活性炭吸附染料废水实验方案
Ⅰ 怎样的活性炭纤维可用于染料废水的处理
染料废水几乎不用活性炭纤维来处理 都是使用活性炭来处理的 而且是使用脱色能力好(亚甲基蓝高)的活性炭来脱色处理
Ⅱ 活性炭纤维染料废水处理装置如何运行
活性炭是多孔性物质,可以吸附任何比它的微孔小的有机物质,当然也包括染料。
不过,活性炭的吸附能力是有限的,你没有表述清楚你想吸附哪里的、多少数量的染料?
比如说印染废水处理,染料当然能被活性炭吸附,但是,并不等于能用活性炭处理印染废水!!因为,你要是处理一吨废水,也许十公斤活性炭一会功夫就吸附满了,就失活了。你又要更换、再生……,这样的话,成本上根本无法承受。
Ⅲ 关于活性污泥吸附染料的实验
2. 3 活性炭水处理方法
近几十年来,在水处理技术的发展过程中,各国在探索活性炭与其它方法结合使用时发现,在改善水
质方面,联合法处理效果显著,弥补了活性炭由于再生频繁致使废水处理成本较高的问题. 其处理方法大
致有以下几种:
(1) 粉末活性炭处理(又叫生物—物理处理法,投料曝气法或粉末曝气法) .
一般认为,该法是在吸附和微生物氧化分解的协同作用下去除污染物的. 活性炭的大量微孔吸附了有机
物和废水中的氧,为微生物的群体生长繁殖提供了高浓度的营养源,而微生物代谢过程中产生的酶和辅酶又
被吸附和富集在活性炭微孔中,加之炭上微生物和有机物接触时间较长,使难以降解的有机物也有可能经生
物氧化而分解. 粉末活性炭处理法一般包括三个步骤:1) 剧烈混合,使炭迅速分布在污水中;2) 接触吸附和
氧化,使炭悬浮在污水中进行悬吸附和氧化;3) 液—固分离,将炭从污水中分离出来,然后进行再生.
此法具有以下优点:稳定,处理效果好;提高了微生物对有机物和重金属的抗性;活性炭能吸附表面活
性物质,解决了曝气池中的气泡问题;产生了有凝聚力的炭体和微生物,形成了坚实和稠密的污泥,改善了
第6 期 王爱平,刘中华:活性炭水处理技术及在中国的应用前景49
活性污泥法的操作条件;能用于处理成分复杂,浓度和水量多变的废水;成本低.
(2) 臭氧氧化—活性炭处理法
该法是将臭氧氧化,活性炭处理二者结合起来使用的一种方法. 它使得COD ,BOD 更易被活性炭吸
附,对染料废水的消毒,除臭,及脱色效果显著且延长了活性炭的使用寿命.
(3) 活性炭吸附—生物膜处理法.
活性炭吸附,生物膜处理法是利用活性炭对有机物的富集作用和对水中溶解氧的选择吸附性,在温度
及营养物适宜的条件下,使活性炭表面上生长好气微生物,将活性炭的吸附作用和微生物的分解氧化作用
协同起来. 采用此法,不仅可以提高废水的处理效果,而且能够较大幅度的延长活性炭的使用寿命,同时还
可以降低处理成本,简化运转操作管理. 这是一种新近发展起来的污水处理技术.
在此三种方法中,北京第三毛线厂曾采用活性炭生物膜法氧化处理染料废水. 美国新泽西州的罗卡威
城1982 年采用曝气和粒状活性炭相结合的流程,有效的去除了地下水中的有机化合物. 美国杜邦
(DUPON) 公司使用PACT 法代替颗粒状活性炭填充床处理法. 该法将粉状活性炭处理和生物处理结合起
来使用,被列为美国工业废水处理新技术中几个极有前途的废水处理新技术之一. 另外,在美国Cyanmid
公司的处理设施中,三级处理废水时使用颗粒活性炭(GAC) . 据资料报道,美国环保署(USEPA) 的饮用水
标准的64 项有机污染物指标中,有51 项将粒状活性炭(GAC) 列为最有效技术. 日本利用臭氧—活性炭配
合法处理含硫废水. 法国利用活性炭—臭氧法净化饮用水[1 ,11 ,12 ] .
另外。你没有说明水中的污染物质是什么含量多少,也没有说明用的是那种活性炭,所以没有办法给你答案。
另外,就算知道了上述两个问题的答案,你也必须用实验的方法;来确定具体的工况和最终结果。
Ⅳ 染料废水处理设计方案
染料品种数以万计,印染加工过程中约有10%~20%的染料随废水排出,每排放1t染料废水,就会污染20t水体。废水中的染料能吸收光线,降低水体透明度,造成视觉上的污染。染料废水是难处理的工业废水之一,具有色度深、碱性大、有机污染物含量高和水质变化大的特点。大多数染料为有毒难降解有机物,化学稳定性强,具有致癌、致畸、致突变作用;直接危害人类健康,还严重破坏水体、土壤及生态环境,造成难以想象的后果。有效解决染料废水治理问题是消除印染行业发展瓶颈的关键所在。
1 、染料废水及其污染
染料工业污染中尤以染料废水的污染问题最为突出。近些年来,我国每年污水排放量达390多亿吨,其中工业污水占51%,而染料废水又占总工业废水排放量的35%,而且还以1%的速度在逐年增加。每排放1t染料废水,就能造成20t水体的污染。各行业中,印染纺织业的COD排放量排在第4位,而且排放比重还在逐年增加。“三河三湖”中,染料废水对太湖、淮河流域造成的污染状况尤其严重。
染料废水主要来自于染料及染料中间体的生产企业,由染整过程中排放出的染料、浆料、助剂等组成。随着印染工业的迅猛发展,染料废水已成为水体中几种最主要的污染源之一。目前世界染料年产量约为(8~9)x105t。我国是纺织品生产和加工大国,纺织品出口额已多年来列居世界首位,每年的染料生产量达1.5×105 t,其中大约10%~15%的染料会直接随废水排入水体中。
染料废水色度高、水量大、碱性大、组成成分复杂,属于比较难处理的工业废水之。染料是染料废水中的主要污染物,带有各类显色基团(如-N=N-,-N=O等)和部分极性基团(-SO3Na,-OH,-NH2),成分复杂,大多数是以芳烃和杂环为母体,属较难降解的有机污染物,也是我国各大水域的重要污染源。
大多数有机染料化学稳定性强,具有三致(致癌、致畸、致突变)作用,是典型有毒难降解有机污染物。此外,废水中的染料能吸收光线,降低水体的透明度,对水生生物、微生物的生长不利,并且降低了水体的自净能力,同时导致视觉污染,严重破坏水体、土壤及生态环境,直接和间接地危害人类身体健康。
2、 染料废水的处理方法
对染料行之有效的降解和处理技术是治理染料废水的重要前提。针对大多数染料化学性质稳定、难以降解的特点,各国科学家都高度重视染料及染料废水的降解和处理方法的研究。随着科技进步以及污染治理技术的不断发展,人类也找到了很多行之有效的处理染料废水的方法,概括起来不外乎物化法、生物法、物化一生物联合法。
2.1 物化法
2.1.1 混凝沉降法
混凝沉降法是目前处理染料废水效果比较稳定、工艺较为成熟的方法。普遍接受的机理有桥联作用、压缩双层、网捕和电中和作用。混凝剂自身特性决定了其沉降性能的好坏,很多环境因素包括温度、pH和Eh等则可能对沉降功能起促进或抑制作用。近年来,IPF(无机高分子絮凝剂)成为研究混凝絮凝行为和机理的热点。与普通的混凝剂相比,IPF能形成更多的有效絮凝的形态A13+。混凝法的主要研究方向是开发有效混凝剂,尤其是有机一无机复合混凝剂。
张凯松等人副研制的无机一有机复合混凝剂,对染料废水的处理效果比聚合氯化铝(PAC)更为明显。吴敦虎等人¨列对利用硼泥复合混凝剂处理染料污水的研究结果表明:当剂量为0.3~0.6 g/L,pH值为4.0~11.5时,脱色率达到92%以上,优于PAC。
2.1.2膜分离法
膜分离技术具有工艺简单、低能耗、不对环境产生污染的优势。通过自行研制醋酸纤维素(CA)纳米滤膜,郭明远等人指出:CA纳滤膜对活性染料废水的处理和回收染料效果明显。掺入活性炭填充共混的改性壳聚糖超滤膜,适当交联后对酸性红染料废水的最大脱色截留率达98.8%。冯冰凌等人采用壳聚糖超滤膜处理染料废水,脱色率超过95%,COD去除率达80%左右。吴开芬u引利用超滤法对靛蓝染料的废水进行处理,可实现染料的高浓度溶液的直接回用,透过液则可作为中性水被再循环利用。Soma等人mo利用氧化铝微滤膜,对不溶性染料废水进行过滤时的截留率高达98%。
由于膜污染、浓差极化和过快的更换频率,加之膜的价格较贵,使得膜分离技术处理染料废水的成本过高,大大限制了膜分离技术在染料废水治理行业的应用和推广。
2.1.3催化氧化法
催化氧化法是通过催化作用加快体系中氧化剂的分解,并使之与水中有机物迅速反应,在较短的时间内致使有机污染物氧化降解。针对采用高级化学氧化法和好氧生物处理法处理分散染料废水时效果不太理想这一问题,周建等人采用催化氧化法对内电解处理后不能达标的染料废水进行处理,不仅日处理蒽醌系列分散染料达2500t,还降低了内电解处理后未达标染料废水的色度和COD值,大大减少了运行费用。ArslanLt引采用Fe2+催化臭氧氧化法对分散染料废水进行处理,研究结论指出,单独采用臭氧(应用剂量为2300 mg/L)氧化法时,只在pH=3的条件下有一定的降解效果,脱色率也只有77%,COD的去除率仅为ll%;但采用Fe2+絮凝、臭氧氧化和Fe2+催化臭氧氧化相结合的方法处理时,Fe“使用剂量为0.09~18 mmol/L、染料废水pH值为3—13的范围内,脱色率达到了97%,对COD的去除率也提高到54%。
2.1.4 Fenton试剂法
以Fe3+或Fe2+为催化剂,在H202存在时产生的强氧化性,能使许多有机分子氧化,而且反应体系不需要高温高压,反应条件不苛刻,反应设备也比较简单,适用范围较广。陈文松等人利用低剂量Fenton氧化一混凝法处理模拟和实际染料废水的研究结论指出,该方法对处理同时含有亲水性和疏水性染料、成分复杂的染料废水特别适合,而且操作方便、运行成本不高。近年来一些学者把紫外光(uV)、草酸盐等也引入Fenton法中,使得Fenton法的氧化能力大大提高,处理效果也更加显著。K.Swaminathan等人心川就光助Fenton体系对偶氮染料活性橙-4进行了脱色研究,其研究结论指出,光助Fenton体系降解能力远强于一般Fenton体系。
Fenton法的不足之处在于:氧化能力相对较弱,出水因含大量铁离子而显色。近年来,铁离子的固定化技术,成为Fenton氧化法的重要方向。
2.1.5 光氧化法
光氧化法是利用光化学反应降解污染物,包括无催化剂和有催化剂参与2种,前者也称光化学氧化,后者又称光催化氧化。光降解通常是指有机物在光的作用下,逐步氧化成低分子中间产物,最终生成CO2、H20和其他一些离子,如PO43-、NO3-、Cl-等。有机物的光降解过程可分为直接光降解和间接光降解。直接光降解是指有机物分子吸收光能后进一步发生化学反应。间接光降解则是周围环境存在的某些物质吸收光能形成激发态后,再诱导有机污染物产生一系列的氧化降解反应,它在处理环境中难生物降解的有机污染物时更为有效。
2.1.6臭氧氧化法
臭氧的氧化能力极强,除分散染料外,它能够破坏有机染料的发色或助色基团而具有一定的脱色作用。H.Y.Shu等人对8种偶氮染料在单独O3,氧化和UV/O3氧化作用下的降解进行了比较,研究结果表明,可能是因为染料废水色度过深,吸收了大部分紫外光,引入UV后有机染料的降解速度并没有明显加快。史惠祥等人口刮利用臭氧降解偶氮染料阳离子红x-GRL的研究结论中指出,臭氧对染料的脱色以直接氧化为主。
由于臭氧在水中的溶解度较低,如何更有效地提高臭氧在水溶液中的溶解量,已成为研究臭氧氧化技术的热点和关键。此外,臭氧的使用会产生一些副产品,尤其要重视的是羰基化合物中的甲醛、乙醛等醛类,因这类物质具有急性和慢性毒性和一定的致癌、致畸、致突变性,容易导致二次污染,另外,臭氧发生器的成本相对较高,因此单独使用不够经济。
2.1.7 超声氧化法
随着超声化学的研究深入,超声氧化法被认为是一种清洁且具良好应用前景的方法,成为处理水污染的一项有效技术。超声波作用下产生的声空化效应形成的高温高压促使空化气泡内部的水蒸汽与其他气体发生离解产生自由基,引发超声化学反应的进行。N.Ince等人对pH和染料分子结构对超声降解效率的影响研究表明:pH对染料的降解有重要影响,降解程度随pH的减小而增加;分子质量越小,结构越简单,且具有偶氮基临位羟基取代基的染料分子越易被降解。G.Tezcanli—Gtiyer等人刚发现羟基自由基首先进攻染料的发色基团,染料的脱色过程快于芳香环的破坏过程。J.Ge等人研究也指出,引入超声能有效加快染料的降解,并提高矿化速率。
2.1.8 电化学法
电化学处理技术近年来进展很快,原基础上增加了氧化、光催化氧化或催化氧化的协同作用,微电解技术的局限性问题得到了较好地解决。周光元等人处理含盐染料废水的研究表明,处理过程中余氯的产生对脱色和去除COD起关键作用,电解l h后,脱色率可达85%,COD的去除率也达到99.8%。章婷曦等人采用内电解-催化氧化-氧化塘法处理染料废水时COD的去除率和脱色率都超过95%。祁梦兰等人采用微电解一催化氧化一飞灰吸附的组合工艺处理活性染料废水脱色率达99.9%,COD去除率在95%以上。
目前,电化学方法主要应用在去除具有生物毒性的有机污染化合物方面,这种方法最具吸引性的一大特点是能发挥电化学方法所特有的电催化性能,可以有选择性地将有机污染物降解到某一特定程度。此外,电化学方法与其他处理方法有较好的协同性,可实现联用,达到理想的处理效果。但是,利用电化学法彻底降解水中的有机污染物设备投入过高,而且需要消耗大量能源。
2.2 生物法
生物处理法是通过生物菌体的絮凝、吸附功能和生物降解作用,对染料进行分离和氧化降解。生物絮凝和生物吸附并不使染料发生化学变化。而生物降解过程则是利用微生物酶等的作用对染料分子进行氧化或还原,破坏染料的发色基团和不饱和键,并通过一系列氧化、还原、水解、化合等过程,将染料分子最终降解成为简单的无机物,或转化成各种微生物自身需要的营养物或原生质。生物处理法有好氧处理、厌氧处理和厌氧-好氧联合处理3种。
针对传统的生物处理法对纺织、染料废水中的有机染料不能起到有效的处理作用这一实际情况,一些学者近些年来着力研究开发厌氧一好氧联用技术,并取得了意想不到的效果。一些研究表明,同时应用好氧法和厌氧法,通过实现优势互补,很多好氧生物法不能氧化降解或降解程度有限的有机染料,通过厌氧法都能实现不同程度的降解。
作为实用的水污染处理技术之一,微生物处理染料废水的开发和研究已有多年的历史。微生物脱色降解机理非常复杂多样,很多降解过程和反应机制还很不清楚,有待不断探讨。
由于对各种有毒有害的、难以降解的、在环境中宿存的异生物质具有低耗、高效、广谱、适用性强的生物降解作用,以黄孢原毛平革菌为代表的白腐真菌成为治理多种污染物的有效武器,近些年来发展起来的真菌技术被很多学者称之为创新环境生物技术。可能是由于其在次生代谢阶段产生的木质素过氧化酶和锰过氧化酶的作用,许多白腐真菌对染料有广谱的脱色和降解能力。培养条件对白腐真菌脱色及降解活性有较大的影响。Conneely等人认为,白腐真菌对一些染料废水,如Rem.azol绿蓝G133、酞菁染料、Everzol绿蓝和Heli.gon蓝等生物吸附作用较强,并通过胞外酶的代谢作用使染料脱色降解。
利用微生物对染料废水进行处理的发展方向之一是选育和培养高效降解工程菌。微生物对有机染料的脱色、降解,以前多集中在兼性厌氧菌,如芽孢杆菌、假单胞菌和一些光合细菌,近年来逐渐筛选到了不少新品种。一些学者采用假单胞菌属对多种印染工业废水进行处理,研究结果表明,食油假单胞菌对其中的甲基橙、B15染料的脱色率都能达到80%以上,并且在高浓度染料环境中,食油假单胞菌表现出很强的耐受性。
20世纪80年代初,固定化微生物技术成为国内外有机工业废水处理的研究热点。这种技术是将可降解染料的微生物固定在特定载体的表面,提高微生物降解效率。用于固定化的微生物有单一和混合等多种方式。相关研究指出,混合菌脱色降解作用更好。随着固定化脱色菌载体技术的发展,脱色降解反应时问也在大大缩短。
生物强化技术是在生物处理体系中投加具有特定功能的微生物来改善原有处理体系的处理性能,用于对难降解有机物的去除。实施生物强化技术的途径主要有:投加高效降解的微生物;投加遗传工程菌(GEM);对现有处理体系的营养供给进行优化,通过添加基质或底物类似物质,来刺激微生物的生长或提高其活力。
膜生物反应器也是近些年来发展起来的一种新型污水处理技术。最早应用于发酵工业,20世纪80年代,膜生物反应器技术引起了学术界高度重视。膜技术能截流生物体,减少出水中所含的生物。通过无泡鼓气、膜生物反应器使氧的利用最大化。近年来,膜生物反应器已成功地应用于处理水道污水、粪便污水和垃圾渗滤液,并开始应用于处理染料废水。很多学者认为,含酶膜生物反应器将是未来处理染料废水的重要方向。由于膜制造费用高且易堵塞,膜生物反应器技术在水处理领域全面推广还受到了一定限制。
尽管生物法得到了很大发展,但随着染料废水的可生化度降低,受到微生物对营养物质、pH值、温度等条件有苛刻要求的限制,在实际应用处理染料废水时,生物法很难适应染料废水水质波动大、染料种类多、毒性高的实际状况。如微生物的高效化及固定化等生物强化技术。许多专家和学者都致力于高效降解菌的筛选和基因工程菌的构建等研究工作,实现利用大自然现有的丰富资源来为人类服务,但是实践表明,新开发的高效菌应用于染料废水的处理时,并不一定能够完全达到预期的强化作用。此外,微生物本身还存在着安全性问题,高效菌与基因工程菌流落到自然环境中,可能对自然环境和生态平衡造成威胁,因而,这些生物方法的应用必须事先经过严格的环境安全性检查和评估。同时,微生物对染料的降解机理以及微生物的代谢机制还需要进一步研究和探讨。
Ⅳ 活性炭纤维怎样用于染料废水的处理
我们[email protected]可以提供一种用前苏联的技术制造的,粘胶基的活性炭纤维布,指标如下:
Specificsurfaceaream2/g1200+/-100
Iodineadsorptioncapacitymg/g1100+/-100
Methyleneblueabsorptionmg/g300+/-50
BenzolvaporadsorptionWt%40+/-5
ElectricalresistanceOhm/2.5cm15+/-3
Specific3DresisitanceOhm1+/-0.2
BreakingloadbywarpN/5cm200+/-20
Widthoffabriccm85+/-10
Fiberdiameterum6+/-2
平面电阻=6Ohm/cm;垂直电阻=1Ohm
非常适合于做电极材料,用于电化学氧化法处理染料废水。大致机理是:活性炭纤维吸附,巨大的面积,产生H2O2,氧化有机分子,可以连续处理。
要样品,发邮件到[email protected],说明要的数量,用途。
Ⅵ 瓜子壳活性炭吸附染料实验报告单
六价铬可以通过皮肤、呼吸道吸收,引起胃道及肝、肾功能损害,还可能伤及眼部,出现视网膜出血、视神经萎缩。饮用水中超标400倍时,会发生口角糜烂、腹泻、消化紊乱等症状;会使人呼吸急促,咳嗽气喘,短暂的心脏休克;造成肾脏、肝脏、神经系统和造血器官的毒性反应等。当人体内残存了大量的重金属之后,急易对身体内的脏器造成负担,特别是肝和胆,当这两种器官出现问题后,维持人体内的新陈代谢就会出现紊乱,肝硬化,肝腹水甚至更为严重。 瓜子壳大部分当做燃料或废渣丢弃,造成自然资源的极大浪费,直接影响了瓜子的综合利用价值。近年来,瓜子壳的开发利用逐渐引起人们重视,将其用于废水处理方面的研究也有报道。1 试剂与仪器重铬酸钾、分光光度计、恒温水浴锅、电热鼓风干燥箱、盐酸、循环水真空抽滤机2 溶液配制 1000mg/LCr6+溶液、0.6mol/L盐酸溶液3 实验步骤 取200mL一定浓度的Cr6+溶液,加入瓜子壳活性炭,调节不同的酸度,搅拌吸附一定时间,过滤分离除去固体物质,滤液测定Cr6+浓度,计算瓜子壳活性炭对Cr6+的吸附率。固定实验条件为最佳实验条件,对Cr6+进行吸附,吸附Cr6+后的吸附剂用0.6mol/L的盐酸溶液洗脱,再用去离子水洗至中性,然后在干燥箱中烘干重新使用。反复几次,测定Cr6+浓度的变化和吸附率的变化。六价铬测定:在硫酸和磷酸介质中消除三价铁的干扰,以铬指示剂为指示剂,用硫酸亚铁铵滴定,使六价铬还原成三价铬,过量的硫酸亚铁铵与铬指示剂反应,溶液呈黄绿色为终点。根据硫酸亚铁铵标准溶液的用量,计算出水中六价铬含量,反应方程式如下:2Na2CrO4+7H2SO4+6FeSO4(NH4)2SO4→Cr2(SO4)3+2Na2SO4+6(NH4)2SO4+3Fe2(SO4)3+8H2O0.2%铬指示剂:称取铬指示剂0.2g,溶于100mL 0.2%碳酸钠溶液中,摇匀,放置于棕色瓶中保存。0.4mg/mL六价铬标准溶液:称取120℃干燥2h的重铬酸钾1.1316g,溶解后转移到1000mL容量瓶中,摇匀。硫酸亚铁铵标准溶液 :称取硫酸亚铁铵25g,溶于1000mL(1+9)硫酸中,过滤。吸取10mL六价铬标准溶液,加入50mL水和5mL(1+3)硫酸及5滴铬指示剂,用硫酸亚铁铵标准溶液滴定至颜色由紫红色变为黄绿色即为终点。硫酸亚铁铵溶液对六价铬的滴定度计算:T-1mL硫酸亚铁铵溶液相当于六价铬的毫克数,mg/mL;V-硫酸亚铁铵溶液的消耗量,mL; 取一定量的水样调节pH值为中性,稀释到50mL,加(1+3)硫酸5mL,(1+1)磷酸1mL,5滴铬指示剂,硫酸亚铁铵标准溶液滴定至颜色由紫红色变为黄绿色为终点,并从试液的标准溶液用量中扣除空白值。T-硫酸亚铁铵的滴定度,mg/mL;V1-滴定消耗的硫酸亚铁铵体积,mL;V-实验吸取的水样体积,mL。铜离子浓度测定:取5mL 10mg/L Cu2+溶液于50mL比色管中,分别加入5mL硼酸钠缓冲溶液,10mL 0.5g/L的双环已酮草酰二腙溶液,用去离子水稀释至刻度,摇匀,在室温下显色10min,用1cm比色皿,以蒸馏水为参比,测定其最大吸收波长。取7支50mL洗净的比色管,用移液管依次加入0、1.00、2.00、4.00、6.00、8.00、10.00mL 10mg/L的Cu2+标准溶液,再依次加入5mL硼酸钠缓冲溶液,10mL0.5g/L的双环已酮草酰二腙溶液,用去离子水稀释至刻度,摇匀,在室温下显色10min,用1cm比色皿,以去离子水为参比,在最大吸收波长处测定其吸光度。4 数据记录和整理4.1 酸度影响(实验条件: )pH24681012Cr6+浓度/mg/L Cr6+吸附率/% 4.2 吸附时间影响(实验条件: )吸附时间/min20406080100120Cr6+浓度/mg/L Cr6+吸附率/% 4.3 吸附剂加入量影响(实验条件: )吸附剂加入量/mg50100150200250300Cr6+浓度/mg/L Cr6+吸附率/% 4.4 Cr6+浓度影响(实验条件: )Cr6+浓度/mg/L50100150200250300Cr6+浓度/mg/L Cr6+吸附率/% 4.5 重复实验次数/次123456Cr6+浓度/mg/L Cr6+吸附率/% 5 探讨与分析
Ⅶ 活性炭吸附处理染料废水及其成本核算总结怎么写
就详细的分析分析活性炭的吸附饱和周期,计算出日均活性炭消耗内量、月均活性炭消耗量容、年消耗量,然后分析分析水量,计算出吨水消耗活性炭量,然后算出吨水处理成本。分析分析吸附饱和后的活性炭如何处理,以及处理成本。
分析的时候结合一下你们公司具体的实际情况,差不多一些数据齐备就行了。
现在铁碳微电解+催化氧化工艺在染料废水处理中应用较多,相较于活性炭吸附,成本低一些。