两相厌氧反应器处理高浓度硫酸盐废水
Ⅰ 水处理厌氧池里的水的硫酸根高怎么办
本文研究了硫酸根对有机废水厌氧生物处理的影响。利 用上流式厌氧污泥床(UASB)反应器进行的连续流内试验容发现: 硫酸根本身对有机废水厌氧生物处理没有毒性,但其还原产 物硫化氢是造成一个正常运行的厌氧反应器在加入硫酸根后 受到破坏的主要原因。在不控制硫化氢浓度时, 500mg/l硫 酸根使一个正常运行的厌氧反应器遭致完全破坏,失去降解 有机物的能力·而在用Fe2+或Zn2+控制硫化氢浓度时,硫酸 根达到1000mg/l对厌氧反应器出水TOC浓度及TOC去除率也无 不利影响,且在一定的有机物浓度、仃留时间及体积负荷下 含有适当硫酸根浓度的废水经上流式厌氧污泥床处理后,出 水COD、SS、色度等指标均达到国家污水二级排放标准。 硫 酸根浓度大小对产气率、有机气化率均无影响,但硫酸根造 成无氧呼吸取代部分发酵,影响一部分产氢产乙酸的途径而 从影响一部分甲烷的生成,随着硫酸根浓度的增高,气体中 甲烷含量逐渐下降而C02含量逐渐升高, 对含硫酸根的高浓 度有机废水的厌氧处理可投加铁盐或锌盐使反应器正常运行 且铁盐较锌盐更为理想。 关键词:硫酸根,有机废水,厌氧生物处理、硫化氢、甲烷。
Ⅱ 高浓度硫酸盐有机废水处理方法有哪些
一、物理化学来法
1、稀释废水中的自硫酸根
2、调高ph值
3、气体吹脱法。主要吹脱工艺有几种:
(1)内部吹脱法
(2)外部吹脱法
(3)预吹脱法
4、投加化学药剂:
(1)投加铁盐
(2)投加SRB抑制剂
(3)投加Mg(OH)2碱度
(4)投加石灰。
二、生物处理法
1、采用两相厌氧工艺
(1)生物种群空间分离的工艺
(2)两相厌氧+微电解组合工艺
2、采用高温厌氧工艺
3、部分高含硫酸根废水超越厌氧
答案来自环保通,了解更多可以到上面看看。
Ⅲ 什么叫两相厌氧反应器
两相厌氧法是一种新型的厌氧生物处理工艺,1971年Ghosh和Pohland首次提出两相两相发酵概念,即把产酸和产甲烷两阶段独立反应器在各自最佳环境条件并将两反应器串联形成两相厌氧发酵系统即两相厌氧流化床。
特点:1 产酸和产甲烷两阶段独立,提高各自反应速率。
2 酸化反应器有一定缓冲作用,缓解冲击负荷对后续产甲烷反应器的影响。
3 酸化反应器反应进程快,水力停留时间短,COD浓度可去除20%—25%,能够大大减轻产甲烷反应器的负荷。
4 负荷高,反应器容积小,基建费用低。
射流循环新型厌氧生物流化床反应器以该反应器(JLAFB)为酸化相(或称硫酸盐还原相)厌氧颗粒污泥流化床(AGSBF)为产甲烷相组成两相厌氧工艺处理高浓度硫酸盐有机废水
Ⅳ 污水处理入门必看的几个关键点
1COD、CODcr、BOD、BOD5差别
B/C比是BOD5比CODcr,B不是BOD。以实例来看,如好氧进水CODcr=1000mg/L,BOD5=400 mg/L,出水CODcr=100 mg/L,BOD5=20 mg/L。那么CODcr共去除900 mg/L,BOD5共去除不到400 mg/L。900-380 mg/L的CODcr怎么去除的?
1))BOD-BOD5那一部分被生化;
2)污泥吸附(低负荷下要忽略些) 这个BOD5还是BOD都很复杂,出口的一般不是进水中的那些,而是基质、菌类的相关产物;详细的说比较复杂,理解一二就可以,而且最主要的是认定不可降解的不会发生变化,其余的可能都是变的。不可生物降解的是没有变化的,除去吸附等等之类的作用,无论是厌氧还是好氧SMP都是一样的。
一般情况,污水处理的CODcr可以达标,BOD5是都达标的。
2COD检测方法的差别
严格规范的蒸馏法和快速消解法,以前者为准。操作中为了简便想采取后者怎么办?取同浓度范围内的实测水样做两种方法的对比试验,找到二者的近似关系。
偷懒法:同浓度范围内实测水样,蒸馏一小时和蒸馏两小时,对比试验,找关系。
3关于溶解氧
好氧池中的溶解氧是曝气设备供氧与有机物或无机物被活性微生物氧化或自然氧化两种过程达到平衡之后的结果。或者可以说成曝气供氧,发生生化或化学反应和散失两个过程的残余。所以曝气池,控制溶氧2.0mg/L,只要设计与实际不差太多,那么OK。
但是如果没有持续的供氧,比如曝气调节池的出水不在有氧气供入(跌水曝气之类的忽略),而有机物含量有比较高,碰巧还遇上可以利用氧的大量微生物(比如UASB污泥中的兼性细菌或者A池中的好氧细菌),那么残留的那一个左右的DO显然不是成百上千的COD的对手。
4关于厌氧
厌氧是什么?是UASB?是A2/O一部分?是水解酸化?是消化池?其实厌氧是一种生化反应的条件,它不是厌氧工艺,是厌氧的工艺。为什么谈到这个问题,归根是有众多诸如:XX厌氧和XX厌氧有什么差异,溶解氧应该控制多少的问题;在这之前则需要搞明白厌氧这个条件是针对谁的。厌氧反应,主体是有机物逐步转化为甲烷和CO2的过程,注意这里的“逐步”。
再者,很多人又说了厌氧反应器就得与空气隔绝,所以要进行封顶。对此,想说以下几点:
说厌氧反应器,明显没搞懂厌氧的是什么?厌氧的是反应器?是水?还是微生物?
与空气隔绝,这个更可悲了,姑且不说他分不清水中的溶解氧和微生物环境的溶解氧,单是溶解氧与空气中的氧就搞不清楚。我们不妨回顾一下曝气设备的氧利用率,穿孔管3-5%,曝气软管8-12%,曝气头10-20%。如果空气向水中溶氧那么无敌,那么我们对出售曝气头的该如何处置?
对于封顶并不反对,厌氧消化池和EGSB等厌氧反应器都是利用封顶去收集沼气,(当然UASB和IC不是,靠三分)还可以减少臭味扩散。不过把封顶放在广泛使用的UASB上并且以此来隔绝空气,实在是有些搞笑。
1)水解酸化纯粹的控制到产甲烷之前,是不可能的,也就是说,或多或少总有一点甲烷产生;而且厌氧过程产生一点氢气也很正常,有听说过产氢产乙酸过程吧。所以,水解酸化池表面浮起的一个个泡泡,也许就是你想找的原因之一。
2)细菌不管是什么样的,总有繁殖下一代的职责,水解酸化菌群也是,它们或多或少的总要利用有机物合成点细胞物质。
3)进水SS如果量很大,会被水解酸化污泥吸附相当量的一部分,这个对COD的影响不可忽略,有时甚至十分巨大。
1)水解+好氧工艺,处理的废水浓度确实常见的要低一些,因为水解并不能提供较有力的COD消解能力,当然这个工艺相比较直接好氧而言,更多的可以用在进水COD1k-2k之间的项目,这种水质进厌氧节约的曝气能耗和提升水用的动力能耗差不多,厌氧降解程度上优势也不明显,但是直接进好氧浓度又偏高。因此常搞出水解+好氧,利用水解过程微量讲解和吸附去除COD来减少好氧的负担。当然这是在不讨论改善生化性方面的前提下。
2)假如水解酸化+UASB+氧化就相当于两相厌氧,有文章说“厌氧发酵产生沼气过程可分为水解阶段、酸化阶段、乙酸化阶段和甲烷阶段等四个阶段。水解池(水解池进行的就是水解酸化反应吧)是把反应控制在第二阶段完成之前,不进入第三阶段。”
下面再简单科普下厌氧的工艺如何简单识记:
A、厌氧接触:消化池+厌氧沉淀池+厌氧污泥回流系统,这个与好氧工艺中的接触氧化没有关系,莫联想到填料上。
B、UASB:上流式厌氧污泥床反应器,污水从下而上穿过污泥床体,但是有很多UASB的布水器是位于池顶的,也不是UASB就没有回流。
C、UBF:就是UASB+AF,形象点说UASB上面再加上填料层。
D、EGSB:UASB拉高,做上回流,上流速度比UASB高很多,要力图控制污泥颗粒化。
E、IC:甭管有没有外回流(水泵回流),有内回流就行。
F、ABR:上下折流板。
有关厌氧产甲烷去除水中有机物的原理在这里也多说几句。
先是“厌氧产甲烷”,厌氧过程,如果我们不谈释放磷,常见的是水中有机物厌氧发酵的过程。有机物好氧发酵的过程,大家都清楚是一个氧化还原反应,进入水中的氧气作为氧化剂,氧化水中的有机污染物变成CO2和H2O,使得(还原性的)COD得以氧化去除。所以很多人理所应当的认为,厌氧是个还原反应喽。
这就有必要让抱有该观点的朋友先回忆一下初中化学,氧化反应和还原反应,可以剥离开吗?
显然是不能的,厌氧也是,在进行到产甲烷之前的厌氧发酵过程,基本上是有机物自身相互的氧化和还原(这话说得并不严谨,但是方便理解),也就是说有机物本身是还原性的,它反应之后变成一部分还原性更强,一部分还原性相对弱一些的两种有机物,而这总体上相抵消。所以如果厌氧发酵未到产甲烷地步,COD变化可以忽略不计(这就是水解酸化COD去除率低下的原因)。
当这个过程进行的非常彻底时,产物逐渐转化为CO2和CH4,主要体现还原性也就是导致水中COD的甲烷因为溶解度低,脱离水相,这是产甲烷过程去除有机物COD的原因。
5
关于水解酸化
水解酸化的目的是改善生化性,为下一个生化处理单元服务,其评价指标有酸化度、pH、B/C、COD去除率等,其中COD去除率是里面可靠性最差的。
对于在上一环节说到的“水解酸化COD去除率低下”,有水友可能要反驳说“我的水解酸化去除率不低下呢”;对此,澄清下这一水解酸化去除率是从哪里来的。
6
工艺中的两级与两相
众所周知,不同的水质决定不同的工艺。产甲烷是厌氧去除水中有机物的关键因素,两级和两相的差别也就在第一个厌氧反应器是否产甲烷上;如果第一个产甲烷,第二个有机负荷势必要小很多,这是问题的关键。
一般来说,两级厌氧适应的水质是较高浓度的废水,它的生化性并不很差,第一级通过沉降和发酵产气降低第二级的负荷。两相厌氧,一是主要针对难生化降解废水,靠第一相改善生化性,二是针对硫酸盐废水,靠第一相进行硫酸盐还原,然后去除硫化物再进第二相产甲烷,三是针对易酸化废水易波动废水,放在前面彻底酸化掉以稳定pH。
如酒精项目常用两级,那些几万以上的,如果生化性不差并且水量不小,个人建议也用两级,但是控制其实并不简单,尤其是第一级在高浓度、高VFA下运行。生化性较差用两相的就很多了,其实生化性不差的也常常用两相。
有的工艺是用水解酸化+氧化(处理COD较低的废水),有的是UASB+氧化(一相厌氧,处理COD高的废水),有的是水解酸化+UASB+氧化(就相当于两相厌氧);对此分析如下:
那么水解酸化产生的应该是有机酸吧,那乙酸化阶段在哪发生的?两相厌氧的产酸相产的是什么酸?它的乙酸化阶段又是在哪发生的呢?
产乙酸这个词和产乙酸阶段是应该分开的,因为在产酸阶段就会产生一部分乙酸了但并不一定作为过程的主体,这要看废水的有机物组成。产乙酸阶段,这里面包含了两类反应,一是更长碳链的VFA以及乳酸、丙酮酸和醇类等分解产生乙酸,二是同型产乙酸菌,利用CO2和H2的无机组合进行产乙酸。两相的水解酸化过程中产生的有机酸,有可能是甲酸、乙酸、丙酸、丁酸…以及乳酸中的任一种,也有可能是未完全降解的长链脂肪酸。
个人认为在实际工程中,两相的分界线并不彻底分明,水解酸化相先后延伸至产乙酸甚至少量产甲烷都是经常遇见的。至于产甲烷相,它就没有不含水解酸化这两个过程的时候,产甲烷相四个过程都会存在,只不过前两个过程被之前的相分担了一部分。乙酸化发生在哪里,这个过程应该大部分在后一相,两相的定义并不是“水解酸化阶段+乙酸化产甲烷阶段”,只要在流程上将其主体分开即可叫做两相,至于分界线模糊,没有关系。
基于水解和酸化两个过程无法分开的事实,三相取决于产乙酸和产甲烷是否可以分开。
对于三相分离器的工作原理大致可表述为:气液固三相在气体扰动和液体升流的作用下从下方进入三相分离器;污泥(固)撞击在三相分离器上,上面吸附的沼气气泡释放出来;沼气气体被三角形集气罩收集;脱离气体的泥水(固液相)穿过三相分离器集气罩之间的缝隙,到达沉淀区;污泥(固)在没有气体扰动的条件下沉淀,落回三相分离器下方。核心是气体被收集和污泥沉淀。
Ⅳ 两相厌氧产生的h2s怎么去除
展开全部
两相厌氧产生的h2s怎么去除
根据硫化氢的成因机理可将自然界中的硫化氢分为5种成因类型:生物降解、微生物硫酸盐还原、热化学分解、硫酸盐热化学还原和岩浆成因.
1、生物降解
是在腐败作用主导下形成硫化氢的过程.腐败作用是在含硫有机质形成之后,当同化作用的环境发生变化,发生含硫有机质的腐败分解,从而释放出硫化氢.这种方式出现在煤化作用早期,生成的硫化氢规模和含量不会很大,也难以聚集.
2、微生物硫酸盐还原
微生物硫酸盐还原菌利用各种有机质或烃类来还原硫酸盐,在异化作用下直接形成硫化氢.在这个作用过程中,硫酸盐还原菌只将一小部分代谢的硫结合进细胞中,大部分硫被需氧生物所吸收来完成能量代谢过程.一些菌种的有机质分解产物可能会成为另一些菌种所需吸收的营养,这会使有机质被硫酸盐还原茵吸收转化效率提高,从而产生大量的硫化氢.这种硫酸盐还原菌将硫酸盐还原生成硫化氢的方式又被称为微生物硫酸盐还原作用(BSR).
该过程是硫化氢生物化学成因的主要作用类型,由于这种异化还原作用是在严格的厌氧环境中进行的,故有利于所生成硫化氢的保存和聚集,但是形成的硫化氢丰度一般不会超过2%,且地层介质条件必须适宜硫酸盐还原菌的生长和繁殖,因此在深层难以发生.
3、热化学分解
指煤中含硫有机化合物在热力作用下,含硫杂环断裂形成硫化氢,又称为裂解型硫化氢.这种方式形成的硫化氢浓度一般小于1%.硫酸盐热化学还原成因主要是指硫酸盐与有机物或烃类发生作用,将硫酸盐矿物还原生成H2S和CO2.
4、硫酸盐热化学还原
是生成高含硫化氢天然气和硫化氢型天然气的主要形式,它发生的温度一般大于150℃.
煤和围岩中含硫有机质和硫酸盐岩发生热化学分解(裂解)作用和热化学还原作用,均可生成H2S气体.因煤和围岩中有机质硫含量及煤中硫酸盐硫含量很低,所形成的H2S含量一般不会超过2%.若围岩中硫酸盐岩含量较高时,可产生较多H2S气体.
4、岩浆成因
由于地球内部硫元素的丰度远高于地壳,岩浆活动使地壳深部的岩石熔融并产生含硫化氢的挥发分,所以岩浆中常常含有硫化氢.而硫化氢的含量主要取决于岩浆的成分、气体运移条件等,因此岩浆中硫化氢的含量极不稳定,而且也只有在特定的运移和储集条件下才能在煤层中聚集下来.
Ⅵ 高浓度硫酸盐有机废水处理方法有哪些
一、物理化学法复
1、稀释废水中的制硫酸根
2、调高ph值
3、气体吹脱法。主要吹脱工艺有几种:
(1)内部吹脱法
(2)外部吹脱法
(3)预吹脱法
4、投加化学药剂:
(1)投加铁盐
(2)投加SRB抑制剂
(3)投加Mg(OH)2碱度
(4)投加石灰。
二、生物处理法
1、采用两相厌氧工艺
(1)生物种群空间分离的工艺
(2)两相厌氧+微电解组合工艺
2、采用高温厌氧工艺
3、部分高含硫酸根废水超越厌氧
答案来自环保通,了解更多可以到上面看看。
Ⅶ 王子波的发表论文
1、2×300MW机组石灰石—石膏烟气脱硫吸收塔设计.电力环境保护,2008年4期,薛琴,王子波,雒维国
2、Fenton试剂-微电解预处理硝基苯类废水试验.扬州大学学报,2006年2期 张键,王子波,朱宜平
3、土壤pH对硝酸根还原过程中N2O产生的影响.土壤学报,2004年1期
封克,王子波,王小治,张素玲,汪晓丽
4、酸化纤维污泥法工艺处理黑液的研究. 重庆环境科学,2003.7
王子波,张健,王凤娥
5、两相UASB反应器处理含高浓度硫酸盐黑液.环境技术,2003.7
王子波,封克,张健
6、两相厌氧工艺处理草浆黑液甲烷相动力学模型.环境科学研究,1999.7王子波,杨玉杰
7、硫酸盐对高浓度黑液二相厌氧处理的影响.重庆环境科学,1999.6
王子波,杨玉杰
8、二相UASB反应器处理碱法草浆黑液. 华侨大学学报(自然科学版),1999.7,王子波,杨玉杰
9、二相UABS反应器的启动. 华侨大学学报(自然科学版),1998.1
王子波,杨玉杰,孙剑辉
10、 二相UASB反应器处理黑液动力学研究.华侨大学学报(自然科学版),1997.4. 王子波
11、温度对反应速度的影响. 河南师范大学学报(教育科学版),1999.12
王子波,王子江
12、教育艺术初探. 河南师范大学学报(教育科学版),1999.6
王子波
Ⅷ 污水处理两级ao可不可以处理高浓度有机废水
不可以,高负荷工作,A/O工艺很容易污泥膨胀,根本无法正常运行,另外高浓度有机废水应该先经过厌氧反应器(如IC反应器),去除一些COD后再用A/O工艺就好多了。