色或淡黄色不再改变,换95%乙醇洗脱液洗脱,收集醇洗脱液,浓缩,干燥即得,总蒽醌含量≥58%,收率≥3.5%。实施例二:从虎杖中提取蒽醌类化合物取已处理好的大孔吸附树脂(树脂结构为苯乙烯型、粒度5020~80目、比表面3400cm2、孔径30100A)120ml,湿法装柱。另取虎杖粗提物5g,加水100ml,用4%氢氧化纳调节pH至7~8,搅拌溶解后上样,流速8~15滴/分,待样品全部加完,先用水洗至流出液几乎无色或淡黄色不再改变,换95%乙醇洗脱液洗脱,收集醇洗脱液,浓缩,干燥即得,总蒽醌含量≥52%,收率≥3.5%。实施例三:从何首乌中提取蒽醌类化合物取已处理好的大孔吸附树脂(树脂结构为苯乙烯型、粒度520~80目、比表面3400cm2、孔径3100A)120ml,湿法装柱。另取何首乌粗提物5g,加水100ml,用4%氢氧化纳调节pH至7~8,搅拌溶解后上样,流速8~15滴/分,待样品全部加完,先用水洗至流出液几乎无色或淡黄色不再改变,换95%乙醇洗脱液洗脱,收集醇洗脱液,浓缩,干燥即得,总蒽醌含量≥55%,收率≥3.5%。1、一种从植物药中提取、分离蒽醌类化合物的方法,其特征在于该方法为:将含有蒽醌类化合物的原药材用通常方法提取获得有效成分粗提物,取粗提物加水,用碱溶液调PH至6.5-10,加入到已装有大孔吸附树脂的吸附柱中,粗提物量(g)与树脂量(ml)重量比为1:10—100;经大孔吸附树脂柱吸附,以水和洗脱液洗脱,收集洗脱液,浓缩、干燥即得含有蒽醌类化合物的浸膏,总蒽醌含量≥50%。2、一种如权利要求1所述的从植物药中提取、分离蒽醌类化合物的方法,其特征在于其中所述的大孔吸附树脂为苯乙烯型、2—甲基丙烯酸酯型等大孔吸附树脂,粒度为2011~80100目、比表面积为100~300cm2800cm2/g、孔径10~50A400A。3、一种如权利要求1所述的从植物药中提取、分离蒽醌类化合物的方法,其特征在于其中所述的洗脱液是指甲醇、乙醇、丙酮、乙酸乙酯以及它们的混合液和氢氧化钠、氢氧化钾、氨水等碱性水溶液以及碱性水溶液与上述有机溶剂的混合液。本发明涉及从植物药中提取、分离蒽醌类化合物的方法。本发明用大孔吸附树脂吸附法替代有机溶剂萃取法,从中药粗提物中提纯、精制蒽醌类化合物,总蒽醌含量≥50%,避免使用了有毒有害溶剂,操作工艺简单、成本低、产品质量易于控制,并适用于大规模生产。

Ⅳ 蒽醌类化合物及其苷的薄层色谱用什么作吸附剂,展开剂和显色剂

吸附剂:G-CMC-Na板
展开剂:石油醚-乙酸乙酯-甲酸(15:5:1)上层溶液
显色剂:浓氨水或5%醋酸镁甲醇溶液(记录的黄色斑点会显红色)

Ⅳ 大孔树脂和聚酰胺树脂有什么区别

这是我自己总结的 希望对你有帮助
一 大孔树脂
1.原理: 大孔吸附树脂是以苯乙烯和丙酸酯为单体,加入乙烯苯为交联剂,甲苯、二甲苯为致孔剂,它们相互交联聚合形成了多孔骨架结构。
不同于以往使用的离子交换树脂,大孔吸附树脂为吸附性和筛选性原理相结合的分离材料。
吸附性是由于范德华力或产生氢键的结果。
筛选性是由于其本身多孔性结构所决定。
因此,有机化合物根据吸附力的不同及分子量的大小,在树脂的吸附机理和筛分原理作用下实现分离。
2.类型
按其极性和所选用的单体分子结构分为:
(1)非极性大孔树脂 苯乙烯、二乙烯苯聚合物,也称芳香族吸附剂。(如HPD-100,D-101等)
(2)中等极性大孔树脂 聚丙烯酸酯型聚合物,以多功能团的甲基丙烯酸酯作为交联剂,也称脂肪族吸附剂。
(3)极性大孔树脂 含硫氧、酰胺基团,如丙烯酰胺。
(4)强极性大孔树脂 含氮氧基团,如氧化氮类。
3 选择
选择树脂要综合各方面的因素(如:待分离化合物的分子大小、所含特有基团等)
适当孔径下,应有较高的比表面积;具有适宜的极性;与被吸附物质有相似的功能基。

二 聚酰胺
1.原理:聚酰胺(polyamide,PA)是由酰胺聚合而成的一类高分子物质,又叫尼龙、锦纶
色谱中常用的聚酰胺有:尼龙-6(己内酰胺聚合而成)和尼龙-66(己二酸与己二胺聚合而成)。既亲水又亲脂,性能较好,水溶性物质和脂溶性物质均可分离。锦纶11,1010的亲水性较差,不能使用含水量高的溶剂系统。原理暂时有2种:
①氢键吸附原理:酚、酸的羟基与聚酰胺中羰基形成氢键;
芳香硝基、醌类化合物的硝基或羟基(醌)与聚酰胺中游离氨基形成氢键;
脱吸附通过溶剂分子形成新氢键取代原有氢键而完成。
②双重层析原理:
聚酰胺既有非极性的脂肪键,又有极性的酰胺键。
当用含水极性溶剂作流动相时,聚酰胺作为非极性固定相,其色谱行为类似反相分配色谱,所以苷比苷元容易洗脱。
当用非极性氯仿-甲醇作为流动相时,聚酰胺则作为极性固定相,其色谱行为类似正相分配色谱,所以苷元比其苷容易洗脱。
2.适用:
聚酰胺层析可用于黄酮、酚类、有机酸、生物碱、萜类、甾体、苷类、糖类、氨基酸衍生物、核苷类等的化合物的分离,尤其是对黄酮类、酚类、醌类等物质的分离远比其它方法优越。
特点:对黄酮等物质的层析是可逆的;分离效果好,可分离极性相近的类似物,其柱层析的样品容量大,适用于制备分离。

Ⅵ 什么是醌类阻聚剂有和特点

阻聚剂分子与链自由基反应,形成非自由基物质或不能引发的低活性自由基,从而使聚合终止.
能使烯类单体的自由基聚合反应完全终止的物质。这种作用称阻聚。
为了避免烯类单体在贮藏、运输等过程中发生聚合,单体中往往加入少量阻聚剂,在使用前再将它除去。一般,阻聚剂为固体物质,挥发性小,在蒸馏单体时即可将它除去。常用的阻聚剂对苯二酚能与氢氧化钠反应生成可溶于水的钠盐,所以可用5%~10%的氢氧化钠溶液洗涤除去。氯化亚铜和三氯化铁等无机阻聚剂也可用酸洗除去。
阻聚剂可以防止聚合作用的进行,在聚合过程中产生诱导期(即聚合速度为零的一段时间),诱导期的长短与阻聚剂含量成正比,阻聚剂消耗完后,诱导期结束,即按无阻聚剂存在时的正常速度进行。
根据抑制聚合反应的作用,将能终止每个自由基而使聚合反应停止,直到它们完全耗尽的物质称为阻聚剂或抑制剂;而只能使自由基活性减弱,减慢聚合反应速度,但不能终止反应的物质称为阻滞剂。
(1)酚类阻聚剂。多元酚及取代酚是一类应用广泛、效果较好的阻聚荆,但必须在单体中溶解有氧时才显示阻聚效果。其阻聚机理是酚类被氧化成相应的醌与链的自由基结合而起阻聚作用。在酚类阻聚剂存在下,使过氧化自由基很快终止,确保在单体中有足够量氧,可以延长阻聚期。
(2)醌类阻聚剂。醌类阻聚剂是常用的分子型阻聚剂,用量O.01%~O.1%便能达到预期的阻聚效果;但对不同的单体阻聚效果有异.对皋醌是苯乙烯、醋酸乙烯有效的阻聚剂,但对丙烯酸甲酯和甲基丙烯酸甲酯仅起缓聚作用;醌类的阻聚机理尚不完全清楚,可能是醌与自由基进行加成或歧化反应,生成醌型或半醌型自由墓再与活性,自由基结合,得到没有活性的产物,起到阻聚作用。每一分子对苯醌能终止的自由基数大于1,甚至达到2。将四氯苯醢、l,4-萘醌等加入到含苯乙烯的不饱和聚酯树脂中。
能起到良好的阻聚作用,提高储存稳定性。四氯苯醌是醋酸乙烯的有效阻聚剂,但对丙烯腈无阻聚效果。
(3)芳烃硝基化合物阻聚剂。劳烃硝基化合物的阻聚效果不如酚类,只用于醋酸乙烯、异戊二烯、丁二烯、苯乙烯,但对丙烯酸酯和甲基丙烯酸酯类没有阻聚作用:硝基苯通过与自由基生成稳定的氮氧自由基而起阻聚作用。
(4)无机化合物阻聚剂。无机盐是通过电荷转移而起阻聚作用,氯化铁阻聚效率高,并能按化学剂量1:1消灭自由基。硫酸钠、硫化钠、硫氰酸铵能用作水相阻聚剂。
(5)氧气的阻聚作用。分子氧有两个未配对的电子,常被视为双自由基,能起阻聚和引发双重作用,低温时则起阻聚作用。氧能与交联剂的自由基和大分子链自由基反应生成较无活性的过氧化自由基,在室温或稍高温度下都不能引发共聚合反应。这种氧的阻聚作用使不饱和聚酯树脂与空气接触的表面固化不完全而发黏。但在高温时氧与自由基生成的过氧化物自由基能分解成活性自由基,从而引发聚合反应。当氧在单体中的溶解度达10-3mol/L时,就有强烈的阻聚作用。包装厌氧胶的容器不能装满就是保证有足够量的氧气,阻聚而稳定储存。在聚合反应过程中通惰性气体则是防止氧的阻聚作用

Ⅶ 醌类染料是什么,我为什么找不到

醌类染料是一种含醌的染料
染料是能将纤维或其他基质染成一定颜色的有机化合物,染料主要用于织物的染色和印花,它们大多可溶于水,或通过一定的化学处理在染色时转变成可溶状态。有些染料不溶于水但可以溶于醇、油,可用于油蜡、塑料等物质的着色
颜料是有色的不溶于水和一般有机溶剂的有机或无机有色化合物,但是并非所有的有色物都可作为有机颜料使用,有色物质要成为颜料,它们必须具备一下性能:
1)色彩鲜艳,能赋予被着色物(或底物)牢固的色泽
2)不溶于水、有机溶剂或应用介质
3)在应用中易于均匀分散,而且在整个分散过程中不受应用介质的物理和化学影响,保留他们自身固有的晶体构造。
4)耐日晒、耐气候、耐热、耐酸碱和耐有机溶剂。
与染料相比,有机颜料在应用性能上存在一定的区别。染料的传统用途是对纺织品进行染色,而颜料的传统用途却是对非纺织品(如油墨、油漆、涂料、塑料、橡胶等)进行着色。这是因为染料对纺织品有亲和力(或称直接性),可以被纤维分子吸附、固着;而颜料对所有的着色对象均无亲和力,主要靠树脂、粘合剂等其他成膜物质与着色对象结合在一起。染料在使用过程中一般先溶于使用介质,即使是分散染料还是还原染料,在染色时也经历了一个从晶体状态先溶于水成为分子状态后再上染到纤维上的过程。因此,染料自身的颜色并不代表它在织物上的颜色。颜料在使用过程中由于不溶于使用介质,所以始终以原来的晶体状态存在,因此颜料自身的颜色就代表了它在底物中的颜色。正是因为如此,颜料的晶体状态对颜料而言十分重要,而染料的晶体状态就没有那么重要,或者说染料自身的晶体状态与它的染色行为关系不密切。染料与颜料虽是不同的概念,但在特定情况下,它们又可以通用。如某些蒽醌类还原染料,它们都是不溶性的染料,但经过颜料化后也可以用作颜料,这类染料称为颜料性染料,或染料性颜料。

Ⅷ 分离天然产物常用的吸附剂有哪些,各有何特点

硅胶:色谱用硅胶为一多孔性物质,分子中具有硅氧烷的交链结构,同时在颗粒表面又有很多硅醇基。硅胶吸附作用的强弱与硅醇基的含量多少有关。硅醇基能够通过氢键的形成而吸附水分,因此硅胶的吸附力随吸着的水分增加而降低。
硅胶是一种酸性吸附剂,适用于中性或酸性成分的层析。同时硅胶又是一种弱酸性阳离子交换剂,其表面上的硅醇基能释放弱酸性的氢离子,当遇到较强的碱性化合物,则可因离子交换反应而吸附碱性化合物。所以硅胶是一种普适的吸附剂。 氧化铝:

碱性氧化铝:对于分离一些碱性中草药成分,如生物碱类的分离颇为理想。不宜用于醛、酮、酸、内酯等类型的化合物分离。因为有时碱性氧化铝可与上述成分发生次级反应,如异构化、氧化、消除反应等。 中性氧化铝:仍属于碱性吸附剂的范畴,可适用于酸性成分的分离。 酸性氧化铝:适合于酸性成分的层析。
对于硅胶、氧化铝等极性吸附剂来讲,则有下列特点:
1)对极性物质具有较强的亲和能力,极性强的溶质被优先吸附;
2)溶剂极性越弱,则吸附剂对溶质的吸附能力越强。反之,溶剂的极性越强,则吸附剂对溶质的吸附能力越弱;
3)洗脱:被硅胶、氧化铝等吸附的溶质,可以再加入极性较强的溶剂,使其被该溶剂置换从而洗脱下来。

活性炭:非极性吸附剂
活性炭主要用于分离水溶性成分,如氨基酸、糖类及某些甙。
吸附特点:对非极性物质具有较强的亲和能力,极性弱的溶质被优先吸附;
溶剂的极性越强,则吸附剂对溶质的吸附能力越强;反之,溶剂极性越弱,则吸附剂对溶质的吸附能力越弱。因此,活性炭的吸附作用,在水溶液中最强,在有机溶剂中则较弱。所以,溶剂极性降低,活性炭对溶质的吸附郁能力也随之降低。 聚酰胺:氢键吸附(半化学吸附)

聚酰胺是由酰胺聚合而成的高分子物质,分子内存在着很多酰胺基(-CONH) ,可与酚、酸、硝基化合物、醌类等形成氢键,因而产生吸附作用。 吸附作用的特点:
① 形成氢键的基团数目越多,则吸附能力越强。
② 成键位置对吸附能力也有影响。易形成分子内氢键者, 其在聚酰胺上的吸附响应减弱。
③ 分子中芳香化程度高者,则吸附性增强;反之,则减弱。
一般情况下,各种溶剂在聚酰胺柱上的洗脱能力由弱致强的大致顺序如下: 水—甲醇—乙醇—氢氧化钠水溶液—甲酰胺—二甲基甲酰胺—尿素水溶液 大孔吸附树脂:

大孔吸附树脂一般为白色球形颗粒,通常分为极性和非极性两类。
大孔吸附树脂是吸附性和分子筛性相结合的分离材料。吸附性是由范德华引力或氢键引起的。分子筛是由于其本身多孔性结构产生的。 特点:
①一般非极性化合物在水中易被非极性树脂吸附, 极性化合物在水中易被极性树脂吸附。
②化合物的分子量、极性、能否形成氢键等都影响其与大孔树脂的吸附作用。分子量小、极性小的化合物与非极性大孔树脂吸附作用强。

Ⅸ 柱层析分离蒽醌类化合物,为什么不用氧化铝作为吸附剂

硅胶:色谱用硅胶孔性物质具硅氧烷交链结构同颗粒表面硅醇基硅胶吸附作用强弱与硅醇基含量少关硅醇基能够通氢键形吸附水硅胶吸附力随吸着水增加降低
硅胶种酸性吸附剂适用于性或酸性层析同硅胶种弱酸性阳离交换剂其表面硅醇基能释放弱酸性氢离遇较强碱性化合物则离交换反应吸附碱性化合物所硅胶种普适吸附剂 氧化铝:

碱性氧化铝:于离些碱性草药物碱类离颇理想宜用于醛、酮、酸、内酯等类型化合物离碱性氧化铝与述发级反应异构化、氧化、消除反应等 性氧化铝:仍属于碱性吸附剂范畴适用于酸性离 酸性氧化铝:适合于酸性层析
于硅胶、氧化铝等极性吸附剂讲则列特点:
1)极性物质具较强亲能力极性强溶质优先吸附;
2)溶剂极性越弱则吸附剂溶质吸附能力越强反溶剂极性越强则吸附剂溶质吸附能力越弱;
3)洗脱:硅胶、氧化铝等吸附溶质再加入极性较强溶剂使其该溶剂置换洗脱

性炭:非极性吸附剂
性炭主要用于离水溶性氨基酸、糖类及某些甙
吸附特点:非极性物质具较强亲能力极性弱溶质优先吸附;
溶剂极性越强则吸附剂溶质吸附能力越强;反溶剂极性越弱则吸附剂溶质吸附能力越弱性炭吸附作用水溶液强机溶剂则较弱所溶剂极性降低性炭溶质吸附郁能力随降低 聚酰胺:氢键吸附(半化吸附)

聚酰胺由酰胺聚合高物质内存着酰胺基(-CONH) 与酚、酸、硝基化合物、醌类等形氢键产吸附作用 吸附作用特点:
① 形氢键基团数目越则吸附能力越强
② 键位置吸附能力影响易形内氢键者 其聚酰胺吸附响应减弱
③ 芳香化程度高者则吸附性增强;反则减弱
般情况各种溶剂聚酰胺柱洗脱能力由弱致强致顺序: 水—甲醇—乙醇—氢氧化钠水溶液—甲酰胺—二甲基甲酰胺—尿素水溶液 孔吸附树脂:

孔吸附树脂般白色球形颗粒通极性非极性两类
孔吸附树脂吸附性筛性相结合离材料吸附性由范德华引力或氢键引起筛由于其本身孔性结构产 特点:
①般非极性化合物水易非极性树脂吸附 极性化合物水易极性树脂吸附
②化合物量、极性、能否形氢键等都影响其与孔树脂吸附作用量、极性化合物与非极性孔树脂吸附作用强

Ⅹ 大孔吸附树脂型号有哪些

这是我自己总结的 一 大孔树脂 1.原理:大孔吸附树脂是以苯乙烯和丙酸酯为单体,加入乙烯苯为交联剂,甲苯、二甲苯为致孔剂,它们相互交联聚合形成了多孔骨架结构. 不同于以往使用的离子交换树脂,大孔吸附树脂为吸附性和筛选性原理相结合的分离材料. 吸附性是由于范德华力或产生氢键的结果. 筛选性是由于其本身多孔性结构所决定. 因此,有机化合物根据吸附力的不同及分子量的大小,在树脂的吸附机理和筛分原理作用下实现分离. 2.类型按其极性和所选用的单体分子结构分为: (1)非极性大孔树脂 苯乙烯、二乙烯苯聚合物,也称芳香族吸附剂.(如HPD-100,D-101等) (2)中等极性大孔树脂 聚丙烯酸酯型聚合物,以多功能团的甲基丙烯酸酯作为交联剂,也称脂肪族吸附剂. (3)极性大孔树脂 含硫氧、酰胺基团,如丙烯酰胺. (4)强极性大孔树脂 含氮氧基团,如氧化氮类. 3 选择选择树脂要综合各方面的因素(如:待分离化合物的分子大小、所含特有基团等)适当孔径下,应有较高的比表面积;具有适宜的极性;与被吸附物质有相似的功能基. 二 聚酰胺 1.原理:聚酰胺(polyamide,PA)是由酰胺聚合而成的一类高分子物质,又叫尼龙、锦纶色谱中常用的聚酰胺有:尼龙-6(己内酰胺聚合而成)和尼龙-66(己二酸与己二胺聚合而成).既亲水又亲脂,性能较好,水溶性物质和脂溶性物质均可分离.锦纶11,1010的亲水性较差,不能使用含水量高的溶剂系统.原理暂时有2种: ①氢键吸附原理:酚、酸的羟基与聚酰胺中羰基形成氢键;芳香硝基、醌类化合物的硝基或羟基(醌)与聚酰胺中游离氨基形成氢键;脱吸附通过溶剂分子形成新氢键取代原有氢键而完成. ②双重层析原理:聚酰胺既有非极性的脂肪键,又有极性的酰胺键. 当用含水极性溶剂作流动相时,聚酰胺作为非极性固定相,其色谱行为类似反相分配色谱,所以苷比苷元容易洗脱. 当用非极性氯仿-甲醇作为流动相时,聚酰胺则作为极性固定相,其色谱行为类似正相分配色谱,所以苷元比其苷容易洗脱. 2.适用:聚酰胺层析可用于黄酮、酚类、有机酸、生物碱、萜类、甾体、苷类、糖类、氨基酸衍生物、核苷类等的化合物的分离,尤其是对黄酮类、酚类、醌类等物质的分离远比其它方法优越. 特点:对黄酮等物质的层析是可逆的;分离效果好,可分离极性相近的类似物,其柱层析的样品容量大,适用于制备分离.

热点内容
丁度巴拉斯情人电影推荐 发布:2024-08-19 09:13:07 浏览:886
类似深水的露点电影 发布:2024-08-19 09:10:12 浏览:80
《消失的眼角膜》2电影 发布:2024-08-19 08:34:43 浏览:878
私人影院什么电影好看 发布:2024-08-19 08:33:32 浏览:593
干 B 发布:2024-08-19 08:30:21 浏览:910
夜晚看片网站 发布:2024-08-19 08:20:59 浏览:440
台湾男同电影《越界》 发布:2024-08-19 08:04:35 浏览:290
看电影选座位追女孩 发布:2024-08-19 07:54:42 浏览:975
日本a级爱情 发布:2024-08-19 07:30:38 浏览:832
生活中的玛丽类似电影 发布:2024-08-19 07:26:46 浏览:239