吸附树脂溶胀
A. AB-8大孔吸附树脂在水中能溶胀吗
必然溶胀,含水量一般可以达到40%-75%。装柱的时候在后在上面加一玻璃球,防止大孔树脂漂浮
B. 离子交换树脂和吸附树脂为什么必须是交联结构
离子交换树脂的交联度是什么?
离子交换树脂中含交联剂的重量称为离子交换树脂的交联度,一般以百分比表示。交联度是骨架结构的重要因素,离子交换树脂的交联度越高,树脂的孔径越紧,选择性较强,含水量越少,交换容量越高,机械强度越好。交联度越低,吸水量就越大,交换速度快,一般树脂的交联度在4-14%之间,交联度为7%左右的性能是比较理想的。
树脂交联度与哪些性能相关?
1.树脂的交联度与树脂的再生:
一般情况下,交联度低的树脂,再生比较容易,且再生的时间要短一些,相反交联度越高的树脂,再生比较困难,且再生反应时间较长,一般来说强酸性树脂和强碱性树脂再生比较困难,而弱酸性或弱碱性树脂再生比较容易,凝胶型树脂再生反应时间比较长,而大孔型树脂反应时间较短。
2.树脂的交联度与树脂的密度:
树脂的交联度与密度息息相关,一般情况下,交联度越高的树脂,密度就越高,而强酸性或强碱性树脂的密度高于弱酸或弱碱性树脂,大孔型树脂的密度要比凝胶型树脂较低一些。
3.树脂的交联度与树脂的选择性:
一般情况下,交联度高的树脂对离子的选择性更强一些,大孔型树脂的选择性要小于凝胶型树脂,这种选择性在稀溶液中较大,在浓溶液中较小。
4.树脂的交联度与树脂的耐用性:
交联度低的树脂较易碎裂,但树脂的耐用性更主要地决定于交联结构的均匀程度及其强度。如大孔树脂,具有较高的交联度者,结构稳定,能耐反复再生。
5.树脂的交联度与高分子骨架:
树脂的骨架就是由化学单体和交联剂组成的,比如说比较经常使用的聚苯乙烯树脂,其化学单位是苯乙烯,交联剂为二乙烯苯,共聚后生成球形小颗粒,再将离子交换基团引入。树脂中引入的离子交换基团不同,其能交换的离子种类也不同。例如:
1.引入磺酸基(-SO3H)时为强酸阳离子交换树脂
2.引入羧酸基(-COOH)时为弱酸阳离子交换树脂
3.引入胺基[N(CH3)3OH]时则生成强碱阴离子交换树脂
4.引入亚胺基[N(CH3OH)2]时则生成弱碱阴离子交换树脂。
C. 离子交换树脂和吸附树脂的结构有什么区别
离子交换树脂出三部分组成:一是网状结构的高分子骨架.二是连接在骨架上的功能基团,三是和功能基带相反电荷的可交换离子。三者互为依存、统一于每粒离子交换的珠体之中。离于交换树脂作为商品,它在运输、贮藏和使用时往往部含一定量的水份,因此水分子充满于每粒离子交换树脂的骨架、功能基和反离子之间。
采用常规的悬浮聚合方法,可制得凝胶型的离子交换树脂,产品一般是透明的、无孔的,树脂吸水后树脂相内产生微孔。采用制孔技术可制得大孔型离子交换树脂,它不同于凝胶树脂,不论大孔树脂是处于干态或湿态、收缩或溶胀,都存在着比凝胶型树脂更多、更大的孔道,比表面也就更大,有利于离子的迁移扩散,提高交换速率和工作效率
与离子交换树脂相比较,吸附树脂的组成中不存在功能基及功能基的反离子,它类似于不含功能基及功能基反离子的大孔树脂,在制造时往往投入更多的交联剂和更严格地选用致孔剂,以合成具有更大比表而积的不同孔径、不同孔容和不同比表面积的吸附树脂。
根据所带的功能基的特性,离子交换树脂可分为阳离子交换树脂、阴离子交换树脂和其它树脂。带有酸性功能基、并能与阳离子进行交换的称为阳离子交换树脂,带有碱性功能基并能与阴离子进行交换的称为阴离子交换树脂。基于功能基上酸、碱有强弱之分,离子交换树脂又可细分为强酸性(一SO,H)、中强酸(一PO(OH))及弱酸性(—COOH)、强碱(一N+R,Cl)、弱碱性(一NH,,—NRH,-NR)离子交换树脂。在强碱性离子交换树脂中将含有[(N+(CH2)C1)]的树脂叫强碱I型树脂,含有[(N+(CH3)2(CH,CH,0HD]的树脂叫强碱Ⅱ型树脂。带有鳌合基、氧化还原基、阳阴两性基的树脂;分别称为鳌合树脂、氧化还原树脂和两性树脂。上述树脂通常都用酸、碱、盐再生,而弱酸弱碱的两性树脂可用热水再生,故弱酸弱碱的两性树脂又称热再生树脂.
吸附树脂可以大体上分为非极性吸附剂、中极性和强极性吸附剂三大类。非极性吸附树脂是偶极矩很小的单体聚合制得并不带任何功能基的吸附树脂。苯乙烯——二乙烯苯体系的吸附剂是非极性吸附树脂的代表。这类非极性吸附树脂的孔表面的疏水性很强,最适于从极性溶剂(如水)中吸附非极性的有机物。中极性吸附材脂是含酯基的吸附树脂。例如,丙烯酸甲酯或甲基丙烯酸甲酯与双甲基丙烯酸乙二醇酯等交联剂共聚的吸附剂,其孔表面疏水和亲水部分共有,既可用于极性溶剂中吸附非极性物质,也可用于非极性溶剂中吸附极性物质。强极性(或称极性)吸附树脂是指含酰氨基、氰基、酚羟基等极性功能基的吸附树脂,它适用于非极性溶剂中吸附极性物质。有时,将含氮、氧、硫等配体的离子交换树脂也称为强极性吸附树脂,因此,离子交换树脂和强极性吸附树脂之间没有严格的界限。
D. 螯合树脂吸附重金属的原理及其优势是什么
螯合树脂的功能基团上的原子和金属离子发生配位反应,产生配位共价键,形成结专构稳属定的螯合物,和离子交换树脂的原理不同,离子交换树脂是用静电作用和金属离子结合。因此螯合树脂与金属离子的结合更稳定,特异性选择更好,应用也更加广泛。
一般来讲,螯合树脂的优势体现在处理精度更高,吸附量大,可以低浓度废水进行深度处理且浓缩比高。
E. 吸附树脂和离子交换树脂有区别吗,是一样的吗
吸附树脂和离子交换树脂有区别吗,是一样的吗?
离子交换树脂出三部分组成:一是网状结构的高分子骨架.二是连接在骨架上的功能基团,三是和功能基带相反电荷的可交换离子。三者互为依存、统一于每粒离子交换的珠体之中。离于交换树脂作为商品,它在运输、贮藏和使用时往往部含一定量的水份,因此水分子充满于每粒离子交换树脂的骨架、功能基和反离子之间。
采用常规的悬浮聚合方法,可制得凝胶型的离子交换树脂,产品一般是透明的、无孔的,树脂吸水后树脂相内产生微孔。采用制孔技术可制得大孔型离子交换树脂,它不同于凝胶树脂,不论大孔树脂是处于干态或湿态、收缩或溶胀,都存在着比凝胶型树脂更多、更大的孔道,比表面也就更大,有利于离子的迁移扩散,提高交换速率和工作效率
与离子交换树脂相比较,吸附树脂的组成中不存在功能基及功能基的反离子,它类似于不含功能基及功能基反离子的大孔树脂,在制造时往往投入更多的交联剂和更严格地选用致孔剂,以合成具有更大比表而积的不同孔径、不同孔容和不同比表面积的吸附树脂。
根据所带的功能基的特性,离子交换树脂可分为阳离子交换树脂、阴离子交换树脂和其它树脂。带有酸性功能基、并能与阳离子进行交换的称为阳离子交换树脂,带有碱性功能基并能与阴离子进行交换的称为阴离子交换树脂。基于功能基上酸、碱有强弱之分,离子交换树脂又可细分为强酸性(一SO,H)、中强酸(一PO(OH))及弱酸性(—COOH)、强碱(一N+R,Cl)、弱碱性(一NH,,—NRH,-NR)离子交换树脂。在强碱性离子交换树脂中将含有[(N+(CH2)C1)]的树脂叫强碱I型树脂,含有[(N+(CH3)2(CH,CH,0HD]的树脂叫强碱Ⅱ型树脂。带有鳌合基、氧化还原基、阳阴两性基的树脂;分别称为鳌合树脂、氧化还原树脂和两性树脂。上述树脂通常都用酸、碱、盐再生,而弱酸弱碱的两性树脂可用热水再生,故弱酸弱碱的两性树脂又称热再生树脂.
吸附树脂可以大体上分为非极性吸附剂、中极性和强极性吸附剂三大类。非极性吸附树脂是偶极矩很小的单体聚合制得并不带任何功能基的吸附树脂。苯乙烯——二乙烯苯体系的吸附剂是非极性吸附树脂的代表。这类非极性吸附树脂的孔表面的疏水性很强,最适于从极性溶剂(如水)中吸附非极性的有机物。中极性吸附材脂是含酯基的吸附树脂。例如,丙烯酸甲酯或甲基丙烯酸甲酯与双甲基丙烯酸乙二醇酯等交联剂共聚的吸附剂,其孔表面疏水和亲水部分共有,既可用于极性溶剂中吸附非极性物质,也可用于非极性溶剂中吸附极性物质。强极性(或称极性)吸附树脂是指含酰氨基、氰基、酚羟基等极性功能基的吸附树脂,它适用于非极性溶剂中吸附极性物质。有时,将含氮、氧、硫等配体的离子交换树脂也称为强极性吸附树脂,因此,离子交换树脂和强极性吸附树脂之间没有严格的界限。
F. 为什么大孔吸附树脂在梯度洗脱时经常产生气泡
换梯度时
水和醇相溶会产生热量
使空气析出,同时大孔树脂在水和不同浓度的醇中溶胀程度不一样,可能也是气泡产生的原因
G. 什么是溶胀现象
一些有孔隙的物质,吸收外界水分或者气体等,这些外来物充斥于空隙之中使原物质体积增大的现象。
能够溶胀的物质很多,多数树脂类物质、凝胶类物质都可以溶胀。
H. 为什么大孔吸附树脂在梯度洗脱时经常产生气泡
换梯度时 水和醇相溶会产生热量 使空气析出,同时大孔树脂在水和不同浓度的醇中溶胀程度不一样,可能也是气泡产生的原因
I. 离子交换树脂的物理结构
离子树脂常分为凝胶型和大孔型两类。
凝胶型树脂的高分子骨架,在干燥的情况下内部没有毛细孔。它在吸水时润胀,在大分子链节间形成很微细的孔隙,通常称为显微孔(micro-pore)。湿润树脂的平均孔径为2~4nm(2×10-6 ~4×10-6mm)。这类树脂较适合用于吸附无机离子,它们的直径较小,一般为0.3~0.6nm。这类树脂不能吸附大分子有机物质,因后者的尺寸较大,如蛋白质分子直径为5~20nm,不能进入这类树脂的显微孔隙中。
大孔型树脂是在聚合反应时加入致孔剂,形成多孔海绵状构造的骨架,内部有大量永久性的微孔,再导入交换基团制成。它并存有微细孔和大网孔(macro-pore),润湿树脂的孔径达100~500nm,其大小和数量都可以在制造时控制。孔道的表面积可以增大到超过1000m2/g。这不仅为离子交换提供了良好的接触条件,缩短了离子扩散的路程,还增加了许多链节活性中心,通过分子间的范德华引力(van de Waals force)产生分子吸附作用,能够象活性炭那样吸附各种非离子性物质,扩大它的功能。一些不带交换功能团的大孔型树脂也能够吸附、分离多种物质,例如化工厂废水中的酚类物。
大孔树脂内部的孔隙又多又大,表面积很大,活性中心多,离子扩散速度快,离子交换速度也快很多,约比凝胶型树脂快约十倍。使用时的作用快、效率高,所需处理时间缩短。大孔树脂还有多种优点:耐溶胀,不易碎裂,耐氧化,耐磨损,耐热及耐温度变化,以及对有机大分子物质较易吸附和交换,因而抗污染力强,并较容易再生。
J. 什么叫离子交换树脂的选择性与什么因素有关
什么是离子交换树脂的选择性?
离子交换树脂的选择性是指离子交换树脂能吸专附的金属属离子,污水中有很多金属离子而离子交树脂不可能可以把所有的金属离子都吸咐干净的,有一些金属离子树脂对它的吸附能力是比较弱的而有一些则比较强,也就是说离子交换树脂只能针对性的吸附某一些金属离子,这就是离子交换树脂的选择性。
离子交换树脂的选择性怎样?
离子交换反应和其他化学反应一样,完全服从质量作用定律。离子交换亲和力,也就是离子交换树脂对水中金属离子的吸附能力。离子交换树脂对离子的吸附能力与离子半径大小和离子所带的电荷数有关。离子交换树脂的吸附能力与金属离子的电荷数、价态和金属离子的半径成正比。
离子交换树脂的选择性:
经过实验证明,低浓度、常温下,离子交换树脂对不同离子的吸附能力顺序有下列规律。
阳离子交换树脂对金属离子的吸附顺序是:
Fe3+>Al3+>Pb2+>Ca2+>Mg2+>K+>Na+>H+。
强碱性阴离子树脂对阴离子的吸附顺序是:
SO42->NO3->CI->HCO3->OH-。
弱碱性阴离子树脂对阴离子的吸附顺序是:
OH->柠檬酸根3->SO42->酒石酸根2->草酸根2->PO43->NO2->Cl->醋酸根-
>HCO3-。