当前位置:首页 » 净水耗材 » 激光干涉云纹复合树脂材料残余应力测试标准

激光干涉云纹复合树脂材料残余应力测试标准

发布时间: 2021-04-09 10:53:32

1. 西安那些地方可以测试残余应力主要是切削加工形成的残余应力,具有测量钛合金、高温合金等材料的能力

估计也只有你除去的这几个地方了。

2. 复合材料的界面残余应力类型

最常见的是固化过程中因树脂和纤维热膨胀系数差异产生的内应力

3. 残余应力测试的残余应力测试方法

金属材料在机械加工和热加工(铸件、焊接件、锻件)的过程中都会产生不同的残余应力。残余应力的存在对材料的力学性能有着 重大的影响,焊接件的制造和热处理过程中尤为明显。残余应力的存在,一方面工件会降低强度,使工件在制造时产生变形和开裂等工艺缺陷;另一方面又会在制造后的自然释放过程中使材料的疲劳强度、应力腐蚀等力学性能降低。从而造成使用中的问题。因此,残余应力的检测对于热处理工艺、表面强化处理工艺、消除应力工艺的效果及废品分析等都有很重要的意义。
残余应力的测量方法可以分为有损和无损两大类。
有损测试方法就是应力释放法,也可以称为机械的方法;无损方法就是物理的方法。
机械方法目前用得最多的是钻孔法(盲孔法),其次还有针对一定对象的环芯法。
物理方法中用得最多的是X射线衍射法,其他主要物理方法还有中子衍射法、磁性法、超声法以及压痕应变法。
残余应力的检测国内外均已开展多年,其测定方法可分为机械测定法和物理测定法。机械测定法测定时须将局部分离或分割使应力释放,这就要对工件造成一定损伤甚至破坏,典型的有切槽法和钻孔法,这方面技术成熟,理论完善。其中尤以小直径盲孔法因对工件损伤较小、测量较可靠,已成为现场实测的一种标准试验方法(见ASTM E837-99)。物理测定法主要有射线法、磁性法、超声波法,以及国内首创的压痕应变法(GB/T 24179-2009),均属于无损检测方法。射线法理论完善,但因有射线伤害和仅能测定表面应力使其应用受到很大限制;磁性法为根据铁磁体磁饱和过程中应力与磁化曲线之间的变化关系进行测定,在一定范围内适用;压痕应变法采用电阻应变片作为测量用敏感元件,在应变花中心部位采用冲击加载制造压痕以代替钻孔,通过应变仪记录压痕区外弹性区应变增量的变化,从而获得对应于残余应力大小的真实弹性应变,求出残余应力的大小。从已有工程应用结果看,这类方法既有应力释放法的优点,测试设备相对简单,测试结果准确可靠,又有物性法的优点,被测件表面无明显损伤(压痕直径约1.2mm,深度0.2mm),属于无损应力检测方法。综合各方面的资料,本公司目前开展残余应力检测方面的研究主要以压痕法、小直径盲孔法、X射线衍射法为主。
盲孔法残余应力检测法就是在工件的被测部位贴上应变花(计),通过在应变花(计)中心打一个Φ2mm左右的小盲孔引起残余应力的释放,同时,由残余应力测试仪将这种释放量测出并通过计算得出该部位的残余应力大小和方向。
具体步骤如下:
①、将TJ120-1.5-φ1.5应变花按应变计粘贴通用方法准确粘贴在试样测量点上,并焊好测量导线。粘贴前试样表面应打磨,但在打磨时不能破坏原有残余应力场。
②、连接静态电阻应变仪。以待测的应变花作为补偿片,将各应变计所接电桥调零。
③、安装钻具,将带观察镜的钻具放在试样表面上,必要时 开启照明灯,在观察镜里观察,初步对准应变花中心位置。然后在钻具支腿与试样接触处滴少许502胶水,胶水固化后拧紧钻具支腿上的锁帽,将钻具固定于试样表面。再松开锁紧压盖,调X-Y方向的四个调节螺钉3(必须先松后紧),使观察镜1的十字线中心在转动观察镜观察时始终与应变花中心保持重合。锁紧压盖2,静态电阻应变仪重新调零。
④、钻孔,取下观察镜,将专用端面铣刀的钻杆擦干净,滴上润滑油(需用缝纫机油,不可使用一般机油),插入钻具的套筒内,用手轻轻转动,划去钻孔部位的应变花基底后,取出钻杆。此时,每个应变计的应变读数应当变化不大,再次调整静态电阻应变仪的零点。
将配置φ1.0mm钻头的钻杆擦干净,滴上润滑油插入钻具套筒内,松开钻杆上的定位卡圈11,在钻杆卡圈与钻具套筒7间塞入厚度为2.0mm的钻孔深度控制垫块8,使钻头与工件接触后固定卡圈。除去2.0mm的垫块,连接好手电钻,调压器调至60~70V,即可开钻。保持合适的压力,钻至卡圈与夹具套筒间贴合,即预定孔深(2.0mm),拔出钻杆。再换上配置φ1.5mm麻花钻杆,按以上相同步骤进行钻孔,。

4. 无损检测执行标准有哪些

无损检测国家标准目录


GB/T 1786-2008

锻制圆饼超声波检验方法

GB/T 2970-2004

厚钢板超声波检验方法

GB/T 3310-1999

铜合金棒材超声波探伤方法

GB/T 3323-2005

金属熔化焊焊接接头射线照相

GB/T 4075-2003

密封放射源 一般要求和分级

GB/T 4162-2008

锻轧钢棒超声检测方法

GB/T 4835-2008

辐射防护仪器 β、X和γ辐射周围和/或定向剂量当量(率)仪和/或监测仪

GB/T 5097-2005

无损检测 渗透检测和磁粉检测 观察条件

GB/T 5126-2001

铝及铝合金冷拉薄壁管材涡流探伤方法

GB/T 5193-2007

钛及钛合金加工产品超声波探伤方法

GB/T 5248-2008

铜及铜合金无缝管涡流探伤方法

GB 5294-2001

职业照射个人监测规程 外照射监测

GB/T 5616-2006

无损检测 应用导则

GB/T 5677-2007

铸钢件射线照相检测

GB/T 5777-2008

无缝钢管超声波探伤检验方法

GB/T 6402-2008

钢锻件超声检测方法

GB/T 6519-2000

变形铝合金产品超声波检验方法

GB/T 7233.1-2009

铸钢件 超声检测 第1部分:一般用途铸钢件

GB/T 7233.2-2010

铸钢件 超声检测 第2部分:高承压铸钢件

GB/T 7704-2008

无损检测 X射线应力测定方法

GB/T 7734-2004

复合钢板超声波检验方法

GB/T 7735-2004

钢管涡流探伤检验方法

GB/T 7736-2008

钢的低倍缺陷超声波检验法

GB/T 8361-2001

冷拉圆钢表面超声波探伤方法

GB/T 8651-2002

金属板材超声板波探伤方法

GB/T 9443-2007

铸钢件渗透检测

GB/T 9444-2007

铸钢件磁粉检测

GB/T 9445-2008

无损检测 人员资格鉴定与认证

GB/T 9582-2008

摄影 工业射线胶片 ISO感光度,ISO平均斜率和ISO斜率G2和G4的测定(用X和γ射线曝光)

GB/T 10121-2008

钢材塔形发纹磁粉检验方法

GB 10252-1996

钴-60 辐照装置的辐射防护与安全标准

GB/T 11259-2008

无损检测 超声检测用钢参考试块的制作与检验方法

GB/T 11260-2008

圆钢涡流探伤方法

GB/T 11343-2008

无损检测 接触式超声斜射检测方法

GB/T 11344-2008

无损检测 接触式超声脉冲回波法测厚方法

GB/T 11345-1989

钢焊缝手工超声波探伤方法和探伤结果分级

GB/T 11346-1989

铝合金铸件X射线照相检验针孔(圆形)分级

GB/T 11683-1989

应急辐射防护用携带式高量程X、γ和β辐射剂量与剂量率仪

GB/T 11712-1989

用于X、γ线外照射放射防护的剂量转换因子

GB 11806-2004

放射性物质安全运输规程

GB/T 11809-2008

压水堆燃料棒焊缝检验方法 金相检验和X射线照相检验

GB/T 11813-2008

压水堆燃料棒氦质谱检漏

GB/T 12604.1-2005

无损检测 术语 超声检测

GB/T 12604.2-2005

无损检测 术语 射线照相检测

GB/T 12604.3-2005

无损检测 术语 渗透检测

GB/T 12604.4-2005

无损检测 术语 声发射检测

GB/T 12604.5-2008

无损检测 术语 磁粉检测

GB/T 12604.6-2008

无损检测 术语 涡流检测

GB/T 12604.7-1995

无损检测术语 泄漏检测

GB/T 12604.8-1995

无损检测术语 中子检测

GB/T 12604.9-2008

无损检测 术语 红外检测

GB/T 12604.10-2011

无损检测 术语 磁记忆检测

GB/T 12605-2008

无损检测 金属管道熔化焊环向对接接头射线照相检测方法

GB/T 12606-2008

钢管漏磁探伤方法

GB/T 12969.1-2007

钛及钛合金管材超声波探伤方法

GB/T 12969.2-2007

钛及钛合金管材涡流探伤方法

GB/T 13161-2003

直读式个人X和γ辐射剂量当量和剂量当量率监测仪

GB/T 13315-1991

锻钢冷轧工作辊超声波探伤方法

GB/T 13316-1991

铸钢轧辊超声波探伤方法

GB/T 13653-2004

航空轮胎X射线检测方法
GB/T 13654-2004 航空轮胎全息照像检测方法

GB/T 13979-2008

质谱检漏仪

GB/T 14054-1993

辐射防护用固定式X、γ辐射剂量率仪、报警装置和监测仪

GB/T 14058-2008

γ射线探伤机

GB/T 14323-1993

X、γ辐射个人报警仪

GB/T 14480.3-2008

无损检测 涡流检测设备 第3部分: 系统性能和检验

GB/T 14693-2008

无损检测 符号表示法

GB/T 15147-1994

核燃料组件零部件的渗透检验方法

GB/T 15822.1-2005

无损检测 磁粉检测 第1部分:总则

GB/T 15822.2-2005

无损检测 磁粉检测 第2部分:检测介质

GB/T 15822.3-2005
无损检测 磁粉检测 第3部分:设备

GB/T 15823-2009

无损检测 氦泄漏检测方法

GB/T 15830-2008

无损检测 钢制管道环向焊缝对接接头超声检测方法

GB 16357-1996

工业X射线探伤放射卫生防护标准

GB 16363-1996

X射线防护材料屏蔽性能及检验方法

GB/T 16544-2008

无损检测 伽马射线全景曝光照相检测方法

GB/T 17150-1997

放射卫生防护监测规范第1部分:工业X射线探伤

GB/T 17230-1998

放射性物质安全运输货包的泄漏检验

GB/T 17455-2008

无损检测 表面检测的金相复型技术

GB 17925-1999

气瓶对接焊缝X射线实时成像检测

GB/T 18182-2000

金属压力容器声发射检测及结果评价方法
GB/T 18193-2000 真空技术质谱检漏仪校准

GB/T 18256-2000

焊接钢管(埋弧焊除外) 用于确认水压密封性的超声波检测方法

GB/T 18329.1-2001

滑动轴承多层金属滑动轴承结合强度的超声波无损检验

GB 18465-2001

工业γ射线探伤放射卫生防护要求

GB/T 18694-2002

无损检测 超声检验 探头及其声场的表征
GB/T 18851.1-2005 无损检测 渗透检测 第1部分:总则
GB/T 18851.2-2005 无损检测 渗透检测 第2部分:渗透材料的检验
GB/T 18851.3-2008 无损检测 渗透检测 第3部分:参考试块
GB/T 18851.4-2005 无损检测 渗透检测 第4部分:设备
GB/T 18851.5-2005 无损检测 渗透检测 第5部分:验证方法
GB/T 18852-2002 无损检测 超声检验 测量接触探头声束特性的参考试块和方法
GB 18871-2002 电离辐射防护与辐射源安全基本标准
GB/T 19293-2003 对接焊缝X射线实时成像检测法
GB/T 19348.1-2003 无损检测 工业射线照相胶片 第 1 部分:工业射线照相胶片系统的分类
GB/T 19348.2-2003 无损检测 工业射线照相胶片 第 2 部分:用参考值方法控制胶片处理
GB/T 19799.1-2005 无损检测 超声检测 1号校准试块
GB/T 19799.2-2005 无损检测 超声检测 2号校准试块
GB/T 19800-2005 无损检测 声发射检测 换能器的一级校准
GB/T 19801-2005 无损检测 声发射检测 声发射传感器的二级校准
GB/T 19802-2005 无损检测 工业射线照相观片灯 最低要求
GB/T 19803-2005 无损检测 射线照相像质计 原则与标识
GB/T 19870-2005 工业检测型红外热像仪
GB/T 19937-2005 无损检测 渗透探伤装置 通用技术要求
GB/T 19938-2005 无损检测 焊缝射线照相和底片观察条件 像质计推荐型式的使用
GB/T 19943-2005 无损检测 金属材料X和伽玛射线照相检测 基本规则
GB/T 20129-2006 无损检测用电子直线加速器
GB/T 20490-2006 承压无缝和焊接(埋弧焊除外)钢管分层的超声检测
GB/T 20737-2006 无损检测 通用术语和定义
GB/T 20935.1-2007 金属材料电磁超声检验方法 第1部分:电磁超声换能器指南
GB/T 20935.2-2009 金属材料电磁超声检验方法 第2部分:利用电磁超声换能器技术进行超声检测的方法
GB/T 20935.3-2009 金属材料电磁超声检验方法 第3部分:利用电磁超声换能器技术进行超声表面检测的方法
GB/T 20967-2007 无损检测 目视检测 总则
GB/T 20968-2007 无损检测 目视检测辅助工具 低倍放大镜的选用
GB/T 21355-2008 无损检测 计算机射线照相系统的分类
GB/T 21356-2008 无损检测 计算机射线照相系统的长期稳定性与鉴定方法
GB/T 21837-2008 铁磁性钢丝绳电磁检测方法
GB/T 22039-2008 航空轮胎激光数字无损检测方法
GB/T 22131-2008 筒形锻件内表面超声波检测方法
GB/T 22448-2008 500kV以下工业X射线探伤机防护规则
GB/T 23600-2009 镁合金铸件X射线实时成像检测方法
GB/T 23601-2009 钛及钛合金棒、丝材涡流探伤方法
GB/T 23664-2009 汽车轮胎无损检验方法 X射线法
GB/T 23900-2009 无损检测 材料超声速度测量方法
GB/T 23901.1-2009 无损检测 射线照相底片像质 第1部分:线型像质计 像质指数的测定
GB/T 23901.2-2009 无损检测 射线照相底片像质 第2部分:阶梯孔型像质计 像质指数的测定
GB/T 23901.3-2009 无损检测 射线照相底片像质 第3部分:黑色金属像质分类
GB/T 23901.4-2009 无损检测 射线照相底片像质 第4部分:像质指数和像质表的实验评价
GB/T 23901.5-2009 无损检测 射线照相底片像质 第5部分:双线型像质计 图像不清晰度的测定
GB/T 23902-2009 无损检测 超声检测 超声衍射声时技术检测和评价方法
GB/T 23903-2009 射线图像分辨力测试计
GB/T 23904-2009 无损检测 超声表面波检测方法
GB/T 23905-2009 无损检测 超声检测用试块
GB/T 23906-2009 无损检测 磁粉检测用环形试块
GB/T 23907-2009 无损检测 磁粉检测用试片
GB/T 23908-2009 无损检测 接触式超声脉冲回波直射检测方法
GB/T 23909.1-2009 无损检测 射线透视检测 第1部分:成像性能的定量测量
GB/T 23909.2-2009 无损检测 射线透视检测 第2部分:成像装置长期稳定性的校验
GB/T 23909.3-2009 无损检测 射线透视检测 第3部分:金属材料X和伽玛射线透视检测总则
GB/T 23910-2009 无损检测 射线照相检测用金属增感屏
GB/T 23911-2009 无损检测 渗透检测用试块
GB/T 23912-2009 无损检测 液浸式超声纵波脉冲反射检测方法
GB/T 25757-2010 无损检测 钢管自动漏磁检测系统综合性能测试方法
GB/T 25758.1-2010 无损检测 工业X射线系统焦点特性 第1部分:扫描方法
GB/T 25758.2-2010 无损检测 工业X射线系统焦点特性 第2部分:针孔照相机射线照相方法
GB/T 25758.3-2010 无损检测 工业X射线系统焦点特性 第3部分:狭缝照相机射线照相方法
GB/T 25758.4-2010 无损检测 工业X射线系统焦点特性 第4部分:边缘方法
GB/T 25758.5-2010 无损检测 工业X射线系统焦点特性 第5部分:小焦点和微焦点X射线管的有效焦点尺寸的测量方法
GB/T 25759-2010 无损检测 数字化超声检测数据的计算机传输数据段指南
GB/T 26140-2010 无损检测 测量残余应力的中子衍射方法

GB/T 26141.1-2010

无损检测 射线照相底片数字化系统的质量鉴定 第1部分:定义、像质参数的定量测量、标准参考底片和定性控制
GB/T 26141.2-2010 无损检测 射线照相底片数字化系统的质量鉴定 第2部分:最低要求
GB/T 26276-2010 工程机械子午线轮胎无损检验方法 X射线法
GB/T 26592-2011 无损检测仪器 工业X射线探伤机 性能测试方法
GB/T 26593-2011 无损检测仪器 工业用X射线CT装置性能测试方法
GB/T 26594-2011 无损检测仪器 工业用X射线管性能测试方法
GB/T 26595-2011 无损检测仪器 周向X射线管技术条件
GB/T 26641-2011 无损检测 磁记忆检测 总则
GB/T 26642-2011 无损检测 金属材料计算机射线照相检测方法
GB/T 26643-2011 无损检测 闪光灯激励红外热像法 导则
GB/T 26644-2011 无损检测 声发射检测 总则
GB/T 26646-2011 无损检测 小型部件声发射检测方法
GB/T 26830-2011 无损检测仪器 高频恒电位工业X射线探伤机
GB/T 26832-2011 无损检测仪器 钢丝绳电磁检测仪技术条件
GB/T 26833-2011 无损检测仪器 工业用X射线管通用技术条件
GB/T 26834-2011 无损检测仪器 小焦点及微焦点X射线管有效焦点尺寸测量方法
GB/T 26835-2011 无损检测仪器 工业用X射线CT装置通用技术条件
GB/T 26836-2011 无损检测仪器 金属陶瓷X射线管技术条件
GB/T 26837-2011 无损检测仪器 固定式和移动式工业X射线探伤机
GB/T 26838-2011 无损检测仪器 携带式工业X射线探伤机
GB/T 26951-2011 焊缝无损检测 磁粉检测
GB/T 26952-2011 焊缝无损检测 焊缝磁粉检测 验收等级
GB/T 26953-2011 焊缝无损检测 焊缝渗透检测 验收等级
GB/T 26954-2011 焊缝无损检测 基于复平面分析的焊缝涡流检测
GB/T 27664.1-2011 无损检测 超声检测设备的性能与检验 第1部分:仪器
GB/T 27664.2-2011 无损检测 超声检测设备的性能与检验 第2部分:探头
GB/T 27669-2011 无损检测 超声检测 超声检测仪电性能评定
GB/T 50602-2010 球形储罐γ射线全景曝光现场检测标准

5. 实验应力分析的实验方法

实验应力分析方法目前已有电学的、光学的、声学的以及其他方法。 有电阻、电容、电感等多种方法,而以电阻应变计测量技术应用较为普遍,效果较好。
①电阻应变计法
电阻应变计是一种能将构件上的尺寸变化转换成电阻变化的变换器,一般由敏感栅、引线、粘结剂、基底和盖层构成。将它安装在构件表面。构件受载荷作用后,表面产生微小变形,敏感栅随之变形,致使应变计产生电阻变化,其变化率和应变计所在处构件的应变成正比 。测出电阻变化,即可按公式算出该处构件表面的应变,并算出相应的应力。依敏感栅材料不同,电阻应变计分金属电阻应变计和半导体应变计两大类。另外还有薄膜应变计、压电场效应应变计和各种不同用途的应变计,如温度自补偿应变计、大应变计、应力计、测量残余应力的应变化等。
②电容应变计法
电容应变计是一种能将构件上的尺寸变化转换成电容变化的变换器。试件变形时,两电容极片间距随之变动,引起电容变化。测出电容变化率,按公式可算出试件的应变 。电容 应 变计有弓形 、平板式和杆式等类型,多用于发电厂的管道、设备或核能设备的长期高温应变测量,监视裂纹的形成和发展,以及对航空航天构件材料进行高温性能测试等。 此法发展较快,方式较多,逐渐形成光测力学。经典的光弹性实验技术已从二维、三维模型实验(如光弹性法、光弹性应力冻结法)发展成为能用于工业现场测量的光弹性贴片法,用来解决扭转和轴对称问题的光弹性散光法,研究应力波传播和热应力的动态光弹性法和热光弹性法,进行弹-塑性应力分析的光塑性法 , 以及研究复合材料力学的正交异性光弹性法 。除了上述 经典方法外 ,还有云纹法、云纹干涉法、全息干涉法、散斑干涉法、全息光弹性法、焦散线法等。此外还有80年代发展起来的光纤传感技术和数字图像处理技术等。
①光弹性法
运用光学原理研究弹性力学问题的一种实验应力分析方法。某些各向同性透明的非晶体高分子材料受载荷作用时,呈现光学各向异性,使一束垂直入射偏振光沿材料中的两主应力方向分解成振动方向互相垂直、传播速度不同的两束平面偏振光;卸载后,又恢复光学各向同性。这就是所谓的暂时双折射效应。用具有这种效应的透明塑料按一定比例制成零构件模型,置于偏振光场中,施加一定的载荷,模型上便产生干涉条纹。通过计算,就能确定模型受载时各部位的应力大小和方向。此法对应力集中区和三维内部应力问题的求解特别有效。
②云纹法
通过测定云纹并对其进行分析以确定试件的位移场或应变场的一种实验分析法。其原理是,当栅板和栅片重叠时,因栅片牢固地粘贴在试件表面而随之变形,遂使栅板和栅片上的栅线因几何干涉而产生条纹即云纹。可通过云纹测定物体表面的等高线,以及板壳的挠度分布等。
③云纹干涉法
几何云纹法与光学干涉法相结合的一种实验分析法。将高密度衍射光栅精确复制在物体表面,并用激光束照射该光栅,便可通过光栅衍射波干涉形成的条纹图,获得物体表面的变形信息 。此法灵敏 度高 ,条纹对比度好;能进行全场分析,实时观测,量程几乎不受限制。
④全息干涉法
利用全息照相获得物体变形前后的光波波阵面相互干涉所形成的干涉条纹图进行物体变形分析的一种方法。全息照相是一种不用透镜而能记录和再现被摄物体的三维图像的照相方法。它能把来自物体的光波波阵面的振幅和相位信息以干涉条纹形式记录下来,又能在需要时再现出来,以观察到物体的三维图像。全息干涉法的主要内容是研究条纹图的形成、条纹的定位以及对条纹图的解释。对于具有漫反射表面的不透明物体,条纹图表示物体沿观察方向的等位移线;对于透明的光弹性模型(如有机玻璃),则表示模型中主应力之和等于常数的等和线。常用的全息干涉法有双曝光法、即时法和均时法。
⑤散斑干涉法
精确检测物体表面各点位移的光学测试法。激光照射在漫反射物体表面时,由反射光波干涉形成的散斑随物体变形或位移而变化。采用适当装置,通过双曝光法把变形前后的散斑记录在一张全息底片上,经显影定影后便可获得存储物体表面各点位移信息的散斑图。用激光照射散斑图,就显出散斑干涉条纹。在进行光学傅里叶变换信息处理后,便可分析出位移信息。
⑥焦散线法
利用焦散线测量应变(或应力)奇异场力学参数的一种光学实验法。当一束光垂直照射在一块受载的带有边缘裂纹透明薄板试件的局部高应变场区域时,由于域内各处厚度的变化十分悬殊,使透过的光线发生强烈偏折和汇聚,在试件与像屏间的空间形成一个明亮的曲面,称为焦散面。若用一个半透明屏幕切割此焦散面,就可看到一条明亮的曲线,即焦散线。通过光学和力学分析,可将焦散线的几何参数与奇异场的力学参数间的关系建立起来,从而通过测量焦散线的几何形状,可求出有关的力学量。
⑦光纤传感技术
用光纤作“传”和“感”的元件,当光通过光纤时,光的某一特性(如光强、相位、波长、偏振等)受到被测物理量的影响而发生变化,利用这一变化即可测得诸如声压、电场、磁场、位移、加速度、应变、温度等。光纤传感器的独特优点是:光纤是一种绝缘介质,不受电磁干扰,能耐高温高压,能在腐蚀和易燃、易爆等恶劣环境下工作;光纤灵敏度高,能探射极弱的信号和微小的信号变化;可做成便于应用的任何形状;光纤作为传输介质,损耗低 ,可作远距离遥测和遥控;能构成对各种物理量(如声、电 、磁、温度、转动等)微扰敏感的器件。因此,光纤传感器在传感器领域内占有重要地位。
⑧数字图像处理技术
利用电子计算机对图像信息进行采集、处理和分析的图像信息处理技术。在实验力学领域内,主要用来分析处理光测力学中光弹性法、云纹干涉法、全息干涉法、散斑干涉法等的光学干涉条纹信息,获取全面而有效的实验数据,实现光测力学的图像信息采集自动化和数据分析程序化。 有声弹性法、声发射技术和声全息法等。
①声弹性法
利用超声剪切波的双折射效应测量应力的一种方法。超声波在有应力的介质中传播时,其剪切波沿两主应力方向发生偏振,两偏振波以不同速度传播。实验和理论分析得到应力-光学定律 : 沿主应力方向的两个超声剪切波的速度差与两主应力差成正比。该比例系数称声弹性系数,与材料的弹性常数有关。用此法可测量非透明材料的内部应力,并可测量焊接件的残余应力。
②声发射技术
构件在受力过程中产生变形或裂纹时 ,以弹性波形式释放出应变能的现象称为声发射;利用接收的声发射信号,对构件进行动态无损检测的技术称为声发射技术。此技术可用来检测裂纹和研究腐蚀断裂过程,以及监视构件的疲劳裂纹扩展等;还可用来评价构件的完整性,判断结构的危险程度。
③声全息法
20世纪60年代发展起来的成像技术。其原理和全息照相相同,即利用波的干涉原理记录物波的振幅和相位,并利用衍射原理再现物体的像。它的不同处是用超声波代替光波。此法的成像分辨率高,用于无损检验,可显示试件内部缺陷的形状和大小。 常见的有脆性涂层法、X射线应力测定法、比拟法等。
①脆性涂层法
把特殊的涂料喷涂在工程构件表面,以确定主应力方向和估计主应力大小的一种全场实验方法。涂料喷涂到构件表面后,经过处理,就在构件表面结成脆性层。当此构件由于加载而产生的应变在某点达到一定的临界值时,该点涂层就出现一条与主应力方向垂直的裂纹。连接同一载荷下所有裂纹的端点,其连线上各点是有相等的应力值,称为等应力线。通过逐级加载,可得几乎遍布整个涂层表面的裂纹图和对应于不同载荷的等应力线,从而可直接观察到构件表面各处主应力大小和方向的分布状况。此法主要用来测出最大应力区和主应力方向,作为电阻应变计测量技术的辅助方法。
②X射线应力测定法
利用X射线穿透金属晶格时发生衍射的原理,测量衍射角的变化并通过布拉格公式确定晶格的变化,从而算出金属构件表面应力的一种实验方法。此法可无损地测量构件中的应力或残余应力,特别适于测量薄层和裂纹尖端的应力分布,是检验产品质量,研究材料强度,选用较佳工艺的一种重要手段。
③比拟法
根据两种物理现象之间的比拟关系,通过一种物理现象的观测试验,研究另一种物理现象的方法。如果两种物理现象中存在以形式相同的 数 学方程 描 述的物理量,它们之间便存在比拟关系,就可用一种较易测试的物理现象模拟另一种难以测试的物理现象,从而使试验工作大为简化。在实验应力分析领域中,常用的有薄膜比拟、电比拟、电阻网络比拟、沙堆比拟。

6. 树脂基复合材料知识

纤维增强树脂基复合材料常用的树脂为环氧树脂和不饱和聚酯树脂。目前常用的有:热固性树脂、热塑性树脂,以及各种各样改性或共混基体。热塑性树脂可以溶解在溶剂中,也可以在加热时软化和熔融变成粘性液体,冷却后又变硬。热固性树脂只能一次加热和成型,在加工过程中发生固化,形成不熔和不溶解的网状交联型高分子化合物,因此不能再生。复合材料的树脂基体,以热固性树脂为主。早在40年代,在战斗机、轰炸机上就开始采用玻璃纤维增强塑料作雷达罩。60年代美国在F—4、F—111等军用飞机上采用了硼纤维增强环氧树脂作方向舵、水平安定面、机翼后缘、舵门等。在导弹制造方面,50年代后期美国中程潜地导弹“北极星A—2”第二级固体火箭发动机壳体上就采用了玻璃纤维增强环氧树脂的缠绕制件,较钢质壳体轻27%;后来采用高性能的玻璃纤维代替普通玻璃纤维造“北极星A—3”,使壳体重量较钢制壳体轻50%,从而使“北极星A—3”导弹的射程由2700千米增加到4500千米。70年代后采用芳香聚酰胺纤维代替玻璃纤维增强环氧树脂,强度又大幅度提高,而重量减轻。碳纤维增强环氧树脂复合材料在飞机、导弹、卫星等结构上得到越来越广泛的应用。

在化学工业上的应用
编辑
环氧乙烯基酯树脂在氯碱工业中,有着良好的应用。
氯碱工业是玻璃钢作耐腐材料最早应用领域之一,目玻璃钢已成为氯碱工业的主要材料。玻璃钢已用于各种管道系统、气体鼓风机、热交换器外壳、盐水箱以至于泵、池、地坪、墙板、格栅、把手、栏杆等建筑结构上。同时,玻璃钢也开始进入化工行业的各个领域。在造纸工业中的应用也在发展,造纸工业以木材为原料,造纸过程中需要酸、盐、漂白剂等,对金属有极强的腐蚀作用,唯有玻璃钢材料能抵抗这类恶劣环境,玻璃钢材料已、在一些国家的纸浆生产中显现其优异的耐蚀性。
在金属表面处理工业中的应用,则成为环氧乙烯基酯树脂重要应用,金属表面处理厂所使用的酸,大多为盐酸、基本上用玻璃钢是没有问题的。环氧树脂作为纤维增强复合材料进入化工防腐领域,是以环氧乙烯基酯树脂形态出现的。它是双酚A环氧树脂与甲基丙烯酸通过开环加成化学反应而制成,每吨需用环氧树脂比例达50%,这类树脂既保留了环氧树脂基本性能,又有不饱和聚酯树脂良好的工艺性能,所以大量运用在化工防腐领域。
其在化工领域的防腐主要包括:化工管道、贮罐内衬层;电解槽;地坪;电除雾器及废气脱硫装置;海上平台井架;防腐模塑格栅;阀门、三通连接件等。为了提高环氧乙烯基酯树脂优越的耐热性、防腐蚀性和结构强度,树脂还不断进行改性,如酚醛、溴化、增韧等环氧乙烯基酯树脂等品种,大量运用于大直径风叶、磁悬浮轨道增强网、赛车头盔、光缆纤维牵引杆等。
树脂基复合材料作为一种复合材料,是由两个或两个以上的独立物理相,包含基体材料(树脂)和增强材料所组成的一种固体产物。树脂基复合材料具有如下的特点:
(1)各向异性(短切纤维复合材料等显各向同性);
(2)不均质(或结构组织质地的不连续性);
(3)呈粘弹性行为;
(4)纤维(或树脂)体积含量不同,材料的物理性能差异;
(5)影响质量因素多,材料性能多呈分散性。
树脂基复合材料的整体性能并不是其组分材料性能的简单叠加或者平均,这其中涉及到一个复合效应问题。复合效应实质上是原相材料及其所形成的界面相互作用、相互依存、相互补充的结果。它表现为树脂基复合材料的性能在其组分材料基础上的线性和非线性的综合。复合效应有正有负,性能的提高总是人们所期望的,但有进材料在复合之后某些方面的性能出现抵消甚至降低的现象是不可避免的。
复合效应的表现形式多样,大致上可分为两种类型:混合效应和协同效应。
混合效应也称作平均效应,是组分材料性能取长补短共同作用的结果,它是组分材料性能比较稳定的总体反映,对局部的扰动反应并敏感。协同效应与混合效应相比,则是普遍存在的且形式多样,反映的是组分材料的各种原位特性。所谓原位特性意味着各相组分材料在复合材料中表现出来的性能并不只是其单独存在时的性能,单独存在时的性能不能表征其复合后材料的性能。
树脂基复合材料的力学性能
力学性能是材料最重要的性能。树脂基复合材料具有比强度高、比模量大、抗疲劳性能好等优点,用于承力结构的树脂基复合材料利用的是它的这种优良的力学性能,而利用各种物理、化学和生物功能的功能复合材料,在制造和使用过程中,也必须考虑其力学性能,以保证产品的质量和使用寿命。
1、树脂基复合材料的刚度
树脂基复合材料的刚度特性由组分材料的性质、增强材料的取向和所占的体积分数决定。树脂基复合材料的力学研究表明,对于宏观均匀的树脂基复合材料,弹性特性复合是一种混合效应,表现为各种形式的混合律,它是组分材料刚性在某种意义上的平均,界面缺陷对它作用不是明显。
由于制造工艺、随机因素的影响,在实际复合材料中不可避免地存在各种不均匀性和不连续性,残余应力、空隙、裂纹、界面结合不完善等都会影响到材料的弹性性能。此外,纤维(粒子)的外形、规整性、分布均匀性也会影响材料的弹性性能。但总体而言,树脂基复合材料的刚度是相材料稳定的宏观反映。
对于树脂基复合材料的层合结构,基于单层的不同材质和性能及铺层的方向可出现耦合变形,使得刚度分析变得复杂。另一方面,也可以通过对单层的弹性常数(包括弹性模量和泊松比)进行设计,进而选择铺层方向、层数及顺序对层合结构的刚度进行设计,以适应不同场合的应用要求。
2、树脂基复合材料的强度
材料的强度首先和破坏联系在一起。树脂基复合材料的破坏是一个动态的过程,且破坏模式复杂。各组分性能对破坏的作用机理、各种缺陷对强度的影响,均有街于具体深入研究。
树脂基复合材强度的复合是一种协同效应,从组分材料的性能和树脂基复合材料本身的细观结构导出其强度性质。对于最简单的情形,即单向树脂基复合材料的强度和破坏的细观力学研究,还不够成熟。
单向树脂基复合材料的轴向拉、压强度不等,轴向压缩问题比拉伸问题复杂。其破坏机理也与拉伸不同,它伴随有纤维在基体中的局部屈曲。实验得知:单向树脂基复合材料在轴向压缩下,碳纤维是剪切破坏的;凯芙拉(Kevlar)纤维的破坏模式是扭结;玻璃纤维一般是弯曲破坏。
单向树脂基复合材料的横向拉伸强度和压缩强度也不同。实验表明,横向压缩强度是横向拉伸强度的4~7倍。横向拉伸的破坏模式是基体和界面破坏,也可能伴随有纤维横向拉裂;横向压缩的破坏是因基体破坏所致,大体沿45°斜面剪坏,有时伴随界面破坏和纤维压碎。单向树脂基复合材料的面内剪切破坏是由基体和界面剪切所致,这些强度数值的估算都需依靠实验。
杂乱短纤维增强树脂基复合材料尽管不具备单向树脂基复合材料轴向上的高强度,但在横向拉、压性能方面要比单向树脂基复合材料好得多,在破坏机理方面具有自己的特点:编织纤维增强树脂基复合材料在力学处理上可近似看作两层的层合材料,但在疲劳、损伤、破坏的微观机理上要更加复杂。
树脂基复合材料强度性质的协同效应还表现在层合材料的层合效应及混杂复合材料的混杂效应上。在层合结构中,单层表现出来的潜在强度与单独受力的强度不同,如0/90/0层合拉伸所得90°层的横向强度是其单层单独实验所得横向拉伸强度的2~3倍;面内剪切强度也是如此,这一现象称为层合效应。
树脂基复合材料强度问题的复杂性来自可能的各向异性和不规则的分布,诸如通常的环境效应,也来自上面提及的不同的破坏模式,而且同一材料在不同的条件和不同的环境下,断裂有可能按不同的方式进行。这些包括基体和纤维(粒子)的结构的变化,例如由于局部的薄弱点、空穴、应力集中引起的效应。除此之外,界面粘结的性质和强弱、堆积的密集性、纤维的搭接、纤维末端的应力集中、裂缝增长的干扰以及塑性与弹性响应的差别等都有一定的影响。
树脂基复合材料的物理性能
树脂基复合材料的物理性能主要有热学性质、电学性质、磁学性质、光学性质、摩擦性质等(见表)。对于一般的主要利用力学性质的非功能复合材料,要考虑在特定的使用条件下材料对环境的各种物理因素的响应,以及这种响应对复合材料的力学性能和综合使用性能的影响;而对于功能性复合材料,所注重的则是通过多种材料的复合而满足某些物理性能的要求。
树脂基复合材料的物理性能由组分材料的性能及其复合效应所决定。要改善树脂基复合材料的物理性能或对某些功能进行设计时,往往更倾向于应用一种或多种填料。相对而言,可作为填料的物质种类很多,可用来调节树脂基复合材料的各种物理性能。值得注意的是,为了某种理由而在复合体系中引入某一物质时,可能会对其它的性质产生劣化作用,需要针对实际情况对引入物质的性质、含量及其与基体的相互作用进行综合考虑。
树脂基复合材料的化学性能
大多数的树脂基复合材料处在大气环境中、浸在水或海水中或埋在地下使用,有的作为各种溶剂的贮槽,在空气、水及化学介质、光线、射线及微生物的作用下,其化学组成和结构及各种性能会发生各种变化。在许多情况下,温度、应力状态对这些化学反应有着重要的影响。特别是航空航天飞行器及其发动机构件在更为恶劣的环境下工作,要经受高温的作用和高热气流的冲刷,其化学稳定性是至关重要的。
作为树脂基复合材料的基体的聚合物,其化学分解可以按不同的方式进行,它既可通过与腐蚀性化学物质的作用而发生,又可间接通过产生应力作用而进行,这包括热降解、辐射降解、力学降解和生物降解。聚合物基体本身是有机物质,可能被有机溶剂侵蚀、溶胀、溶解或者引起体系的应力腐蚀。所谓的应力腐蚀,是掼材料与某些有机溶剂作用在承受应力时产生过早的破坏,这样的应力可能是在使用过程中施加上去的,也可能是鉴于制造技术的某些局限性带来的。根据基体种类的不同,材料对各种化学物质的敏感程度不同,常见的玻璃纤维增强塑料耐强酸、盐、酯,但不耐碱。一般情况下,人们更注重的是水对材料性能的影响。水一般可导致树脂基复合材料的介电强度下降,水的作用使得材料的化学键断裂时产生光散射和不透明性,对力学性能也有重要影响。不上胶的或仅只热处理过的玻璃纤维与环氧树脂或聚酯树脂组成的复合材料,其拉伸强度、剪切强度和弯曲强度都很明显地受沸水影响,使用偶联剂可明显地降低这种损失。水及各种化学物质的影响与温度、接触时间有关,也与应力的大小、基体的性质及增强材料的几何组织、性质和预处理有关,此外还与复合材料的表面的状态有关,纤维末端暴露的材料更易受到损害。
聚合物的热降解有多种模式和途径,其中可能几种模式同时进行。如可通过"拉链"式的解聚机理导致完全的聚合物链的断裂,同时产生挥发性的低分子物质。其它的方式包括聚合物链的不规则断裂产生较高分子量的产物或支链脱落,还有可能形成环状的分子链结构。填料的存在对聚合物的降解有影响,某些金属填料可通过催化作用加速降解,特别是在有氧存在的地方。树脂基复合材料的着火与降解产生的挥发性物质有关,通常加入阻燃剂减少着火的危险。某些聚合物在高温条件下可产生一层耐热焦炭,这些聚合物与尼龙、聚酯纤维等复合后,因这些增强物本身的分解导致挥发性物质产生可带走热量而冷却烧焦的聚合物,进一步提高耐热性,同时赋予复合材料以优良的力学性能,如良好的坑震性。
许多聚合物因受紫外线辐射或其它高能辐射的作用而受到破坏,其机理是当光和射线的能量大于原子间的共价键能时,分子链发生断裂。铅填充的聚合物可用来防止高能辐射。紫外线辐射则一般受到更多的关注,经常使用的添加剂包括炭黑、氧化锌和二氧化钛,它们的作用是吸收或者反射紫外线辐射,有些无面填料可以和可见光一样传输紫外线,产生荧光。
力学降解是另一种降解机理,当应力的增加频率超过一个键通过平移所产生的响应能力时,就发生键的断裂,由此形成的自由基还可能对下一阶段的降解模式产生影响。硬质和脆性聚合物基体应变小,可进行有或者没有链断裂的脆性断裂,而较软但粘性高的聚合物基体大多是力学降解的。
树脂基复合材料的工艺特点
树脂基复合材料的成型工艺灵活,其结构和性能具有很强的可设计性。树脂基复合材料可用模具一次成型法来制造各种构件,从而减少了零部件的数量及接头等紧固件,并可节省原材料和工时;更为突出的是树脂基复合材料可以通过纤维种类和不同排布的设计,把潜在的性能集中到必要的方向上,使增强材料更为有效地发挥作用。通过调节复合材料各组分的成分、结构及排列方式,既可使构件在不同方向承受不同的作用力,还可以制成兼有刚性、韧性和塑性等矛盾性能的树脂基复合材料和多功能制品,这些是传统材料所不具备的优点。树脂基复合材料在工艺方面也存在缺点,比如,相对而言,大部分树脂基复合材料制造工序较多,生产能力较低,有些工艺(如制造大中型制品的手糊工艺和喷射工艺)还存在劳动强度大、产品性能不稳定等缺点。
树脂基复合材料的工艺直接关系到材料的质量,是复合效应、"复合思想"能否体现出来的关键。原材料质量的控制、增强物质的表面处理和铺设的均匀性、成型的温度和压力、后处理及模具设计的合理性都影响最终产品的性能。在成型过程中,存在着一系列物理、化学和力学的问题,需要综合考虑。固化时在基体内部和界面上都可能产生空隙、裂纹、缺胶区和富胶区;热应力可使基体产生或多或少的微裂纹,在许多工艺环节中也都可造成纤维和纤维束的弯曲、扭曲和折断;有些体系若工艺条件选择不当可使基体与增强材料之间发生不良的化学反应;在固化后的加工过程中,还可进一步引起新的纤维断裂、界面脱粘和基体开裂等损伤。如何防止和减少缺陷和损伤,保证纤维、基体和界面发挥正常的功能是一个非常重要的问题。
树脂基复合材料的成型有许多不同工艺方法,连续纤维增强树脂基复合材料的材料成型一般与制品的成型同时完成,再辅以少量的切削加工和连接即成成品;随机分布短纤维和颗粒增强塑料可先制成各种形式的预混料,然后进行挤压、模塑成型。
组合复合效应
复合体系具有两种或两种以上的优越性能,称为组合复合效应贫下中农站这样的情况很多,许多的力学性能优异的树脂基复合材料同时具有其它的功能性,下面列举几个典型的例子。
1、光学性能与力学性能的组合复合
纤维增强塑料,如玻璃纤维增强聚酯复合材料,同时具有充分的透光性和足够的比强度,对于需要透光的建筑结构制品是很有用的。
2、电性能与力学性能的组合复合
玻璃纤维增强树脂基复合材料具有良好的力学性能,同时又是一种优良的电绝缘材料,用于制造各种仪表、电机与电器的绝缘零件,在高频作用下仍能保持良好的介电性能,又具有电磁波穿透性,适制作雷达天线罩。聚合物基体中引入炭黑、石墨、酞花菁络合物或金属粉等导电填料制成的复合材料具有导电性能,同时具有高分子材料的力学性能和其它特性。
3、热性能与力学性能的组合复合
①耐热性能
树脂基复合材料在某些场合的使用除力学性能外,往往需要同时具有好的耐热性能。
②耐烧蚀性能
航空航天飞行器的工作处于严酷的环境中,必须有防护材料进行保护;耐烧蚀材料靠材料本身的烧蚀带走热量而起到防护作用。玻璃纤维、石英纤维及碳纤维增强的酚醛树脂是成功的烧蚀材料。酚醛树脂遇到高温立即碳化形成耐热性高的碳原子骨架;玻璃纤维还可部分气化,在表面残留下几乎是纯的二氧化硅,它具有相当高的粘结性能。两方面的作用,使酚醛玻璃钢具有极高的耐烧蚀性能。

7. 我想问先关于塑料方面的知识!

常用的塑料有以下几种:

1、聚乙烯PE

2、聚丙烯PP

3、聚氯乙烯PVC

4、聚苯乙烯PS

5、丙烯腈-丁二烯-苯乙烯ABS

一般用作管道的是PP和PVC, 深埋管的话PP-R比较实用,大概一万四每吨,塑料行业可以说佛山比较发达,可以选择的供应商也比较多

8. 与其他基体的复合材料相比,为什么金属基体复合材料特别需要重视残余应力

复合材料按照基体分为金属基复合材料、无机非金属基复合材料和聚合物基复合材料。聚合物作为基体的包括不饱和聚酯树脂、环氧树脂、酚醛树脂及各种热塑性聚合物(PA、PC、PP、PE、PET、PBT等)。各种材料各有特点,比如热塑的,一般可以回收再利用,热固的一旦成型就无法再回收。还有其他的耐候性、耐温性、介电等级各不相同,要根据你所需要的选用。其他两类复合材料也是如此,比如金属基复合材料,航天、航空领域对比强度、比模量、尺寸稳定性有严格要求,因此多会选用密度小的轻金属合金作为基体。而高性能发动机使用的复合材料不仅需要具备高比强度、比模量,还对其耐热疲劳、耐氧化有要求,一般使用钛基、镍基合金以及金属间化合物做基体材料。普通汽车发动机则同时需要考虑低成本,量产性,可以用铝合金材料做基体。而工业集成电路基板和散热元件,必须具有高导热、低膨胀特性,一般使用铜、铝等作为基体。无机非金属基复合材料的基体材料主要包括水泥、陶瓷、石膏和水玻璃等。其中,以陶瓷基、水泥基复合材料的研究最为活跃。

9. 哪里有金相组织检验标准下载

http://www.3dportal.cn/discuz/index.php?fromuid=74613
大量国家和行业标准下载,免费.但需注册

热点内容
丁度巴拉斯情人电影推荐 发布:2024-08-19 09:13:07 浏览:886
类似深水的露点电影 发布:2024-08-19 09:10:12 浏览:80
《消失的眼角膜》2电影 发布:2024-08-19 08:34:43 浏览:878
私人影院什么电影好看 发布:2024-08-19 08:33:32 浏览:593
干 B 发布:2024-08-19 08:30:21 浏览:910
夜晚看片网站 发布:2024-08-19 08:20:59 浏览:440
台湾男同电影《越界》 发布:2024-08-19 08:04:35 浏览:290
看电影选座位追女孩 发布:2024-08-19 07:54:42 浏览:975
日本a级爱情 发布:2024-08-19 07:30:38 浏览:832
生活中的玛丽类似电影 发布:2024-08-19 07:26:46 浏览:239