工业废水放射性检测方法
A. 废水气样的采集与检测方法,要具体方法包括操作过程什么的,推荐本书也行
仅供参考! 所谓水质指标是用以评价一般淡水水域、海水水域特性的重要参数.可以根据这些参数对水质的类型进行分类,对水体质量进行判断和综合评价.水质指标已形成比较完整的指标体系.
许多水质指标是表示水中某一种或一类物质的含量,常直接用其浓度表示,有些水质指标则是利用某一类物质的共同特性来间接反映其含量.例如水中有机物质具有易被氧化的共同特性,可用其耗氧量作为有机物含量的综合性指标;还有一些水质指标是同测定方法直接联系的,例如混浊度,色度等用人为规定的并配制某种人工标准溶液作为衡量的尺度.水质指标按其性质不同,可分为物理的,生物的和化学的指标.关于生物指标,根据水生生物的组成(种类与数量)以及它们的生态学特征而提出的各项指标已在有关课程中介绍.本节概要讨论一下几项常用的水质物理指标的含义.对于化学指标的含义将在本书的其他有关部门章节中作有关深入的讨论,这里按测定所使用的不同方法作粗略的分类.
(一)水质的物理指标
水体环境的物理指标项 目颇多,包括 水温、渗透压、混浊度(透明度)、色度、悬浮固体、蒸发残渣以及其它感官指标如味觉、嗅觉属性等等.
1. 温度 温度是最常用的物理 指标 之一.由于水的许多物理特性、水中进行的化学过程和生物过程 都同 温度有关,所以它经 常是必须加以测定的.天然水的温度因水源的不同而异.地表水的温度与季节气候条件有关,其变化范围大约在0.1--30℃;地下水的温度则比较稳定,一般变化于8--12℃左右,而海水的温度变化范围为-2--30℃.
2. 嗅与味 被污染的水体往 往具有不正 常 的气味,用鼻闻到的称为嗅,口尝到的称为味.有时嗅与味 不能截然分开.常常根据水的气味,可以推测水中所含杂质和有害成分.水中的嗅与味的来 源可能有:水生植物或微生物的繁殖和衰亡;有机物的腐败分解;溶解气体H2S等;溶解的矿物盐或混入的泥土;工业废水中 的 各种 杂质 如 石油、酚等;饮用水消毒过程的余氯等.不同的物质有着不同的气味,例如湖 沼水因藻类繁生或有机物产生的鱼腥及霉烂气味;浑浊河水常含有泥土的涩 味;温泉水常有硫酸味;有些地下水的H2S气味;含溶解氧较多的带甜味;含有机物较多的也常具有甜味;水中含NaCl带有咸味,含MgSO4,Na2SO4等带有苦味;含CuSO4带有甜味,而Fe的水带有涩味. 人的感官分辨嗅与味,不可避免带有主观性.目前对嗅与味尚无完全客观的标准和检测的仪器,只有极清洁或 已消毒过的 水才可用口尝试.由于水温对水的气味有很大影响,所以测定嗅 与味常常在室温20℃和加热(40-50℃)两种情况下进行. 此外,有人提出 以臭气浓度及臭气强度指数来度量水质的嗅觉属性.臭气浓度(TO)=200/a,式中a为感觉到臭气的最小水样量(mL).在给水水源的标准中,要求(TO)值低于3-5. 臭气 强度指数(PO)系指被测水样稀释到没有臭气为止时以百分率表示的稀释倍数. PO与TO通常具有如下关系:PO=lgTO/lg2(合田健,1989).
3.颜色与色度 天然水经常表现出各种颜色.湖沼水常有黄褐色、或黄绿色, 这往往是由腐殖质造成的.水 中悬浮泥沙和不溶解 的矿物质也长带有颜色,例如粘土使水呈黄色;铁的氧化物使水呈黄褐色; 硫化氢氧化析出的硫使水呈蓝色等等.各种水藻如球藻、硅藻等的繁殖使水 呈黄绿色、褐色等.根据水的颜色,可以推测水中杂质的数量和种类.色 度是对天然的或处理之后的各种用水进行水色测定时所规定的指标.目前世 界各国统一用氯化铂酸钾(K2PtCl6)和 氯 化钴(CoCl2.6H2O)配制的混合溶液作为色度的标准.
4.混浊度与透明度 水中若含有悬浮及胶体状态的物质,常会发生混浊现象.地表水的混浊是由泥沙、粘土、有机物造成的.地下水一般比较清澈透明,但若水中含有Fe2+盐,与空气接触后就可能产生Fe(OH)3,使水呈棕黄色混浊状态;海洋在近岸和河口区由于陆地径流携带大量泥沙、粘土、有机物造成的.不同河流因流经地区的地质土壤条件不同,混浊程度可能有很大的差别.地下水一般比较清澈透明,但若水中含有Fe2+盐,与空气接触后就可能产生Fe(OH)3,使水呈棕黄色混浊状态;海洋在近岸和河口区由于陆地径流携带大量泥沙和其它有机物,水质比较混浊而远岸海区水区水质透明.
混浊度是一种光学效应,它表示光线透过水层时受到阻碍的程度.这种光学效应和和微粒的大小及形状有关.从胶体颗粒到悬浮颗粒都能产生混浊现象,其粒径的变化幅度是很大的.所有有相同悬浮物质含量的两种水体若颗粒粒径分级状况不同,其混浊程度就未必相等.浑浊度的标准单位是以不溶性硅如漂白土、高岭土在光学阻碍作为测量的基础,即规定1mgSiO2.L-1所构成的混浊度为1度.把预测水样与标准混浊度按照比浊法原理进行比较就可以测得其混浊度.
透明度是表示水体透明程度的指标.它与混浊度的意义恰恰相反.都表明水中杂质对透过光线的阻碍程度.若把某一方面白色或黑白相间的圆盘作为观察对象,透过水层俯视圆盘并调节圆盘深度至恰能看到为止,此时圆盘所在深度位置称为透明度.
5. 固体含量 天然水体中所含物质大部分属于固体物质,经常有必要测定其含量作为直接的水质指标.各种固体含量可以分为以下几类:(1)总固体.即水样在一定温度下蒸发干燥后残存的固体物质总量,也称蒸发残留物;(2)悬浮性固体.即将水样过滤①,截留物烘干后的残存的固体物质的量,也就是悬浮物质的含量,包括不溶于水的泥土、有机物、微生物等;(3)溶解性固体.即水样过滤后,滤液蒸干的残余固体量.包括可溶于水的无机盐类及有机物质.总固体量是悬浮固体和溶解性固体二者之和.此外还有可沉降固体,固体的灼烧减重等指标.各种固体含量的测定都是以重量法进行的,测定时蒸干温度对结果的影响很大.一般规定的确105--110℃,不能彻底赶走硫酸钙、硫酸镁等结晶水.不易得到固定不变的重量;若在180℃蒸干,所得结果虽比较稳定,但由于一些盐类如CaCl2 、Ca(NO3)2MgCl2、Mg(NO3)2等具有强烈的吸湿性,极易吸收空气中的水分,在称量时也不易得到满意的结果.因此测定的结果比较粗略.
(二)水质化学指标
利用化学反应、生物化学的反应及物理化学的原理测定的水质指标,总称为化学指标.由于化学组成的复杂性,通常选择适当的化学特性进行检查或作定性、定量的分析.根据不同的分析方法可以把化学指标归纳如下:
1.中和的方法 包括水体的碱度、酸度等;
2.生成螯合物的方法 如Ca2+ Mg2+及硬度等;
3.加热和氧化剂分解法 将含生物体在内的有机化合物的含量以加热分解时产生CO2的量[总有机碳(TOC);微粒有机碳(POC)]、分解时消耗的氧量[总耗氧量(TOD)]或消耗氧化的量[化学耗氧量(COD)]来表示的指标;
4.生物化学反应的方法论 以生物化学耗氧量(BOD)为代表,是测定微生物分解有机物时所需消耗的氧量,包括测定微生物在呼吸过程中产生的CO2的量以及利用脱氢酶等酶活性法来测定有效生物量等指标;
5.氧化还原反应及沉淀法.最典型为溶解氧含量及氯离子含量等指标.
6.电化学法.有水的电导率,氯化-还原电位(pE)以及包括pH在内的离子选择电极的各种指标,如F-、NH4+以及许多金属离子;
7.微量成分.以仪器分析为主要检测手段.包括分光光度法,原子吸收光谱法,气相、液相色谱法,中子活化分析法以及等离子发射光谱法等.指标项目众多,如生物营养元素、各种化学形态的重金属离子及非金属微量元素、微量有机物、水已的污染物(如有机农药、油类)以及放射性元素等等. 总之,系统了解各类水质指标的含义具有重要意义.因为对于任何水生生态系统环境都是通过对一系列的、经过严格选择的、具有典型意义代表性的指标进行调查或监测分析结果,而加以综合评价的.必须强调,水质的生物学指标的调查分析结果对于科学评价水环境质量越来越大越显示其重要性.象英、美、日等国对水环境的要求,都从生态学的观点出发,重视生物监测.例如英国泰晤士河由于进行了常时间的治理,1969年已有鱼群重新出现,其治理效果就是用已有碍100多种鱼类重新回到泰晤士河加以表征的;日本1970年将生物学水知判断法列入有关水环境质量指标中;我国现在已将细菌学指标列为部颁水环境质量标准.
二、 我国当前沿用的主要水质理化指标及测试系统
(一) 主要理化指标 当前许多国家都颁布了各自不同的水质质量标准,规定了为数繁多的指标项目.我国于1973年颁布了《工业“三废”排放试行标准》,规定了工业废水中有14项有害物质的最高排放浓度.1976年颁发《生活饮用水水质标准》,其中感官性指标有4项(色、混浊度、嗅与味、肉眼可见物);化学指标有8项(Ph、总硬度、铁、锰、铜、锌、挥发酚、阴离子合成洗涤剂);毒理学指标有8项(氰化物、砷、硒、汞、镐、六价铬、铅);细菌学指标有3项(细菌总数、大肠菌群、游离余氯).1983年发布《地表水环境质量标准》,规定出20种监测项目的三级质量标准,其中包括pH、水温、色、嗅、溶解氧,生化需氧量,挥发性酚类、氮化物、砷、总汞、镉、六价铬、铅、铜、石油类、大肠菌群等.我国先行的《海水水质标准(GB3097-82)》规定的理化指标包括物理感官指标,化学感官指标和微生物指标计25项;《渔业水域水质标准(GB11607-89)》包括感官和化学指标34项.
水环境调查或监测分析项目在理化指标方面多根据各类水体目前和将来的用途而加以选择和确定的.在养殖生产和有关部门水生生物科学研究中,为了充分利用和改良或控制水的理化条件,常常必须对10多项常规指标进行分析,包括温度、含盐量(盐度)、溶解氧、pH、碱度、硬度、硝酸盐、亚硝酸盐、铵氮、总氮、磷酸盐、总磷、硅酸盐、化学耗氧量等等;对水环境的污染物质的调查中常按基础调查、检测性调查、专题性调查及应急性调查等多种不同类型的用途而选择不同的指标项目.淡水水体和海水水体常常也有所差异.
从国外报道各种类型的水质调查或监测标准来看,由于国情的不同,其侧重点各异.而且调查或监测指标的选择和确定问题本身也还有一个逐步深入和不断发展的过程,例如对污染指标随着新的化学物质的品种的增加、分析技术的发展,以及在流行病学研究中对致癌、致畸及致突变的生理生化过程的深入研究,监测或调查项目会不断的加以改变,方法也会逐步发展和完善.
(二) 测试系统 对水质理化指标进行的测试实验可采用现场测试、船上测试和陆上实验室测试三种方式.采用不同方式测试所得结果的确切程度是不同的,特别是深层水样的 采集和储存,其温度、压力产生变化,都将使化学平衡点产生变化.例如[HCO3-]/[CO32-]等离子成分的浓度比值以及溶解气体的含量等都回发生变化.;储存的水样,即使排除了容器污染和通过容器表面散失的可能性,水质也会因为悬浮物的凝聚沉降以及生物提的代谢过程、死亡分解过程等的影响而发生改变.
目前,可采用现场测试的项目越来越多,遥控遥感技术的发展使许多水质指标项目的测试可以字响当大的范围进行同步观测.但借助仪器的探头作高深度水域(特别是海洋)的现场测试常常遇到很多困难.加在现场测试仪器尚未能普及的情况下,水质理化指标测试工作常常必须先采样后在船上实验室或陆上实验室进行.
天猫美国普卫欣提示:雾霾天气出行记得做好防护。
随着自动化分析技术的发展,水质指标的调查、监测分析已经逐步使用自动测试系统.该系统一般由采样装置,水质连续监测仪器,数据传输、记录及处理几部分组成,其特点是自动化、仪器化和连续性.目前已采用自动化试系统的有:水温、Ph、电导率、氧化还原电位、混浊度、悬浮物、溶解氧、COD、TOC、TOD、某些金属离子、氰化物等等.自动测试系统可避免人工采样所得数据的不全面性,大大缩短采样分析到获得结果之间的时间.但自动测试系统也有局限性,不能对大部分指标逐一单项进行测定,因为水质化学组成(尤其是污染物)复杂,组分价态、形态多变,干扰严重,需要一系列的化学预处理操作和各种高灵敏度的检测方法.因此,发展规律连续自动测试技术并和实验室(船上和陆上)采样分析技术相结合,是完善水质理化指标的一系列切实可行的途径
B. 水中的放射性指标如何测
通常根据测量目的和条件采用不同的测量方法,常规实验室方法有:
1)伽玛核素活度:伽玛谱仪;
2)总alpha/beta:采用水样蒸发制样,再用alpha/beta计数器测量;也可以用液闪计数器测量;
3)H-3/C-14: 用液闪计数器测量;
4)水中alpha核素活度:制样后,用alpha谱仪;或用液闪计数器测量;
C. 放射性测量方法
放射性测量方法按放射源不同可分为两大类:一类是天然放射性方法,主要有γ测量法、α测量法等;另一类是人工放射性方法,主要有X射线荧光法、中子法等。表7.1给出了几种放射性测量方法的简单对比。
7.1.2.1 γ测量
γ测量法是利用辐射仪或能谱仪测量地表岩石或覆盖层中放射性核素产生的γ射线,根据射线能量的不同判别不同的放射性元素,而根据活度的不同确定元素的含量。γ测量可分为航空γ测量、汽车γ测量、地面(步行)γ测量和γ测井,其物理基础都是相同的。
根据所记录的γ射线能量范围的不同,γ测量可分为γ总量测量和γ能谱测量。
(1)γ总量测量
γ总量测量简称γ测量,它探测的是超过某一能量阈值的铀、钍、钾等的γ射线的总活度。γ总量测量常用的仪器是γ闪烁辐射仪,它的主要部分是闪烁计数器。闪烁体被入射的γ射线照射时会产生光子,光子经光电倍增管转换后,成为电信号输出,由此可记录γ射线的活度。γ辐射仪测到的γ射线是测点附近岩石、土壤的γ辐射、宇宙射线的贡献以及仪器本身的辐射及其他因素的贡献三项之和,其中后两项为γ辐射仪自然底数(或称本底)。要定期测定仪器的自然底数,以便求出与岩石、土壤有关的γ辐射。岩石中正常含量的放射性核素所产生的γ射线活度称为正常底数或背景值,各种岩石有不同的正常底数,可以按统计方法求取,作为正常场值。
表7.1 几种放射性法的简单对比
续表
(2)γ能谱测量
γ能谱测量记录的是特征谱段的γ射线,可区分出铀、钍、钾等天然放射性元素和铯-137、铯-134、钴-60等人工放射性同位素的γ辐射。其基本原理是不同放射性核素辐射出的γ射线能量是不同的,铀系、钍系、钾-40和人工放射性同位素的γ射线能谱存在着一定的差异,利用这种差异选择几个合适的谱段作能谱测量,能推算出介质中的铀、钍、钾和其他放射性同位素的含量。
为了推算出岩石中铀、钍、钾的含量,通常选择三个能谱段,即第一道:1.3~1.6MeV;第二道:1.6~2.0MeV;第三道:2.0~2.9MeV。每一测量道的谱段范围称为道宽。由于第一道对应40K的γ射线能谱,第二道、第三道则分别主要反映铀系中的214Bi和钍系中的208Tl的贡献,故常把第一、二、三道分别称为钾道、铀道和钍道。但是,钾道既记录了40K的贡献,又包含有铀、钍的贡献。同样,铀道中也包含钍的贡献。当进行环境测量时往往增设137Cs,134Cs,60Co等道。
γ能谱测量可以得到γ射线的总计数,铀、钍、钾含量和它们的比值(U/Th,U/K,Th/K)等数据,是一种多参数、高效率的放射性测量方法。
7.1.2.2 射气测量
射气测量是用射气仪测量土壤中放射性气体浓度的一种瞬时测氡的放射性方法。目的是发现浮土覆盖下的铀、钍矿体,圈定构造带或破碎带,划分岩层的接触界限。
射气测量的对象是222Rn,220Rn,219Rn。氡放出的α射线穿透能力虽然很弱(一张纸即可挡住),但它的运移能力却很强。氡所到之处能有α辐射,用α辐射仪可方便测定。222Rn,220Rn的半衰期分别为3.8d和56s,前者衰变较后者慢得多,以此可加以区分。
工作时,先在测点位置打取气孔,深约0.5~1m,再将取气器埋入孔中,用气筒把土壤中的氡吸入到仪器里,进行测量。测量完毕,应将仪器中的气体排掉,以免氡气污染仪器。
7.1.2.3 Po-210测量
Po-210法,也写作210Po法或钋法,它是一种累积法测氡技术。210Po法是在野外采取土样或岩样。用电化学处理的方法把样品中的放射性核素210Po置换到铜、银、镍等金属片上,再用α辐射仪测量置换在金属片上的210Po放出来的α射线,确定210Po的异常,用来发现深部铀矿,寻找构造破碎带,或解决环境与工程地质问题。
直接测氡,易受种种因素的影响,结果变化较大。测量210Pb能较好地反映当地222Rn的平均情况。210Po是一弱辐射体,不易测量,但其后210Bi(半衰期5d)的子体210Po却有辐射较强的α辐射,半衰期长(138.4d)。因此,测210Po即可了解210Pb的情况,并较好地反映222Rn的分布规律。210Po是222Rn的子体,沿有钍的贡献。这是和γ测量、射气测量、α径迹测量的不同之处。只测量210Po的α射线,而测不到Po的其他同位素放出的α射线,是因为它们的半衰期不同的缘故。
7.1.2.4 活性炭测量
活性炭法也是一种累积法测氡技术,灵敏度高,效率亦高,而技术简单且成本低,能区分222Rn和220Rn,适用于覆盖较厚,气候干旱,贮气条件差的荒漠地区。探测深部铀矿或解决其他有关地质问题。
活性炭测量的原理是在静态条件下,干燥的活性炭对氡有极强的吸附能力,并在一定情况下保持正比关系。因此,把装有活性炭的取样器埋在土壤里,活性炭中丰富的孔隙便能强烈地吸附土壤中的氡。一定时间后取出活性炭,测定其放射性,便可以了解该测点氡的情况,以此发现异常。
埋置活性炭之前,先在室内把活性炭装在取样器里,并稍加密封,以免吸附大气中的氡。活性炭颗粒直径约为0.4~3mm。每个取样器里的活性炭重约数克至数十克,理置时间约为数小时至数十小时,一般为5d。时间可由实验确定最佳值,埋置时间短,类似射气测量;埋置时间长,类似径迹测量,但径迹测量除有氡的作用外,其他α辐射体也会有贡献。活性炭测量只有氡的效果。也有把活性炭放在地面上来吸附氡的测量方法。
为了测量活性炭吸附的氡,可采取不同方法:①测量氡子体放出的γ射线;②测量氡及其子体放出的α射线。
7.1.2.5 热释光法
工作时,把热释光探测器埋在地下,使其接受α,β,γ射线的照射,热释光探测器将吸收它们的能量。一定时间后,取出探测器,送到实验室,用专门的热释光测量仪器加热热释光探测器,记录下相应的温度和光强。探测器所受辐射越多,其发光强度愈强。测定有关结果即可了解测点的辐射水平及放射性元素的分布情况,进而解决不同的地质问题。
自然界的矿物3/4以上有热释光现象。常温条件下,矿物接受辐射获得的能量,是能长期积累并保存下来的。只有当矿物受热到一定程度,贮存的能量才能以光的形式释放出来。根据矿物样品的发光曲线,可以推算该矿物过去接受辐射的情况、温度的情况等。
7.1.2.6 α测量法
α测量法是指通过测量氡及其衰变子体产生的α粒子的数量来寻找放射性目标体,以解决环境与工程问题的一类放射性测量方法。氡同位素及其衰变产物的α辐射是氡气测量的主要物理基础。
工程和环境调查中用得较多有α径迹测量和α卡测量方法。
(1)α径迹测量法
当α粒子射入绝缘体时,在其路径上因辐射损伤会产生细微的痕迹,称为潜迹(仅几纳米)。潜迹只有用电子显微镜才能看到。若把这种受过辐射损伤的材料浸泡在强酸或强碱里,潜迹便会蚀刻扩大,当其直径为微米量级时,用一般光学显微镜即可观察到辐射粒子的径迹。能产生径迹的绝缘固体材料称为固体径迹探测器。α径迹测量就是利用固体径迹探测器探测径迹的氡气测量方法。
在工作地区取得大量α径迹数据后,可利用统计方法确定该地区的径迹底数,并据此划分出正常场、偏高场、高场和异常场。径迹密度大于底数加一倍均方差者为偏高场,加二倍均方差者为高场、加三倍均方差者为异常场。
(2)α卡法
α卡法是一种短期累积测氡的方法。α卡是用对氡的衰变子体(21884Po和21484Po等)具有强吸附力的材料(聚酯镀铝薄膜或自身带静电的过氯乙烯细纤维)制成的卡片,埋于土壤中,使其聚集氡子体的沉淀物,一定时间后取出卡片,立即用α辐射仪测量卡片上的α辐射,借此测定氡的浓度。由于测量的是卡片上收集的放射性核素辐射出的α射线,所以把卡片称作α卡,有关的方法就称为α卡法。如果把卡片做成杯状,则称为α杯法,其工作原理与α卡法相同。
7.1.2.7 γ-γ法
γ-γ法是一种人工放射性法,它是利用γ射线与物质作用产生的一些效应来解决有关地质问题,常用来测定岩石、土壤的密度或岩性。
γ-γ法测定密度的原理是当γ射线通过介质时会发生康普顿效应、光电效应等过程。若γ射线的照射量率I0;γ射线穿过物质后,探测器接受到的数值为I,则I和I0之间有一复杂的关系。即I=I0·f(ρ,d,Z,E0),其中ρ为介质的密度,d为γ源与探测器间的距离,Z为介质的原子序数,E0为入射γ射线能量。
在已知条件下做好量板,给出I/I0与ρ,d的关系曲线。在野外测出I/I0后,即可根据量板查出相应的密度值ρ。
7.1.2.8 X荧光测量
X射线荧光测量,也称X荧光测量,是一种人工放射性方法,用来测定介质所含元素的种类和含量。其工作原理是利用人工放射性同位素放出的X射线去激活岩石矿物或土壤中的待测元素,使之产生特征X射线(荧光)。测量这些特征X射线的能量便可以确定样品中元素的种类,根据特征X射线的照射量率可测定该元素之含量。由于不同原子序数的元素放出的特征X射线能量不同,因而可以根据其能量峰来区分不同的元素,根据其强度来确定元素含量,且可实现一次多元素测量。
根据激发源的不同,X荧光测量可分为电子激发X荧光分析、带电粒子激发X荧光分析、电磁辐射激发X荧光分析。
X荧光测量可在现场测量,具有快速、工效高、成本低的特点。
7.1.2.9活化法
活化分析是指用中子、带电粒子、γ射线等与样品中所含核素发生核反应,使后者成为放射性核素(即将样品活化),然后测量此放射性核素的衰变特性(半衰期、射线能量、射线的强弱等),用以确定待测样品所含核素的种类及含量的分析技术。
若被分析样品中某元素的一种稳定同位素X射线作用后转化成放射性核素Y,则称X核素被活化。活化分析就是通过测量标识射线能量、核素衰变常数、标识射线的放射性活度等数据来判断X的存在并确定其含量。
能否进行活化分析以确定X核素存在与否,并作定量测量,关键在于:①X核素经某种射线照射后能否被活化,并具有足够的放射性活度;②生成的Y核素是否具有适于测量的衰变特性,以利精确的放射性测量。
活化分析可分为中子活化分析、带电粒子活化分析、光子活化分析等。
(1)中子活化分析
根据能量不同,中于可分为热中子、快中子等。热中子同原子核相互作用主要是俘获反应,反应截面比快中子大几个量级。反应堆的热中子注量率一般比快中子的大几个量级,因此热中子活化分析更适应于痕量元素的分析。
(2)带电粒子活化分析
常用的带电粒子有质子、α粒子、氘核、氚核等,也有重粒子。
带电粒子活化分析常用于轻元素,如硅、锗、硼、碳、氮、氧等的分析。
(3)光子活化分析
常用电子直线加速器产生的高能轫致辐射来活化样品。
D. 工业废水检测检测哪些项目
1、悬浮物。来是水中呈固体状源不溶的物质,常单位体积污水所含悬浮物的量(mg/L)表示。
2、废水中有机浓度:1)生物化学需氧量,简称生化需氧量,用BOD表示,表示污水中的有机污染物经微生物分解所需的氧量,以mg/L或百万分率(ppm)表示,BOD越高表示水中需氧有机物越多,水质污染程度越大。2)化学需氧量COD,表示用化学氧化剂氧化水中还原性污染物时所需的氧量,以mg/L或百万分率(ppm)表示,COD越高表示有机物越多,目前常用的氧化剂有重铬酸钾或高锰酸钾。3)总有机碳(TOC)和总需氧量(TOD)。
3、PH值是检验水的重要指标,生活污水PH值为7.2—7.6,工业污水较为复杂,变化较大。
4、污水细菌污染指标,在水处理过程中,用两种指标表示水体被细菌污染的程度:1)1毫升水中细菌(杂菌)的总数;2)水中大肠杆菌的多少。水肿含有大肠杆菌,说明水已被污染了。
5、污水中有毒指标。我国已制定过“地面水中有毒物质的最高容许浓度”的标准。此外,还有温度、颜色、放射性物质浓度等。
pH值、五日生化需氧量、化学需氧量、氨氮、总氮、
总磷、阴离子表面活性剂、总氰化物等相关标准项目
E. 怎样检测放射性元素
一般人很难搞到盖革米勒计数器啊,热释光计量仪啊啥的。
有条件的话去当地的环境监督看看有没有辐射检测的科室。
不过我不认为买到的饰品会带有损害人健康的放射性,应该达不到那么高水平。
如果真的是很强的放射性以致损害健康,那卖饰品的人肯定会先倒霉,
而那些加工饰品的人估计已经死光了。
一般饰品的加工都是买金属原料来加工,辐射量一般不会超过当地的辐射本底。
导游忽悠你,放心佩戴吧。
F. 如何检测放射性物质
一、外照射,鉴定工作人员所处辐射场的外照射水平,估算工作人员接受的辐照剂量,同时了解个人的辐射防护情况;
二、内照射,了解放射性物质进入体内的情况。
某些物质的原子核能发生衰变,放出我们肉眼看不见也感觉不到,只能用专门的仪器才能探测到的射线,物质的这种性质叫作放射性。 放射性物质是那些能自然的向外辐射能量,发出射线的物质。
一般都是原子质量很高的金属,像钚,铀,等。放射性物质放出的射线主要有α射线、β射线、γ射线、正电子、质子、中子、中微子等其他粒子。
(6)工业废水放射性检测方法扩展阅读:
放射性物质的危害表现:
放射性物质不仅在其所在的局部起作用,而且对整个机体也有影响。放射性物质可以导致中枢神经系统、神经-内分泌系统及血液系统的破坏;
可使血管通透性改变,导致出血以及并发感染。上述现象严重的破坏了机体的生活功能而使生命活动停止。大剂量的放射性物质发挥作用时可迅速地引起病理变化;
但在小剂量的作用下,这些变化就显得缓慢,并伴有长短不一的潜伏期。如在400rad的照射下,受照射的人有5%死亡;若照射650rad,则人100%死亡。
照射剂量在150rad以下,死亡率为零,但并非无损害作用,往往需经20年以后,一些症状才会表现出来。放射性也能损伤遗传物质,主要在于引起基因突变和染色体畸变,使一代甚至几代受害。
G. 常见的放射性废水处理方法有哪些
放射性废水的主要去除对象是具有放射性的重金属元素,与此相关的处理技术,简单地可分为化学形态改变法和化学形态不变法两类。
放射性废水处理方法:
其中化学形态改变法包括:
1、化学沉淀法;
2、气浮法;
3、生化法。
化学形态不变法包括:
1、蒸发法;
2、 离子交换法;
3、吸附法;
4、 膜法。
化学沉淀法是向废水中投放一定量的化学絮凝剂,如硫酸钾铝、硫酸钠、硫酸铁、氯化铁等,有时还需要投加助凝剂,如活性二氧化硅、黏土、聚合电解质等,使废水中的胶体物质失去稳定而凝聚何曾细小的可沉淀的颗粒,并能于水中原有的悬浮物结合为疏松绒粒。改绒粒对水中的放射性元素具有很强的吸附能力,从而净化水中的放射性物质、胶体和悬浮物。引起放射性元素与某种不溶性沉渣共沉的原因包括了共晶、吸附、胶体化、截留和直接沉淀等多种作用,因此去除效率较高。
化学沉淀法的优点是:方法简便、费用低廉、去除元素种类较广、耐水力和水质冲击负荷较强、技术和设备较成熟。缺点是:产生的污泥需进行浓缩、脱水、固化等处理,否则极易造成二次污染。化学沉淀法适用于水质比较复杂、水量变化较大的低放射性废水,也可在与其他方法联用时作为预处理方法。
蒸发浓缩法处理放射性废水:除氚、碘等极少数元素之外,废水中的大多数放射性元素都不具有挥发性,因此用蒸发浓缩法处理,能够使这些元素大都留在残余液中而得到浓缩。蒸发法的最大优点之一是去污倍数高。使用单效蒸发器处理只含有不挥发性放射性污染物的废水时,可达到大于10的4次方的去污倍数,而使用多效蒸发器和带有除污膜装置的蒸发器更可高达10的6次方到8次方的去污倍数。此外,蒸发法基本不需要使用其他物质,不会像其他方法因为污染物的转移而产生其他形式的污染物。
尽管蒸发法效率较高,但动力消耗大、费用高,此外,还存在着腐蚀、泡沫、结垢和爆炸的危险。因此,本法较适用于处理总固体浓度大、化学成分变化大、需要高的去污倍数且流量较小的废水,特别是中高放射性水平的废水。
新型高效蒸发器的研发对于蒸发法的推广利用具有重大意义,为此,许多国家进行了大量工作,如压缩蒸汽蒸发器、薄膜蒸发器、脉冲空气蒸发器等,都具有良好的节能降耗效果。另外,对废液的预处理、抗泡和结垢等问题也进行了不少研究。
离子交换法处理放射性废水的原理是,当废液通过离子交换剂时,放射性离子交换到离子交换剂上,使废液得到净化。目前,离子交换法已广发应用于核工艺生产工艺及放射性废水处理工艺。
许多放射性元素在水中呈离子状态,其中大多数是阳离子,且放射性元素在水中是微量存在的,因此很适合离子交换出来,并且在无非放射性粒子干扰的情况下,离子交换能够长时间的工作而不失效。
离子交换法的缺点是,对原水水质要求较高;对于处理含高浓度竞争离子的废水,往往需要采用二级离子交换柱,或者在离子交换柱前附加电渗析设备,以去除常量竞争离子;对钌、单价和低原子序数元素的去除比较困难;离子交换剂的再生和处置较困难。除离子交换树脂外,还有用磺化沥青做离子交换剂的,其特点是能在饱和后进行融化-凝固处理,这样有利于放射性废物的最终处置。
吸附法是用多孔性的固体吸附剂处理放射性废水,使其中所含的一种或数种元素吸附在吸附剂的表面上,从而达到去除的目的。在放射性废液的处理中,常用的吸附剂有活性炭、沸石等。
天然斜发沸石是一种多孔状结构的无机非金属矿物,主要成分为铝硅酸盐。沸石价格低廉,安全易得,处理同类型地放射性废水的费用可比蒸发法节省80%以上,因而是一种很有竞争力的水处理药剂。它在水处理工艺中常用作吸附剂,并兼有离子交换剂和过滤剂的作用。
当前,高选择性复合吸附剂的研发是吸附法运用中的热点。所谓“复合”是指离子交换复合物(氰亚铁盐、氢氧化物、磷酸盐等)在母体(多位多孔物质)上的某些方面饱和,所以新材料结合天然母体材料的优点,具有良好的机械性能、高的交换容量以及适宜的选择性。
离子浮选法属于泡沫分离技术范畴。该方法基于待分离物质通过化学的、物理的力与捕集剂结合在一起,在鼓泡塔中被吸附在气泡表面而富集,借泡沫上升带出溶液主体,达到净化溶液主体和浓缩待分离物质的目的。例子浮选法的分离作用,主要取决于其组分在气-液界面上选择性和吸附程度。所使用捕集剂的主要成分是,表面活性剂和适量的起泡剂、络合剂、掩蔽剂等。
离子浮选法具有操作简单、能耗低、效率高和适应性广等特点。它适用于处理铀同位素生产和实验研究设施退役中产生的含有各种洗涤剂和去污剂的放射性废水,尤其是含有有机物的化学清洗剂的废水,以便充分利用该废水易于起泡的特点而达到回收金属离子和处理废水的目的。
膜处理作为一门新兴学科,正处于不断推广应用的阶段。它有可能成为处理放射性废水的一种高效、经济、可靠的方法。目前所采用的膜处理技术主要有:微滤、超滤、反渗透、电渗析、电化学离子交换、铁氧体吸附过滤膜分离等方法。与传统处理工艺相比,膜技术在处理低放射性废水时,具有出水水质好,浓缩倍数高,运行稳定可靠等诸多优点。
不同的膜技术由于去除机理不同,所适用的水质与现场条件也不尽相同。此外,由于对原水水质要求较高,一般需要预处理,故膜法处理法宜与其他方法联用。
如铁凝沉淀-超滤法,适用于处理含有能与碱生成金属氢氧化物的放射性离子的废水。
水溶性多聚物-膜过滤法,适用于处理含有能被水溶性聚合物选择吸附的放射性离子的废水。
化学预处理-微滤法,通过预处理可以大大提高微滤处理放射性废水的效果,且运行费用低,设备维护简单。
H. 放射性环境辐射监测与评估有哪些方法
辐射安全相关文件汇编
中华人民共和国放射性污染防治法
放射性同位素与射线装置安全和防护条例
放射性同位素与射线装置安全许可管理办法
电磁辐射环境保护管理办法
射线装置分类办法
放射源分类办法
关于建立放射性同位素与射线装置辐射事故分级处理和报告制度的通知
城市放射性废物管理办法
放射源编码规则
关于γ辐照装置运营单位的安全要求
关于γ射线探伤装置的辐射安全要求
关于X射线探伤装置的辐射安全要求
四川省环境保护局辐射事故应急预案
关于修订放射源申购、异地作业、废源送贮与回收行政许可事项办理程序的通知
2006年国家环保总局辐射安全许可座谈会会议纪要
关于辐射方面的文件大概都涵盖在以上一些文件中,具体内容可自己网络下载,人居环境能遇上的有电磁辐射,建材核素,及水质和氡气带来的辐射。
I. 放射性测量方法及应用实例
利用天然射线测量法找水,目前国内采用的方法有γ测量、静电α卡法、α径迹测量及210po测量等,不同方法可探测不同的核素异常。一般来说,α放射性测量比γ放射性测量更为灵敏,探测深度更大。尤其是α径迹测量和210Po测量,其干扰因素少,有利于克服地形、地物和气候变化等影响。210Po测量比α径迹测量显示的异常范围大,异常边界不很清晰,但其工作周期短,取样分析比较方便。所以,在利用天然放射性寻找地下水源时,若覆盖层较薄,工作范围较大,则使用快捷的γ测量;若覆盖层厚度大,工作范围小,则采用α径迹测量或210Po测量。
(一)γ测量
γ测量是直接测定迁移至地表的放射性元素(包括氡的衰变物)所发出的γ射线。一般高精度辐射仪如FD-71、FD-31、TFS-1和TFS-2型辐射仪,徒步沿剖面测量。
γ测量是一种简便的找水方法,具有仪器轻便、工作方法简单、效率高、成本低和结果直观的优点。但由于含水构造引起的放射性异常强度一般只有正常场的1.1~1.4倍,要可靠地确定异常性质,测量时要求:辐射仪的灵敏度应大于3ppmeU(等效铀含量);观测读数的相对标准偏差小于3%;测量探头应有较低的本底读数。
γ测量探测深度小,一般只有几十厘米至几米,最深不超过15m。当测区的地下水较丰富、埋藏较深、流速较大、表层又缺少土时,不利于放射性元素富集,在其上不易发现放射性异常。在开展工作时,要注意γ测量的方法有效性,不可盲目使用。
图5-4-1是山东平阳一条剖面上γ测量的结果。地表为厚度约10m的黏性土、基岩为页岩和灰岩。两台辐射仪观测的γ曲线上均有明显的低值异常,极小值比正常值低25%左右。经钻探验证,在50号点附近石灰岩破碎、裂隙发育,钻孔内静水位8m,抽水试验时地下水位降14m,涌水量达1900~2400m3/d。低值γ异常为含水构造裂隙的反映。
(二)α径迹测量
所谓径迹是指裂变碎片在绝缘固体物质中产生的辐射损伤。当利用塑料胶片在土壤层浅孔中接收氡、钍及其子体所产生的α线辐射时,α粒子就在胶片上辐射损伤,因肉眼看不到,故又称为潜伏径迹,经化学方法腐蚀后蚀刻出来的辐射损伤叫做径迹。在普通光学显微镜下,径迹呈圆锥形的坑洞,称为蚀坑。蚀坑在镜下透视平面表现为圆形或椭圆形带黑边的亮点。根据胶片上出现的径迹(亮点)密度,可估计辐射到胶片上的α射线强度。
图5-4-1 山东平阳γ曲线图
α径迹测量是利用径迹现象来找水的一种新方法,是利用塑料胶片在土壤层浅孔中接收氡、钍及其子体产生的α射线的辐射,然后用一定倍数的显微镜观测经化学腐蚀方法处理的塑料胶片上的径迹密度。在富水裂隙带上部的土壤层中可形成高于背景值的径迹密度异常,根据径迹密度异常可确定裂隙带,从而达到寻找基岩裂隙水的目的。α径迹测量简单易行,比γ测量有更高的灵敏度。由于氡的半衰期为3.825天,能扩散百米之外。所以,它通常可探测埋深几十米的地下水。
α径迹测量设备包括:
1)探测装置:为塑料胶片和探杯。塑料胶片可选用醋酸纤维胶片或硝酸纤维胶片,探杯用直径8cm、高9cm的陶瓷茶杯或塑料探杯。
2)蚀刻装置:包括恒温水浴锅、温度计、台杯、烧杯、量杯、化学蚀刻架、化学试剂(KOH、NaOH、KMnO4、和HCl)等。
3)观测装置:为普通生物显微镜,并附有统计径迹密度使用的刻度尺。
野外工作时,首先将塑料胶片剪成1.5cm×3.5cm的长方形,并在两端用针尖刻记编号,编号要统一刻在胶片的同一面。然后用透明胶带粘住胶片两端,将其粘着固定在探杯内离杯口4cm的深处,使胶片平悬于探杯中央,见图5-4-2。然后,在选择的剖面上,按一定的点距(一般为3~5m),挖35~45cm深的浅孔,浅孔要避开人工填土、沟边、陡坎边。将编好号的探杯口朝下放入浅孔,盖上塑料布再压土封好。由于氡的半衰期为3.825天,在埋杯后一个月左右,氡及其子体可达到平衡。因此,埋杯时间一般为15~30天。为了保证测量条件的一致,在同一测区,必须统一埋杯时间。
图5-4-2 探测器安装过程示意图
α径迹测量测量结果以α径迹密度曲线剖面图表示,见图5-4-3。
图5-4-3 α径迹密度曲线剖面图
径迹密度单位可用胶片上每0.26mm2内径迹数目(j)或每平方毫米内径迹数目(j/mm2)表示。一般认为,径迹密度异常值高于背景值4倍以上时,反映构造断裂的效果较好。
依断裂规模、性质的不同,在α径迹密2度曲线上呈现不同的异常特征。可有如下异常类型(图5-4-4)。
图5-4-4 常见的几种α径迹密度曲线异常类型示意图
1)单峰状异常:以一点或相邻两点形成的异常为特征,常反映单一的直立的断裂带,其两侧次级断裂、裂隙、破碎不发育,如图5-4-4(a)。
2)双峰状异常:其特征是以一点或相邻两点形成主峰异常,在其一侧出现强度上次于主峰异常的次峰异常,如图5-4-4(b)。主峰异常为主断裂带的反映,次峰异常为主断裂上盘一侧的次级裂隙或破碎的反映。
3)多峰状异常:其特征是曲线呈锯齿状,异常有一定宽度,反映宽度较大的断裂带或较宽的节理密集破碎带,如图5-4-4(c)。
4)对称异常:其特征是在低缓异常背景上叠加了单峰状异常,主峰异常反映了直立的主断裂,两侧低缓异常反映了次级断裂带或破碎带(图5-4-4(d))。
除上述类型外,还常见以下一些不规律形态的曲线,见图5-4-5。
图5-4-5 几种不规则的曲线形态
(三)210Po测量
210Po测量是通过取土壤样品,用化学处理的办法将样品中放射性元素210Po置换到铜、镍等金属片上,再用α辐射仪测量析沉在金属片上的210Po所辐射的α射线强度。
由于新构造断裂上方的土壤层中210Po的含量明显地比周围的含量高,因此,用210Po测量测得的α射线强度异常可推断新构造断裂的位置,从而达到找水的目的。
210Po测量的野外工作主要是采样。采样点距为3~5m,采样深度35~45cm,样品质量约20~30g。210Po测量可与α径迹测量配合,在α径迹测量的土壤层浅孔底取样。
210Po测量的室内工作包括样品的化学处理和金属片上的α射线强度测定。其步骤有:
1)称量8~10g样品放入100mL的烧杯中;
2)注入2.5“N”的HCl130mL,浸泡数小时;
3)将直径为19cm的铜片放入溶液中,振荡3~4小时;
4)取出铜片,用清水冲洗干净,晾干;
5)用低本底α辐射仪(如EJ-13、FD-3005型等)测量铜片上α射线强度,其单位以计数率(脉冲/h)表示。
210Po测量结果以剖面曲线图表示。曲线高于背景值2~3倍以上的α射线强度定义为异常。
图5-4-6是无锡某地用210Po测量寻找新构造裂隙水的例子。测区出露地层有上志留系茅山组砂岩、石英砂岩。区内裂隙、节理发育,断裂构造有NW290°和NE10°两组。在预计布井的范围内,经地质观测认为,NE10°一组裂隙为更新的一组含水构造。为此,布置了近东西向α径迹测量剖面。测量结果见图5-4-6(b)。由图可以看出,在3号点和12号点出现明显的异常,经12号点处的钻探验证,表明异常为含水新构造裂隙带引起。
图5-4-6 无锡某地地质、物探综合剖面图
为了验证210Po测量探测新构造裂隙水的效果,在α径迹剖面上采集土壤样品,测量210Po的α径迹密度异常位置上同样出现α射线强度异常,而且比α径迹密度异常更明显。
J. 放射性污染的监测方法
9.3.2.1 核事故污染的监测
核事故往往造成的污染范围很大,而且给人民生命和国民经济带来巨大的损失,引起全世界的关注。针对核事故的地球物理监测工作大体上可分为两大部分:一是在核事故发生后开始的大区域快速监测工作,及时了解逐日的污染扩散范围和方向并采取相应的防范对策;二是对所有核设施的长年监测工作,以便一旦发生事故时,能够了解原有的放射性背景以及追踪事故后污染逐步消除的过程。
(1)切尔诺贝利核事故监测
早在核电站建成之前,苏联的乌克兰科学院从20世纪60年代初期就通过在基辅的监测站对基辅周围地区(包括切尔诺贝利地区)进行长期放射性环境监测。监测的参数包括γ辐射背景值(用辐射仪测量)、散落物的放射性活度测量(用面积40cm×40cm的平底盘采集,盘底铺一张浸泡过甘油的滤纸,采集持续两周,采集的样品放在瓷坩埚内在电热炉中加温到500℃灰化,然后测定其β辐射强度)、土壤放射性污染检测(在地表下5cm深处用正方形取样器10cm×10cm取样,样品风干、磨碎、过筛后,测定其β辐射强度)。
事故发生前,γ辐射剂量率为10~12μR/h(背景值),1986年4月26日发生事故后,4月30日升高到5mR/h,比背景值高约500倍。在随后几天内γ辐射值变化强烈,与放射性物质的继续泄漏和天气变化有关。5月9日在反应堆再次爆炸后,γ辐射也再次出现高峰。1986年底,γ辐射降低到50μR/h,1992年(监测经过公布前)再次降低为16~18μR/h,接近事故前的背景值。
土壤中的β放射性活度(按土壤质量计)在事故前为550~740Bq/kg,事故后升高到29600Bq/kg。事故前放射性90Sr的质量活度为3.7~22.2Bq/kg,事故后升高了10倍。
为了了解污染的区域分布,瑞典地质调查所动用了两架地球物理专用飞机,在150m的高度上进行了航空γ能谱测量,1986年5月1~6日的测量结果如图9.12所示。在Gavle附近发现明显的高值。后几天的调查重点移向瑞典南部,以了解是否可以允许奶牛吃该地春天新生的牧草。5月5~8日在瑞典其他地区用100km线距的东西向测线覆盖,发现污染区不断向瑞典-挪威边界的方向扩大。从5月9日~6月9日整个瑞典用50km线距的航空测量覆盖,在一些异常区测线加密到2km。苏联在1986年4月28日以后,在国内面积为527400km的区域内进行过比例尺为1∶10万、1∶20万、1∶50万的航空γ能谱测量,以监测放射性污染弥散的区域。
图9.12瑞典航空γ射线照射量率等值线图 (照射量率单位为μR/h)
(2)追踪核动力卫星
由于卫星在进入大气层后解体成多个碎片,因此监测工作要在降落轨道周围广阔地区内进行,主要依靠航空γ能谱测量,发现异常后再进行地面检查。
苏联的用核反应堆作动力的宇宙-954卫星1977年底~1978年初在加拿大西北部陨落。1978年初加拿大国防部和美国能源部合作,追踪卫星陨落的碎片在加拿大的散落位置。首先根据计算机预测的卫星陨落轨道,划出一条长800km、宽50km陨落区域,由大奴湖东端至哈德逊湾附近的贝克尔湖,并将其分为14段。用4架C-130Heracles(大力神)飞机,以1.853km的线距、500m的离地高度作了航空γ能谱测量。加拿大地质调查所的能谱系统首先在大奴湖东端冰上的一号地段探测到放射源,到1月31日对全区作了普查,发现所有放射性碎片落在一个10km宽的带内,在该带内又以500m线距和250m离地高度作了详查。鉴于大力神飞机的飞行高度不可能再进一步降低,还采用了一套直升机探测系统,在9号地段的冰上发现许多弱的放射源,它们都是在大力神的飞行高度上所不能发现的,后来对这些小片的分析表明它们是反应堆芯的一部分。此后,直升机系统又在沿大奴湖南岸一带发现了更多的放射性碎片(图9.13),这些碎片随北风飘向预订轨道的南侧。到3月底又在大奴湖的冰上作了一次系统的直升机γ能谱测量,数据分析进一步证明反应堆芯在进入大气层后已全部解体。同年夏天,加拿大原子能监控管理局做了进一步的监测和清理工作,以保证清除所有的有害物质,共回收约3500枚碎片,最远的在卫星轨道以南480km。
9.3.2.2矿山探采和选冶污染的监测
除了铀矿床外,许多有色金属、贵金属、稀有金属、稀土元素和磷矿床等也都伴生有大量放射性元素,对这些矿床的勘探、开采、选矿和冶炼都会导致放射性污染。为了清除这些污染,了解清除的效果,都需要进行监测。
(1)尾矿场地的污染与监测
在地质勘探阶段,矿床虽未交给工业部门开采,但是在勘探过程中使用了水平巷道、竖井和浅井等工程,使矿区受到天然放射性元素的污染。在矿床开采过程中,矿石和废石的堆放与运输造成更大面积的污染,选冶过程中产生的尾矿和炉渣也是不可忽视的污染源。
图9.13大奴湖地区由宇宙-954卫星放射性碎片引起的γ射线总计数的分布
1979~1980年美国能源部在盐湖谷作了航空放射性测量,以便划定尾矿场地范围,并指导地面调查。测量系统安装在直升机上,探测器由20个NaI晶体组成,每个体积645.7cm3,航高46m,线距76m。根据测量数据绘出了照射量率等值线图,如图9.14(a)所示和高于背景值的226Ra含量分布范围图,如图9.14(b)所示。背景照射量率变化于430~645fA/kg(1μR/h=71.667fA/kg)之间。尾矿堆的照射量率最高超过1×105fA/kg。在尾矿堆以北有两个照射量率偏高的突出部分,西面的一个据认为是由尾矿受风吹动造成的,东面的一个沿铁路分布,可能由测量时正在运输的放射性物质或由沿铁路运输散落的矿石或尾矿引起。沿铁路的其他辐射异常据推测也是由散落物引起的。
利用此次航空放射性测量数据,盐湖城卫生局和犹他州卫生厅划定出14个此前未知的放射性异常区,地面检查发现9个地点属于铀选矿厂的尾矿、1个是铀矿石、3个是放射性炉渣,还有1个是储存的选矿设备。在20世纪80年代初查出的这些污染地段都得到了清理。
(2)采煤和燃煤的污染及监测
许多重要的采煤区在采煤过程中形成大面积的放射性污染。例如,德国的鲁尔矿区发现,由煤矿抽向地面的水中226Ra含量所导致的活度浓度达13kBq/m3,流入地下坑道中的水达63kBq/m3。鲁尔区所有煤矿每年抽出的水含226Ra导致的总活度共37GBq。在地面上放射性污染的分布在很大程度上与水的化学成分有关,共有两类含镭的水,A类含硫酸盐甚少或不含硫酸盐,但含Ba2+离子;B类水含大量硫酸盐,但不含Ba2+离子。在B类水中镭不沉淀,而A类水中的镭,当其与硫酸盐混合后,镭与钡同时沉淀,形成放射性沉积物。很多煤矿已采煤百年以上,在矿山废水流经之处形成很厚的沉积层,质量活度达150kBq/kg,并导致土壤和植物的污染,土壤质量活度由0.2~31kBq/kg,在水道两侧的新鲜植物中含226Ra,其质量活度达1kBq/kg。
目前世界上许多发展中国家都以煤作为主要能源,因此粉煤灰成为一种量大面积的放射性污染源。据联合国原子辐射效应科学委员会(UNSCEAR)的统计,一个每天烧煤10t的热电厂,向大气释放的238U放射性活度达1850kBq,一个1000MW的热电厂每年排放粉煤灰5×105t,其中1.4×105t排入大气。调查表明,在热电厂周围由于粉煤灰放射性引起的癌症死亡率比在核电站周围高30倍。
图9.14盐湖谷航空放射性测量
(3)石油开采及运输中的放射性污染和监测
石油开发过程中的放射性污染主要来自放射性测井。在测井中使用的放射性物质主要有中子源、同位素等,如镅铍(241Am-Be)中子源,137Cs,226Ra,131Ba,131I,113Sn,113In伽马源等。测井过程中的放射性污染主要是因操作不当造成的,如:由于操作不慎,配置的活化液溅入外环境;在开瓶分装、稀释及搅拌过程中,有131I气溶胶逸出,造成空气污染;在向注水井注入131I活化液时,由于操作不当,造成井场周围的表面污染;测井过程中玷污井管和井下工具等。
在石油化工生产中,承压设备(如锅炉炉管、液化气球罐、液化气槽车、承压容器、管线等)的探伤、液位控制、液位测量、密度测定、物料剂量、化学成分分析及医疗中的透视、拍片、疾病治疗等,广泛地采用了放射技术。在料位、液面、密度、物料剂量、化学成分分析方面的放射性同位素源的剂量、活度一般是几个毫居里(mCi),很少超过1000mCi。不过,在正常工作情况下,不论是从事工业探伤的人员还是同位素仪表操作人员,身体健康均不会受到放射性损伤。
油田上放射性污染面积大的地方,甚至可以在1∶50万的航空γ能谱测量中反映出来,污染物以镭及其衰变产物为主,铀、钍含量不超过土壤的背景值。该企业用路线汽车能谱测量在斯塔夫罗波尔边区测过的40个油气田,其地表全被放射性废料污染,发现300多个污染地段,γ射线照射量率为60~3000μR/h,其中大部分在100~1000μR/h范围内。
(4)磷肥的放射性污染及监测
在天然环境中磷和铀之间有着稳定的共生关系,磷肥的原料———磷矿石含有偏高的铀,磷肥的副产品中则含有较多的铀衰变产物,这些都会给磷肥厂周围的环境造成放射性污染。
在西班牙西南部奥迭尔河和廷托河汇合入海处附近有一个大型磷酸厂,用于制造磷酸盐肥料,其原料为磷灰岩,含有大量铀系放射性核素。在西班牙生产磷酸的方法是用硫酸来处理原岩,在此过程中形成硫酸钙沉淀(CaSO4·2H2O),称为磷石膏,这种副产物或者直接排入奥迭尔河,或者堆在厂房周围。因此,需要估算该厂每年排入周围环境的核素数量。此外,还测定了西班牙西南部几种商品肥料的放射性元素含量,以估计其对农田的放射生态影响。
所有的调查工作均基于测定固体和液体样的U同位素、226Ra和210Po及40K的含量。知道每年产出的磷石膏量及其中U,226Ra,210Po的质量活度平均值,得出工厂附近每年排出的U同位素总活度约0.6TBq,210Po总活度为1.8TBq,226Ra总活度为1.8TBq,各种放射性核素总量的80%存留在磷石膏堆中,其他直接排入奥迭尔河,存放的磷石膏也逐渐被水溶解流入河中。到达廷托河的水238U活度浓度为40Bq/L,226Ra为0.9Bq/L,210Po为9Bq/L。为研究河流的污染,还取了水系沉积物样,样品湿重数千克,烘干、磨碎、混合后在高纯锗探测器上测量,探测器覆盖10cm厚的铅屏,内有2mm的铜衬,以便测得较低的质量活度。
磷肥厂的环境放射性污染在我国亦有发现。核工业总公司在上海市郊进行航空γ能谱测量时,曾发现10×10-6的铀异常,是背景值的45倍,经查是由化肥厂的磷矿粉引起的。
9.3.2.3建筑材料的放射性污染及监测
除了房屋地基的岩石、土壤会逸出氡外,建筑材料中也可能含有某些放射性元素,因此也可能成为放射性污染源。当建筑材料中镭的质量活度高于37Bq/kg时,会成为室内空气中氡的重要来源。有些地方用工业废料作为制造建筑材料的原料,可能将工业废料中的放射性污染物带入室内。例如利用粉煤灰或煤渣制造建筑材料曾被认为是废物利用的好办法,但是当煤的放射性元素含量偏高时,会导致严重的后果。我国核工业总公司曾经对石煤渣所建房屋的室内吸收剂量率做过调查,发现石煤渣砖房屋的γ辐射吸收剂量率比对照组的房屋高出3~9倍。我国用白云鄂博尾矿、矿渣做原料制造水泥的工厂,用其生产的水泥建造的房屋时室内氡的浓度比对照组高出4~6倍。而美国对常用建筑材料放射性的调查结果表明,木材辐射出的氡最少,混凝土最多。
我国居民住宅多用砖作建筑材料,其中放射性40K质量活度最高为148Bq/kg,Ra为37~185Bq/kg,钍为37~185Bq/kg。对于天然建筑材料,建材行业标准(JC518-93)将其分三类,见表9.4。
表9.4我国天然建筑材料核辐射分级标准
俄罗斯勘探地球物理研究所提出用以下参数对建筑材料的辐射室内居民辐射剂量进行监测。
9.3.2.4 核废料处理场地的选址和勘察
各国根据自己的条件来选择适于储存核废料的地质体,但迄今研究得最多的是两种:盐体和深成结晶岩体。盐体被认为是储存核废料得最好地质介质,其优点是未经破坏的盐层干燥,盐体中产生的裂隙易于愈合,盐比其他岩石更易吸收核废料释放的热,盐屏蔽射线的能力强,盐的抗压强度大,而且一般位于地震活动少的地区。而另外一些国家,因为各自的地质条件,主要研究利用深成结晶岩储存核废料。如加拿大和瑞典等国家,大部分领土属于前寒武纪地质,它们研究的对象包括片麻岩、花岗岩、辉长岩等。这些岩体能否储存核废料主要取决于其中地下水的活动情况。由于结晶岩中地下水的唯一通道是裂隙,所以圈定裂隙带并研究其含水性是重要的任务。在具体选择储存场地时考虑以下几个条件:地势平坦、因而水力梯度小,主要裂隙带不要穿过场地,小裂隙带应尽可能少,要避开可能有矿的地点。
其他研究的地质体还有粘土、玄武岩、凝灰岩、页岩、砂岩、石膏,碳酸盐也是可以考虑的目标。一般来说,碳酸盐岩是不适合的,但由不透水岩石包围的碳酸盐岩透镜体是值得研究的。除了陆地上的地质体外,对海底岩石的研究也已经开始。
(1)盐体选址勘察中的地球物理工作
A.盐体普查
为了储存核废料,首先要了解盐层的深度、厚度和构造,圈出适合储存的盐体,一般倾向于把核废料储存在盐丘里。
重力测量。重力法对盐丘能进行有效的勘察。盐的密度稳定,为2.1×103kg/m3,往往低于围岩(2.2×103~2.4×103kg/m3),在盐丘上可测到n×10~n×100g.u.的重力低。当盐丘上部有厚层石膏时,由于石膏密度大,结果形成弱重力低背景上的重力高。当盐丘为致密火成岩环绕(火成岩在盐丘形成过程中侵入)时,则在重力低的边缘出现环状重力高。盐丘表面起伏可用高精度重力和地震测量综合研究。当盐丘地区的重力场非常复杂时(重力场为盐上、盐下层位、盐层和基底的综合反映),采用最小化法进行解释:首先根据地质-地球物理资料提出模型,然后自动选择与观测重力异常最吻合的模型曲线,使两者偏差的平方和等于最小值。
电法测量。盐比围岩电阻率高,是电性基准层,以往盐层构造用直流电测深研究,近年来则愈来愈多地采用大地电流法和磁大地电流法。采用大地电流法确定盐体埋藏深度时,利用大地电流平均场强与盐层深度之间的统计关系,因此要掌握少量钻探和地震资料。平均场强的高值区对应于盐丘和盐垣,这样圈出的局部构造很多已被地震或钻探所证实。
地震测量。在构造比较简单的沉积岩区地震反射和折射法探测盐层起伏是很有效的。例如丹麦为储存核废料选择的莫尔斯盐丘,其位置和形态就是根据反射面的分布确定的。在某些情况下地面地震法只能确定盐丘顶部平缓部分的位置。而侧壁的形态和位置难以确定,这可以采用井中地震。
总之,在选址时,为了研究盐层构造,一般先利用重力和电法,两者结合起来能更详细地确定盐层构造在平面上的大小和形态。根据重力和电法结果布置地震测网,通过地震法可准确确定盐体深度,而利用井中地震则可准确确定盐体侧壁的位置和形态。
B.研究盐体的内部结构
为了确定盐体是否适应于储存核废料,必须研究盐体内部结构,即其所含杂质(夹层)数量、含水性和裂隙发育程度。
确定杂质(夹层)的数量。盐的相对纯度是影响其能否储存核废料的一个重要因素,杂质的出现会使盐层的抗压强度减小,屏蔽射线的能力降低。盐体所含杂质包括泥质组分、石膏等,泥质组分有的形成单独的夹层,有的与盐混在一起,形成泥盐。美国得克萨斯州的帕洛杜罗盆地用天然γ测井和密度γ-γ测井评价了中上二叠系盐层的纯度。γ射线强度与泥质含量有关,因为泥质组分中的钍量较高。γ-γ测井求得的密度则与石膏的百分含量之间存在着线性相关关系。计算了每个钻孔每个盐层的γ强度平均值。不到30ft的夹层,其γ强度与盐层一起平均,当夹层厚于30ft时,就把盐层作为两个单独的层处理,据此编制了不同旋回的γ射线强度的等值线图,它实质上就是泥质含量分布图,从中可以选择泥质含量最低的地区作为储存核废料的地点。
在美国盐谷地区还曾利用垂直地震剖面法,根据波速的不同划分盐中的夹层。而在丹麦的莫尔斯盐丘则用井中重力研究了盐内的夹层。
研究含水性。盐体含水对建立核废料是一个潜在的危险,它使部分盐溶解成为卤水,减小盐的机械强度并腐蚀废料容器。测量盐体的含水量可以采用中子测井,以255Cf为中子源。试验表明,在释放的γ射线谱线上氢本身的峰很弱,不能用作评价含水量的尺度,但可利用快中子与Na和Cl原子核的相互作用,以下列参数衡量含水量:Na中子非弹性散射峰与Cl中子俘获峰的比值。非弹性散射是指Na的原子核吸收一个中子并放出一个中子和γ射线,γ射线峰的位置在138keV;中子俘获是指Cl的原子核俘获一个中子并放出γ射线,其峰的位置在789keV。上述比值与水的含量呈正比。美国曾利用瞬变电磁法来确定卤水的位置,在实际探测时发现,卤水的位置与瞬变电磁法一维反演的低阻层位置相当吻合。
了解裂隙发育程度。为了保证核废料库的安全,必须了解盐层的裂隙发育程度。主要方法为井中电法(特别是无线电波法)和声波测井。盐的电阻率高,电磁波传播的损耗小,无线电波法的探测距离大,夹层或裂隙的电阻率或介电常数与盐不同,这些都是应用无线电波法的有利条件。无线电波法包括透视和反射法,透视法测孔间信号的衰减,而反射法的发射和接收天线位于同一孔内,测电磁脉冲的走时和反射层的特征。均匀的盐不会产生明显反射,裂隙增多则反射亦增多。无裂隙的盐电阻率高、衰减小,多裂隙的盐则电阻率低、衰减大。因此,衰减小、反射少的盐体更适于储存核废料。
用声波测井确定裂隙带的位置时可以利用不同的参数,如反射波幅度、声波速度和区间时间。
(2)深成结晶岩体选址和勘察中的地球物理工作
核废料拟储存于花岗岩深成结晶岩体500~1000m深度上类似于矿山的处理洞穴中。在深成结晶岩体的选址和勘察过程中,地球物理工作分为三个阶段,即场地筛选、场地评价和洞穴开挖过程中的勘察。
A.场地筛选
首先开展区域普查来筛选几个地区,作为候选的处理场地,每个地区的面积可达上千平方千米。在筛选过程中,了解深成岩体的形态和深度、周围地质环境、主要不连续面的位置和走向,盖层的特征、岩石的完整性等都是很重要的。由于场地筛选是区域性调查,涉及面积很大,所以要选用快速普查性的地球物理方法,尤其是航空地球物理方法。航空磁测曾被用来确定深成岩体的边界以及岩体中的岩石与构造界面,一般与航空磁测同时开展的航空γ能谱测量也可用于划分花岗岩体的边界,花岗岩体铀的含量可达8×10-6,而围岩往往低于2×10-6。航空电磁法用来填绘裂隙带在近地表的投影以及覆盖层的特征。湖区的裂隙带则可采用船载声呐设备圈定。岩石的完整性可以通过测量岩石的整体电阻率来评价,采用的方法有大地电磁法(MT)、音频大地电磁法(AMT)、瞬变电磁法(TEM)和直流电阻率法等。
地面重力法曾被用来确定深成岩体的形态和深度及其地质环境。图9.15显示一条南北向跨过岩基的39km长的重力剖面,图上包括实测和模型重力曲线以及根据当地常见岩石单元作出的解释剖面。与岩基有关的100g.u.的重力低非常明显,叠加在重力低上的局部重力高很可能是由高密度的包裹体引起。
B.场地评价
场地评价是在经过筛选的较小区域内进行更详细的调查,每个区域的面积可达100km2,总的目标是圈定主要裂隙带,确定其几何形态,进行岩性填图并了解覆盖层的特征。
应用高分辨率地震反射法了解裂隙带的深部情况以及发现深埋的裂隙带。可以探测到宽于地震波主波长1/8的目标,例如在P波速度约5500m/s的花岗岩中,若采用150Hz左右的工作频率,就可以探测到5m宽的裂隙带。但是要求探测离地表1000m以内的反射体意味着有用的反射包含在地震记录的第1s内,然而对高分辨率地震常用的炮检距来说,在这一时间段内也有地滚波到达,为了减小地滚波的影响,需要采用频率滤波、f-k滤波、减小炸药量以保留信号的高频成分,并且选择适当的检波器距使地滚波在叠加时尽量减小。
目前还提出了三种应用地球物理方法估算裂隙的水压渗透性的途径:一是利用裂隙空间的电导率;二是利用裂隙内声波能量的损耗;三是利用地震波通过时钻孔对裂隙压缩的响应。
对于准备开挖的场地来说,层析方法的作用更大,因为在这样的地点钻孔的数目要控制在最低限度,以防在岩体中形成新的地下水通道。
C.开挖阶段的勘察工作
开挖储存核废料洞穴的工作开始以后,需要了解洞穴周围岩体的水文地质条件和地质力学条件。由于本阶段研究的目标减小,所以要采用高分辨率,因而是高频的地球物理方法。雷达、超声波和声辐射方法都曾得到有效的应用。
图9.15跨过岩基的一条南北向重力剖面图和二维重力模型(右侧为北)
利用超声波可以确定开挖破坏带的厚度。利用声辐射测量可以监测开挖的安全性,声辐射参数的变化可以用来预测可能产生的岩爆并确定其位置。此外,声辐射测量还用于追踪向裂隙带内灌浆的进程,这时在裂隙带附近的一系列钻孔内放置加速度计,在灌浆过程中记录的声辐射强度是同灌浆的进展相关的。
总之,在深成结晶岩地区核废料处理场地选址和勘察工作中,地球物理方法既能快速而经济地做到对大片区域的地质构造进行全面的了解,又能对候选场地进行详细评价和勘察。表9.5将各个阶段的地球物理工作加以总结。但在各个阶段的工作中,除地球物理方法外,还应综合应用其他方法,尤其是水文地质、地球化学、地质和岩石力学方法等。由于地球物理方法在解释上的多解性,还应通过钻探来验证。
表9.5深成结晶岩区核废料地质处理中的地球物理工作