食堂废水排放量计算
A. 餐饮的环保排放要求
《饮食业油烟排放标准》第八十一条规定:
“排放油烟的餐饮服务业经营者应当安装油烟净化设施并保持正常使用,或者采取其他油烟净化措施,使油烟达标排放,并防止对附近居民的正常生活环境造成污染”。“任何单位和个人不得在当地人民政府禁止的区域内露天烧烤食品或者为露天烧烤食品提供场地”。
《饮食业油烟排放标准》第一百一十八条规定:
“违反本法规定,排放油烟的餐饮服务业经营者未安装油烟净化设施,不正常使用油烟净化设施或者未采取其他油烟净化措施,超过标准排放油烟的,以县级以上地方人民政府确定的监督管理部门责令改正,处五千元以上五万元以下的罚款;拒不改正的,责令停业整顿”。
“违反本法规定,在当地人民政府禁止的时段和区域内露天烧烤食品或者为露天烧烤食品提供场地的,由县级以上地方人民政府确定的监督管理部门责令改正,没收烧烤工具和违法所得,并处五百元以上二万元以下的罚款”。
(1)食堂废水排放量计算扩展阅读:
污水治理要求
餐饮场所应对经营过程中产生的污水集中收集,并对含油污水经隔油、隔渣等进行预处理。向城镇排水设施排放污水的,应当向城镇排水主管部门办理相关排水许可手续。
1、餐饮场所在公共污水管网覆盖区域,应当将符合国家和地方标准的污水排入公共污水管网;餐饮场所在公共污水管网未覆盖区域,应当自建污水处理设施或者自建排水管网接驳公共排水设施。
需要与公共排水设施接驳的,应当符合排水规划以及设计标准并向排水行政主管部门办理接驳手续。排入公共污水管网,其污水污染物浓度不得超过《污水排入城镇下水道水质标准》(GB/T 31962-2015)的排放限值B级标准;
2、餐饮场所直接将污水排入江河湖泊等水体的,其污水污染物浓度不得超过《水污染物排放限值(DB44/26-2001)排放限值一级标准。
3、餐饮场所周边建有农村生活污水处理设施的,在设施有处理余量条件下,可将餐饮污水和生活污水接入设施处理,且接入前需经过隔油、隔渣等预处理,要求污染物浓度符合《污水排入城镇下水道水质标准》(GB/T 31962-2015)的水质控制项目限值C级规定。
B. 医院污水量怎么计算(公式)
注:医院污水在进入下水道前应加消毒池处理。 3.3 在不改变工艺流程的前提下,城镇沼气池的平布置可因地制宜,其形 状可以采用矩形、椭圆形或其它形状,但应考虑到结构受力明确、方便施工和清运建筑垃 圾并不得影响其它建筑或构筑物。 3.4 城镇沼气池容积计算。 3.4.1 城镇沼气池总容积设计公式: V=(V1+V2+V3)K1----------------------------------------------------(1) V——————总容积m3 V1—————污水容积m3 V2—————污泥容积m3 V3—————气室容积m3 K1—————容积保护系数取1.0~1.05 3.4.1.1 污水容积计算公式: V1=natg-------------------------------------------------------(2) n——使用城镇沼气池的总人数; a——各类建筑物使用卫生器具的人数与总人数的百分比; t——污水滞留期(天); g——每人每天的生活污水量(立方米/人·日)。 3.4.1.2 (2)式中各参数的确定和计算: “n”值的确定和计算:住宅楼人数按实有建房套数确定,每套房按住4人计算;集体宿舍住宅楼按每间住房2.5人计算;旅馆按每个床位1人计算;办公楼按办公室的建筑面积确定计算人数,16平方米及以下的办公室按2人—4人计算,16平方米—20平方米的按3人—5人计算,20平方米—24平方米米的按4人—6人计算,24平方米以上的按实有人数计算。 “a”值的确定:住宅楼、旅馆、集体宿舍取1,办公楼、教学楼、工厂生活间取0.6。 “t”值的确定;取3天—4天,有特殊要求的,按实计算取值。“g”应符合GBJ15的规定。只有大便器、洗涤盆,而无沐浴设备的取0.085立方米~0.13立方米/人·日。有大便器、洗涤盆和沐浴设备的取0.13立方米~0.19立方米/人·日。 3.4.1.3 医院、疗养院等污水容积,取0.7立方米~0.9立方米/床位;影剧院、体育场、公共食堂、公共厕所、幼儿园和其它公共场所按厕所的蹲位计算污水容积,取4立方米—6立方米/个蹲位。公厕和全托幼儿园宜取较大值。 3.4.1.4 污泥容积计算公式: V2=0.4na at------------------------------------------------------(3) 式中: n和a按3.4.1.1取值。 α——每人每天污泥量,当粪便污水和其它生活污水合流时,α值为0.0006立方米;当粪便污水单独排放时,α值为0.0003立方米。 t——残渣清淘周期(天),取730天~1095天。 3.4.1.5 气室容计算公式 V3=(V1+V2)K2-------------------------------------------------------------------------(4) 式
C. 饭堂废水成分
饭堂废水与通常生活污水成分差别不大,主要污染物为有机物(主要来自冲洗油污,可用COD/BOD表征,浓度大约在100-400mg/L),无机物颗粒(灰尘渣土等,用SS表征),以及一定盐分。
由于有机物浓度低、水量小、有盐分的特点,最适宜的方法简单沉淀后用膜-生物反应器(MBR)处理。MBR的简介附在后边,另外,生物膜法也进行了解释。
生物膜法(biomembrance process)
生物膜法是利用附着生长于某些固体物表面的微生物(即生物膜)进行有机污水处理的方法。生物膜是由高度密集的好氧菌、厌氧菌、兼性菌、真菌、原生动物以及藻类等组成的生态系统,其附着的固体介质称为滤料或载体。生物膜自滤料向外可分为庆气层、好气层、附着水层、运动水层。生物膜法的原理是,生物膜首先吸附附着水层有机物,由好气层的好气菌将其分解,再进入厌气层进行厌气分解,流动水层则将老化的生物膜冲掉以生长新的生物膜,如此往复以达到净化污水的目的。生物膜法具有以下特点:(1)对水量、水质、水温变动适应性强;(2)处理效果好并具良好硝化功能;(3)污泥量小(约为活性污泥法的3/4)且易于固液分离;(4)动力费用省。
生物膜法又称固定膜法
基本特征是:
在污水处理构筑物内设置微生物生长聚集的载体(一般称填料),在充氧的条件下,微生物在填料表面聚附着形成生物膜,经过充氧的污水以一定的流速流过填料时,生物膜中的微生物吸收分解水中的有机物,使污水得到净化,同时微生物也得到增殖,生物膜随之增厚。当生物膜增长到一定厚度时,向生物膜内部扩散的氧受到限制,其表面仍是好氧状态,而内层则会呈缺氧甚至厌氧状态,并最终导致生物膜的脱落。随后,填料表面还会继续生长新的生物膜,周而复始,使污水得到净化。
微生物在填料表面聚附着形成生物膜后,由于生物膜的吸附作用,其表面存在一层薄薄的水层,水层中的有机物已经被生物膜氧化分解,故水层中的有机物浓度浓度比进水要低得多,当废水从生物膜表面流过时,有机物就会从运动着的废水中转移到附着在生物膜表面的水层中去,并进一步被生物膜所吸附,同时,空气中的氧也经过废水而进入生物膜水层并向内部转移。
生物膜上的微生物在有溶解氧的条件下对有机物进行分解和机体本身进行新陈代谢,因此产生的二氧化碳等无机物又沿着相反的方向,即从生物膜经过附着水层转移到流动的废水中或空气中去。这样一来 ,出水的有机物含量减少,废水得到了净化。
生物膜法的主要形式有哪些?
按生物膜与废水的接触方式分为:
填充式和浸渍式两种
填充式包括生物滤池和生物转盘
浸渍式包括接触氧化法和生物流化床
在污水处理,水资源再利用领域,MBR又称膜生物反应器(Membrane Bio-Reactor ),是一种由膜分离单元与生物处理单元相结合的新型水处理技术。膜的种类繁多,按分离机理进行分类,有反应膜、离子交换膜、渗透膜等;按膜的性质分类,有天然膜(生物膜)和合成膜(有机膜和无机膜) ;按膜的结构型式分类,有平板型、管型、螺旋型及中空纤维型等。
一、 MBR 工艺的组成
膜 - 生物反应器主要由膜分离组件及生物反应器两部分组成。通常提到的膜 - 生物反应器实际上是三类反应器的总称: ① 曝气膜 - 生物反应器 (Aeration Membrane Bioreactor, AMBR) ; ② 萃取膜 - 生物反应器( Extractive Membrane Bioreactor, EMBR ); ③ 固液分离型膜 - 生物反应器( Solid/Liquid Separation Membrane Bioreactor, SLSMBR, 简称 MBR )。
二、曝气膜 - 生物反应器
曝气膜 - 生物反应器最早见于 Cote.P 等 1988 年报道,采用透气性致密膜(如硅橡胶膜)或微孔膜(如疏水性聚合膜),以板式或中空纤维式组件,在保持气体分压低于泡点( Bubble Point )情况下,可实现向生物反应器的无泡曝气。该工艺的特点是提高了接触时间和传氧效率,有利于曝气工艺的控制,不受传统曝气中气泡大小和停留时间的因素的影响。如图 [1] 所示。
图 [1]
三、萃取膜 - 生物反应器
萃取膜 - 生物反应器 又称为 EMBR ( Extractive Membrane Bioreactor )。因为高酸碱度或对生物有毒物质的存在,某些工业废水不宜采用与微生物直接接触的方法处理;当废水中含挥发性有毒物质时,若采用传统的好氧生物处理过程,污染物容易随曝气气流挥发,发生气提现象,不仅处理效果很不稳定,还会造成大气污染。为了解决这些技术难题,英国学者 Livingston 研究开发了 EMB 。其工艺流程见图 2 。废水与活性污泥被膜隔开来,废水在膜内流动,而含某种专性细菌的活性污泥在膜外流动,废水与微生物不直接接触,有机污染物可以选择性透过膜被另一侧的微生物降解。由于萃取膜两侧的生物反应器单元和废水循环单元是各自独立,各单元水流相互影响不大,生物反应器中营养物质和微生物生存条件不受废水水质的影响,使水处理效果稳定。系统的运行条件如 HRT 和 SRT 可分别控制在最优的范围,维持最大的污染物降解速率。
[ 图 2] (暂缺)
四、固液分离型膜 - 生物反应器
固液分离型膜 - 生物反应器是在水处理领域中研究得最为广泛深入的一类膜 - 生物反应器,是一种用膜分离过程取代传统活性污泥法中二次沉淀池的水处理技术。在传统的废水生物处理技术中,泥水分离是在二沉池中靠重力作用完成的,其分离效率依赖于活性污泥的沉降性能,沉降性越好,泥水分离效率越高。而污泥的沉降性取决于曝气池的运行状况,改善污泥沉降性必须严格控制曝气池的操作条件,这限制了该方法的适用范围。由于二沉池固液分离的要求,曝气池的污泥不能维持较高浓度,一般在 1.5~3.5g/L 左右,从而限制了生化反应速率。水力停留时间( HRT )与污泥龄( SRT )相互依赖,提高容积负荷与降低污泥负荷往往形成矛盾。系统在运行过程中还产生了大量的剩余污泥,其处置费用占污水处理厂运行费用的 25% ~ 40% 。传统活性污泥处理系统还容易出现污泥膨胀现象,出水中含有悬浮固体,出水水质恶化。针对上述问题, MBR 将分离工程中的膜分离技术与传统废水生物处理技术有机结合,大大提高了固液分离效率,并且由于曝气池中活性污泥浓度的增大和污泥中特效菌 ( 特别是优势菌群 ) 的出现,提高了生化反应速率。同时,通过降低 F/M 比减少剩余污泥产生量(甚至为零),从而基本解决了传统活性污泥法存在的许多突出问题。
五、 MBR 工艺类型
以下讨论的均为固液分离型膜 - 生物反应器。 根据膜组件和生物反应器的组合方式,可将 膜 - 生物反应器 分为分置式、一体式以及复合式三种基本类型。分置式和一体式的 MBR 请参见图 3 。
分置式膜 - 生物反应器把膜组件和生物反应器分开设置,如图 3 所示。生物反应器中的混合液经循环泵增压后打至膜组件的过滤端,在压力作用下混合液中的液体透过膜,成为系统处理水;固形物、大分子物质等则被膜截留,随浓缩液回流到生物反应器内。分置式膜 - 生物反应器的特点是运行稳定可靠,易于膜的清洗、更换及增设;而且膜通量普遍较大。但一般条件下为减少污染物在膜表面的沉积,延长膜的清洗周期,需要用循环泵提供较高的膜面错流流速,水流循环量大、动力费用高 (Yamamoto, 1989) ,并且泵的高速旋转产生的剪切力会使某些微生物菌体产生失活现象 ( Brockmann and Seyfried, 1997 ) 。
一体式膜 - 生物反应器是把膜组件置于生物反应器内部,如图 4 所示。进水进入膜 - 生物反应器,其中的大部分污染物被混合液中的活性污泥去除,再在外压作用下由膜过滤出水。这种形式的膜 - 生物反应器由于省去了混合液循环系统,并且靠抽吸出水,能耗相对较低;占地较分置式更为紧凑,近年来在水处理领域受到了特别关注。但是一般膜通量相对较低,容易发生膜污染,膜污染后不容易清洗和更换。
复合式膜 - 生物反应器在形式上也属于一体式膜 - 生物反应器,所不同的是在生物反应器内加装填料,从而形成复合式膜 - 生物反应器,改变了反应器的某些性状,如图 5 所示:
MBR 工艺的特点
与许多传统的生物水处理工艺相比, MBR 具有以下主要特点:
一、出水水质优质稳定
由于膜的高效分离作用,分离效果远好于传统沉淀池,处理出水极其清澈, 悬浮物和浊度接近于零,细菌和病毒被大幅去除 ,出水水质优于建设部颁发的生活杂用水水质标准( CJ25.1-89 ),可以直接作为非饮用市政杂用水进行回用。
同时,膜分离也使 微生物被完全被截流在生物反应器内, 使得系统内能够维持较高的微生物浓度,不但 提高了反应装置对污染物的整体去除效率,保证了良好的出水水质,同时反应器 对进水负荷(水质及水量)的各种变化具有很好的适应性,耐冲击负荷,能够稳定获得优质的出水水质。
二、剩余污泥产量少
该工艺可以在高容积负荷、低污泥负荷下运行,剩余污泥产量低(理论上可以实现零污泥排放),降低了污泥处理费用。
三、占地面积小,不受设置场合限制
生物反应器内能维持高浓度的微生物量,处理装置容积负荷高,占地面积大大节省; 该工艺流程简单、结构紧凑、占地面积省,不受设置场所限制,适合于任何场合,可做成地面式、半地下式和地下式。
四、可去除氨氮及难降解有机物
由于微生物被完全截流在生物反应器内,从而有利于增殖缓慢的微生物如硝化细菌的截留生长,系统硝化效率得以提高。同时,可增长一些难降解的有机物在系统中的水力停留时间,有利于难降解有机物降解效率的提高。
五、操作管理方便,易于实现自动控制
该工艺实现了水力停留时间( HRT )与污泥停留时间( SRT )的完全分离,运行控制更加灵活稳定,是污水处理中容易实现装备化的新技术,可实现微机自动控制,从而使操作管理更为方便。
六、易于从传统工艺进行改造
该工艺可以作为传统污水处理工艺的深度处理单元,在城市二级污水处理厂出水深度处理(从而实现城市污水的大量回用)等领域有着广阔的应用前景。
膜 - 生物反应器也存在一些不足。主要表现在以下几个方面:
• 膜造价高,使膜 - 生物反应器的基建投资高于传统污水处理工艺;
• 膜污染容易出现,给操作管理带来不便;
• 能耗高:首先 MBR 泥水分离过程必须保持一定的膜驱动压力,其次是 MBR 池中 MLSS 浓度非常高,要保持足够的传氧速率,必须加大曝气强度,还有为了加大膜通量、减轻膜污染,必须增大流速,冲刷膜表面,造成 MBR 的能耗要比传统的生物处理工艺高。
MBR 工艺用膜
膜可以由很多种材料制备,可以是液相、固相甚至是气相的。目前使用的分离膜绝大多数是固相膜。根据孔径不同可分为:微滤膜、超滤膜、纳滤膜和反渗透膜;根据材料不同,可分为无机膜和有机膜,无机膜主要是微滤级别膜。膜可以是均质或非均质的,可以是荷电的或电中性的。广泛用于废水处理的膜主要是由有机高分子材料制备的固相非对称膜。
膜的分类如图所示:
一、 MBR 膜材质
1、高分子有机膜材料: 聚烯烃类、聚乙烯类、聚丙烯腈、聚砜类、芳香族聚酰胺、含氟聚合物等。
有机膜成本相对较低,造价便宜,膜的制造工艺较为成熟,膜孔径和形式也较为多样,应用广泛,但运行过程易污染、强度低、使用寿命短。
2、无机膜 :是固态膜的一种,是由无机材料,如金属、金属氧化物、陶瓷、多孔玻璃、沸石、无机高分子材料等制成的半透膜。
目前在 MBR 中使用的无机膜多为陶瓷膜,优点是:它可以在 pH = 0~14 、压力 P<10MPa 、温度 <350 ℃ 的环境中使用,其通量高、能耗相对较低,在高浓度工业废水处理中具有很大竞争力;缺点是:造价昂贵、不耐碱、弹性小、膜的加工制备有一定困难。
二、 MBR 膜孔径
MBR 工艺中用膜一般为微滤膜( MF )和超滤膜( UF ),大都采用 0.1 ~ 0.4 μ m 膜孔径,这对于固液分离型的膜反应器来说已经足够。
微滤膜常用的聚合物材料有:聚碳酸酯、纤维素酯、聚偏二氟乙烯、聚砜、聚四氟乙烯、聚氯乙烯、聚醚酰亚胺、聚丙烯、聚醚醚酮、聚酰胺等。
超滤常用聚合物材料有:聚砜、聚醚砜、聚酰胺、聚丙烯腈( PAN )、聚偏氟乙烯、纤维素酯、聚醚醚酮、聚亚酰胺、聚醚酰胺等。
三、 MBR 膜组件
为了便于工业化生产和安装,提高膜的工作效率,在单位体积内实现最大的膜面积,通常将膜以某种形式组装在一个基本单元设备内,在一定的驱动力下,完成混合液中各组分的分离,这类装置称为膜组件( Mole )。
工业上常用的膜组件形式有五种:
板框式( Plate and Frame Mole )、螺旋卷式 (Spiral Wound Mole) 、圆管式 (Tubular Mole) 、中空纤维式 (Hollow Fiber Mole) 和毛细管式 (Capillary Mole) 。前两种使用平板膜,后三者使用管式膜。圆管式膜直径 >10mm; 毛细管式- 0.5~10.0mm ;中空纤维式 <0.5mm> 。
表:各种膜组件特性
名称/项目 中空纤维式 毛细管式 螺旋卷式 平板式 圆管式
价格(元 /m 3 ) 40~150 150~800 250~800 800~2500 400~1500
冲填密度 高 中 中 低 低
清洗 难 易 中 易 易
压力降 高 中 中 中 低
可否高压操作 可 否 可 较难 较难
膜形式限制 有 有 无 无 无
MBR 工艺中常用的膜组件形式有:板框式、圆管式、中空纤维式。
板框式:
是 MBR 工艺最早应用的一种膜组件形式,外形类似于普通的板框式压滤机。优点是:制造组装简单,操作方便,易于维护、清洗、更换。缺点是:密封较复杂,压力损失大,装填密度小。
圆管式:
是由膜和膜的支撑体构成,有内压型和外压型两种运行方式。实际中多采用内压型,即进水从管内流入,渗透液从管外流出。膜直径在 6~24mm 之间。圆管式膜优点是:料液可以控制湍流流动,不易堵塞,易清洗,压力损失小。缺点是:装填密度小。
中空纤维式:
组装形式如下图所示:
[ 图 ]
外径一般为 40 ~ 250 μm ,内径为 25 ~ 42μm 。优点是:耐压强度高,不易变形。在 MBR 中,常把组件直接放入反应器中,不需耐压容器,构成浸没式膜 - 生物反应器。一般为外压式膜组件。优点是:装填密度高;造价相对较低;寿命较长,可以采用物化性能稳定,透水率低的尼龙中空纤维膜;膜耐压性能好,不需支撑材料。缺点是:对堵塞敏感,污染和浓差极化对膜的分离性能有很大影响。
MBR 膜组件设计的一般要求:
• 对膜提供足够的机械支撑,流道通畅,没有流动死角和静水区;
• 能耗较低,尽量减少浓差极化,提高分离效率,减轻膜污染;
• 尽可能高的装填密度,安装,清洗、更换方便;
• 具有足够的机械强度、化学和热稳定性。
膜组件的选用要综合考虑其成本,装填密度、应用场合、系统流程、膜污染及清洗、使用寿命等。
MBR 的应用领域
进入 90 年代中后期,膜 - 生物反应器在国外已进入了实际应用阶段。加拿大 Zenon 公司首先推出了超滤管式膜 - 生物反应器,并将其应用于城市污水处理。为了节约能耗,该公司又开发了浸入式中空纤维膜组件,其开发出的膜 - 生物反应器已应用于美国、德国、法国和埃及等十多个地方,规模从 380m 3 /d 至 7600m 3 /d 。日本三菱人造丝公司也是世界上浸入式中空纤维膜的知名提供商,其在 MBR 的应用方面也积累了多年的经验,在日本以及其他国家建有多项实际 MBR 工程。日本 Kubota 公司是另一个在膜 - 生物反应器实际应用中具有竞争力的公司,它所生产的板式膜具有流通量大、耐污染和工艺简单等特点。国内一些研究者及企业也在 MBR 实用化方面进行着尝试。
现在,膜 - 生物反应器已应用于以下领域:
一、 城市污水处理及建筑中水回用
1967 年第一个采用 MBR 工艺的废水处理厂由美国的 Dorr-Oliver 公司建成,这个处理厂处理 14m 3 /d 废水。 1977 年,一套污水回用系统在日本的一幢高层建筑中得到实际应用。 1980 年,日本建成了两座处理能力分别为 10m 3 /d 和 50m 3 /d 的 MBR 处理厂。 90 年代中期,日本就有 39 座这样的厂在运行,最大处理能力可达 500m 3 /d ,并且有 100 多处的高楼采用 MBR 将污水处理后回用于中水道。 1997 年,英国 Wessex 公司在英国 Porlock 建立了当时世界上最大的 MBR 系统,日处理量达 2 , 000 m 3 , 1999 年又在 Dorset 的 Swanage 建成了 13 , 000m 3 /d 的 MBR 工厂 [14] 。
1998 年 5 月,清华大学进行的一体式膜 - 生物反应器中试系统通过了国家鉴定。 2000 年初,清华大学在北京市海淀乡医院建起了一套实用的 MBR 系统,用以处理医院废水,该工程于 2000 年 6 月建成并投入使用,目前运转正常。 2000 年 9 月,天津大学杨造燕教授及其领导的科研小组在天津新技术产业园区普辰大厦建成了一个 MBR 示范工程,该系统日处理污水 25 吨,处理后的污水全部用于卫生间的冲洗及绿地浇洒,占地面积为 10 平方米,处理每吨污水的能耗为 0.7kW · h 。
二、. 工业废水处理
90 年代以来, MBR 的处理对象不断拓宽,除中水回用、粪便污水处理以外, MBR 在工业废水处理中的应用也得到了广泛关注,如处理食品工业废水、水产加工废水、养殖废水、化妆品生产废水、染料废水、石油化工废水,均获得了良好的处理效果。 90 年代初,美国在 Ohio 建造了一套用于处理某汽车制造厂的工业废水的 MBR 系统,处理规模为 151m 3 /d ,该系统的有机负荷达 6.3kgCOD/m 3 · d , COD 去除率为 94% ,绝大部分的油与油脂被降解。在荷兰,一脂肪提取加工厂采用传统的氧化沟污水处理技术处理其生产废水,由于生产规模的扩大,结果导致污泥膨胀,污泥难以分离,最后采用 Zenon 的膜组件代替沉淀池,运行效果良好。
三、. 微污染饮用水净化
随着氮肥与杀虫剂在农业中的广泛应用,饮用水也不同程度受到污染。 LyonnaisedesEaux 公司在 90 年代中期开发出同时具有生物脱氮、吸附杀虫剂、去除浊度功能的 MBR 工艺, 1995 年该公司在法国的 Douchy 建成了日产饮用水 400m 3 的工厂。出水中氮浓度低于 0.1mgNO 2 /L ,杀虫剂浓度低于 0.02 μ g/L 。
四、. 粪便污水处理
粪便污水中有机物含量很高,传统的反硝化处理方法要求有很高污泥浓度,固液分离不稳定,影响了三级处理效果。 MBR 的出现很好地解决了这一问题,并且使粪便污水不经稀释而直接处理成为可能。
日本已开发出被称之为 NS 系统的屎尿处理技术,最核心部分是平板膜装置与好氧高浓度活性污泥生物反应器组合的系统。 NS 系统于 1985 年在日本琦玉县越谷市建成,生产规模为 10kL/d , 1989 年又先后在长崎县、熊本县建成新的屎尿处理设施。 NS 系统中的平板膜每组约 0.4m 2 共几十组并列安装,做成能自动打开的框架装置,并能自动冲洗。膜材料为截流分子量 20000 的聚砜超滤膜。反应器内污泥浓度保持在 15000~18000mg/L 范围内。到 1994 年,日本已有 1200 多套 MBR 系统用于处理 4000 多万人的粪便污水。
五、土地填埋场 / 堆肥渗滤液处理
土地填埋场 / 堆肥渗滤液含有高浓度的污染物,其水质和水量随气候条件与操作运行条件的变化而变化。 MBR 技术在 1994 年前就被多家污水处理厂用于该种污水的处理。通过 MBR 与 RO 技术的结合,不仅能去除 SS 、有机物和氮,而且能有效去除盐类与重金属。最近美国 Envirogen 公司开发出一种 MBR 用于土地填埋场渗滤液的处理,并在新泽西建成一个日处理能力为 40 万加仑 ( 约 1500m 3 /d) 的装置,在 2000 年底投入运行。该种 MBR 使用一种自然存在的混合菌来分解渗滤液中的烃和氯代化合物,其处理污染物的浓度为常规废水处理装置的 50 ~ 100 倍。能达到这一处理效果的原因是, MBR 能够保留高效细菌并使细菌浓度达到 50 , 000g/L 。在现场中试中,进液 COD 为几百至 40 , 000mg/L ,污染物的去除率达 90% 以上。
国内外 MBR 主要应用领域及相应百分比率:
污水类型 所占百分比率(%) 污水类型 所占百分比率(%)
工业污水 27 城市污水 12
建筑污水 24 垃圾 9
家庭污水 27
MBR 发展前瞻
一、MBR 应用的重点领域和方向
•现有城市污水处理厂的更新升级,特别是出水水质难以达标或处理流量剧增而占地面积无法扩大的水厂。
• 无排水管网系统的小区,如居民点、旅游度假区、风景区等。
• 有污水回用需求的地区或场所,如宾馆、洗车业、客机、流动厕所等充分发挥 MBR 占地面积小、设备紧凑、自动控制、灵活方便的特点。
• 高浓度、有毒、难降解工业废水处理。如造纸、制糖、酒精、皮革、合成脂肪酸等行业,是一种普遍的点源污染。 MBR 可以对这些常规处理工艺无法达标的废水进行有效的处理,并实现回用。
• 垃圾填埋厂渗滤液的处理及回用。
• 小规模污水厂(站)的应用。膜技术的特点十分适合处理小规模污水。
二、MBR 未来的研究重点如下
• 膜污染的机理及防治。
• MBR 工艺流程形式及运行条件的优化。
• MBR 污泥产率与运行条件的关系,以合理减少污泥产量,降低污泥处理费用。
• MBR 生物反应器内微生物的代谢特性及其对出水水质、污泥活性等的影响,从而确定适宜的微生物生长及代谢条件。
• MBR 工艺经济性研究。在目前国内经济发展水平、膜产品供应状况和规范设计要求的条件下, MBR 用于污水处理的最大经济流量的确定。
• 以节能、处理特殊水质对象、兼具脱氮除磷、操作维护简便、可以长期稳定运行等为目标,开发新型的膜 生物反应器 .
成熟、系统 MBR 的工艺设计方法
D. 食堂废水 利用
首先,必须先对食堂的废水进行分类。
食堂的废水有:食堂洗菜洗米后的废水回
食堂洗碗筷后带有洗洁精的答废水
食堂烹饪饭菜中的废水
这些废水有的可以马上再利用,有的必须经过处理。
如食堂洗菜洗米后的废水可以再用于洗碗筷或者用来洗地板,也可以用来冲WC等等。食堂洗碗筷后带有洗洁精的废水,如果不是用于和人体直接接触的项目的洗涤,还是可以接着利用的。食堂烹饪饭菜中的废水其实很干净,完全可以再用来洗菜等等~
E. 一个政府的食堂面积大约在500平方米,就餐人数大概在145个人,那食堂厨房的面积大概需要多少比较合适呢
排污:冲破最后防线
据统计,我国每年的工业废水和城镇生活污水排放总量已达到631亿吨,这相当于我们每人每年排放40多吨的废污水,而其中大部分未经处理就直接排入了江河湖海。以长江流域为例,在废污水排放中,工业废水和生活污水分别占75%和25%左右,在流域涉及的18个省、市和自治区中,四川、湖北、湖南、江苏、上海和江西6省市的废污水排放量占流域总量的84.6%,是废污水的主要产生地。主要污染物为悬浮物、有机物、石油类、挥发酚、氰化物、硫化物、汞、镉、铬、铅、砷等。在21个干流城市中,上海市排放的废污水量约占21个城市排放总量的30.7%,武汉市占18.1%,南京市占15.8%,重庆市占8.8%;四大城市合计占73.4%,是长江最主要的污染源。由于污染严重,长江岸边形成许多污染带,在干流21个城市中,重庆、岳阳、武汉、南京、镇江、上海6市累计形成了近600千米的污染带,长度占长江干流污染带总长的73%。
中国水质性缺水样本之上海篇
市内河道蜿蜒、黄浦江水身边流、紧贴长江与东海的上海,享有“东方水都”的美名,然而,它却是一个严重缺水的城市。
与中国北方一些城市水资源严重匮乏不同,上海有水,但缺的是好水。尽管上海的水资源总量较为充沛,但可利用的淡水资源十分有限,仅占地表水资源的20%。从人均拥有水资源量来看,上海的人均淡水资源拥有量仅为145立方米,比北京还少,大大低于全国人均2200立方米(世界人均8840立方米)的水平,也远低于国际公认的1750立方米的用水紧张线,全国排名仅为第23位。
上海地处长江、太湖两大流域下游,水质既受到上游水污染的影响,又有本地污染源的危害,在水资源上的最大问题是水污染和水环境恶化,是一个典型的水质性缺水城市。据环境部门对上海主要河道的断面监测,上海符合饮用水水源国家标准的地表水仅剩下1%,劣V类水质却占到68.6%。
黄浦江的污染危机
黄浦江被称为上海的“母亲河”,上海市民80%的饮用水来自黄浦江。尽管近年来上海市政府加大了对黄浦江环境整治力度,但“隐形”污染依然触目惊心。目前,每天仍有数百万吨废污水排入黄浦江,一年则高达20亿吨,比全年平均降水产生的径流量还多,致使黄浦江及其支流的水质终年维持在Ⅲ类至V类之间(国家规定饮用水水源水质必须在Ⅱ类水以上),这已经给黄浦江上游水源保护区形成较大压力。由于黄浦江取水量的不断增加,而上游来水不足以稀释排入的污水,影响到黄浦江的自净能力,加重了水质污染程度。同时,又因黄浦江是潮汐型河流,咸潮入侵更使得黄浦江下游污水上溯,对城区的水厂取水口造成极大威胁。
很多来过上海的外地人,都对上海自来水浓重的漂白粉味记忆深刻。这座城市的水源——黄浦江的污染程度,已经让在水资源方面颇富优越感的上海人感到震惊。
望采纳。
F. 40m3/day的食堂废水该如何处理达到一级排放标准
处理来工艺流程为:排水管——源隔油沉沙池(加隔栅,定期清理)——厌氧生物滤池(俗称的生物化粪池)——MBR反应池(即膜生物反应池,或者曝气生物滤池或者普通生物膜工艺/活性污泥工艺加个活性炭罐或细石英沙罐作为深度处理,也可以使用人工湿地工艺代替石英沙/活性炭过滤或者在厌氧生物滤池出水直接接人工湿地工艺)——杀菌消毒——达标排放
G. 餐饮含油污水排放相关法规条例有哪些
一.法规要求
1.国家<大气污染防治法>第44条:城市饮食服务业的经营者,必须采取措施,防治油烟对附近居民的居住环境造成污染。
2北京市实施《中华人民共和国大气污染防治法》办法:
第三十二条 饮食服务业经营者必须采取措施防治油烟污染,排放的油烟污染物不得超过规定的排放标准。
居民住宅楼的底层不再安排产生油烟污染的饮食服务业经营场所;不得将居民住宅楼中的住宅用作产生油烟污染的饮食服务业经营场所。
现有饮食服务业经营场所污染扰民的,应当限期治理或者停业。
北京市建设项目环境保护审批:
5、餐饮项目:
(1) 符合建设项目基本要求;
(2) 不得在居民住宅楼底层和住宅楼内设立产生油烟、异味污染的饮食业经营场所;
(3) 炉灶必须使用燃气或电能等清洁燃料,在高污染燃料禁燃区内,锅炉也须使用燃气或电能等清洁燃料;
(4) 必须设置收集处理油烟、异味的装置,并通过专门的烟囱排放,专用烟囱的高度应高于周围20米内的居民建筑;
(5) 安装空调器、排风装置产生噪声和热污染的,应采取措施进行防治;空调器、排风装置不得设置在居民窗户附近,在商业区步行街和主要街道两侧不得直接朝向人行便道。在运营过程中产生噪声的须采取降噪、隔声措施,达到当地固定噪声源厂界噪声标准;
(6) 废水应经隔油或残渣过滤措施处理后排入市政管网;周围无市政管网的,应将废水处理达到相应的排放标准后方可排放。经营过程中产生的残渣、废物,不得排入下水道。
北京市西城区人民政府:
随着区域经济发展,产业结构调整,西城区第三产业的比例不断加大,餐饮业数量逐年增多,餐饮含油脂污水排放量逐渐增大。为进一步加强对餐饮业油脂污水排放量的管理,使含油脂污水的处理减量化、无害化、资源化、市场化,杜绝地沟油非法回收再用,防止市政管线堵塞,保护人民群众身体健康,日前,西城区市政管委与区环保局联合向驻区单位发出《关于加强治理餐饮含油脂污水排放管理的通知》,要求驻区餐饮业和单位食堂:1、自觉遵守环保有关法律、法规,提高资源利用率,减少污染物排放;2、安装有效的油污分离设施,按照设计要求定期由有资质的专业回收企业对分离出的油污进行回收再利用;3、按通知要求,安排自查,及时进行整改。
区市政管委、环保局将按有关法规要求对餐饮业和单位食堂进行全面检查,对未按规定安装有效的油污分离设施,导致超标排放的餐饮企业依法进行处罚,并记入西城区企业信用信息警示信息系统,予以通告。
3.在《南京市大气污染防治条例草案》中,明确了餐饮业的环保要求,要求餐饮业经营者须遵守以下规定:
必须使用清洁能源,油烟不得排入下水管道;应设置油烟净化装置,并保证其正常运行,实现达标排放,排放污染物超标的应委托污染治理专业运营单位维护运行;设置餐饮业专用烟道,烟道排放口高度和位置不得影响周围生活和工作环境。
草案同时提出,凡是违反这些规定的将处以2万元以下的罚款。
H. 请问:生产厂区内生活污水(主要为食堂污水)需不需要进行处理有没有相关标准
算生活污水,可以入市政污水管道。也有国标。
但前提是生产污水与之分开。
还得看生产产品、生产性质是什么。要是煤矿估计也得先处理完再排。
还要看地点,前后四周都没市政管道的话,就地处理后再排放。
I. 废水排放环保监测报告
检验报告
TEST REPORT
编号:
项目名称:
环境检测
委托单位:
检验类别:
委托检测
······················环境监测站
声 明
一、本报告须经编制人、审核人及签发人签字,加盖本站检测专用章和计量认证章后方可生效;
二、对委托单位自行采集的样品,仅对送检样品检测数据负责。不对样品来源负责。无法复现的样品,不受理申诉。
三、本站对报告真实性、合法性、适用性、科学性负责。
四、用户对本报告提供的检测数据若有异议,可在收到本报告15日内,向本站提出申诉。申诉采用来访、来电、来信、电子邮件的方式均可,超过申诉期限,概不受理。
五、未经许可,不得复制本报告;任何对本报告未经授权之涂改、伪造、变更及不当使用均属违法,其责任人将承担相关法律及经济责任,我站保留对上述违法行为追究法律责任的权利。
六、我站对本报告的检测数据保守秘密。
地址:
邮政编码:
电话:
传真:
电子邮件:
第1页 共7页
委托
单位
名称
联 系 人
地址
联系电话
检测单位
采(送)样人
样品类别
废气、废水、厂界噪声
采样日期
2012.02.29
检测周期
2012.02.29-03.05
检测目的
了解废气、废水和厂界噪声排放情况
检测类别
委托检测
检测内容
废气:颗粒物;废水:pH、COD、SS、动植物油、氨氮、总磷;厂界噪声
检验依据
见附件1
检测仪器
TH-880F微电脑烟尘平行采样仪、AWA-6228噪声统计分析仪、 TAS-990F原子吸收分光光度计、 AL104梅特勒电子天平、 PXS-270pH计、TU-1810DPC紫外-分光光度计、OIL460系列红外分光测油仪
检验结论
检测结果见下页。
由检测结果可知,所测总排口9:50废水中 pH、SS、动植物油浓度值均符合《污水综合排放标准》(GB8978-1996)表4三级标准,COD浓度值不符合《污水综合排放标准》(GB8978-1996)表4三级标准,总磷浓度值符合《污水排入城市下水道水质标准》(CJ343-2010)表1中C级标准限值要求,氨氮浓度值不符合《污水排入城市下水道水质标准》(CJ343-2010)表1中C级标准限值要求;所测总排口11:00废水中 pH、SS、动植物油浓度值均符合《污水综合排放标准》(GB8978-1996)表4三级标准,COD浓度值不符合《污水综合排放标准》(GB8978-1996)表4三级标准,氨氮、总磷浓度均不符合《污水排入城市下水道水质标准》(CJ343-2010)表1中C级标准限值要求;所测总排口12:30废水中 pH、SS、COD、动植物油浓度值均符合《污水综合排放标准》(GB8978-1996)表4三级标准,总磷浓度值符合《污水排入城市下水道水质标准》(CJ343-2010)表1中C级标准限值要求,氨氮浓度值不符合《污水排入城市下水道水质标准》(CJ343-2010)表1中C级标准限值要求;清洗废水不作判定。所测厂界4个点位的昼间、夜间噪声值均符合《工业企业厂界环境噪声排放标准》(GB12348-2008)表1中3类声环境功能区噪声排放限值要求;所测两个废气排口污染物中颗粒物的排放浓度和排放速率均符合《大气污染物综合排放标准》(GB16297-1996)表2 二级标准限值要求;所测食堂排口食堂油烟符合《饮食业油烟排放标准》(GB 18483-2001)限值要求。
编制:
审核:
签发:
检测报告专用章
签发日期 年 月 日
废水检测结果统计表 第2页共7页
样品名称
检 测 结 果(pH值单位无量纲,其余单位为mg/L)
采样时间
检测项目
检测值
排放限值
评价
总排口
9:50
pH值
7.96
6~9
达标
COD
595
500
不达标
SS
208
400
达标
氨氮
33.4
25
不达标
总磷
4.03
5
达标
动植物油
17.8
100
达标
总排口
11:00
pH值
8.78
6~9
达标
COD
679
500
不达标
SS
221
400
达标
氨氮
45.6
25
不达标
总磷
7.20
5
不达标
动植物油
10.5
100
达标
总排口
12:30
pH值
8.28
6~9
达标
COD
478
500
达标
SS
145
400
达标
氨氮
48.4
25
不达标
总磷
4.96
5
达标
动植物油
3.57
100
达标
清洗废液
12:30
pH值
8.54
/
/
COD
1.28×105
/
/
氨氮
8.75
/
/
总磷
2.13
/
/
以
下
空
白
废气检测结果统计表 第3页共7页
排气筒高度
5m
建设时间
02年
生产负荷
>75%
所在功能区
II类区
检测地点
检测项目
检 测 结 果
最高允许
排放浓度(mg/m3)
最高允许
排放速率(kg/h)
评价
排放浓度(mg/m3)
排放速率(kg/h)
成型车间排口
颗粒物
2.46
0.017
120
0.39
达标
以
下
空
白
废气检测结果统计表 第4页共7页
排气筒高度
3m
建设时间
02年
生产负荷
>75%
所在功能区
II类区
检测地点
检测项目
检 测 结 果
最高允许
排放浓度(mg/m3)
最高允许
排放速率(kg/h)
评价
排放浓度(mg/m3)
排放速率(kg/h)
冲压模具车间排口
颗粒物
2.18
0.016
120
0.14
达标
以
下
空
白
食堂油烟检测结果统计表 第5页共7页
检测地点
检测项目
检 测 结 果
最高允许
排放浓度(mg/m3)
最高允许
排放速率(kg/h)
评价
排放浓度(mg/m3)
排放速率(kg/h)
食堂排口
食堂油烟
1.32
/
2.0
/
达标
以
下
空
白
厂界噪声检测结果统计表 第6页共7页
所属功能区
3类声环境功能区
测量时间
昼间:2012.02.29 10:40—10:50 夜间:2012.02.29 22:20—22:30
环境条件
阴,风速3.6m/s
测试工况
正常生产
测点号
测点
位置
主要
噪声源
测点距声源距离(m)
测定值dB(A)
标准限值 dB(A)
评价
昼
夜
昼
夜
1#
厂界东
风机
30
63.3
54.1
65
55
达标
2#
厂界南
风机
20
64.8
54.6
65
55
达标
3#
厂界西
食堂风机
30
61.2
52.9
65
55
达标
4#
厂界北
风机
20
59.7
51.7
65
55
达标
以
下
空
白
检
测
点
位
示
意
图
第7页共7页
附件1
厂界噪声:《工业企业厂界环境噪声排放标准》( GB12348-2008)
颗粒物:《固定污染源排气中颗粒物测定与气态污染物采样方法》(GB/T16157-1996)
pH:《水质 pH值的测定 玻璃电极法》(GB/T6920-1986)
SS:《水质 悬浮物的测定 重量法》(GB/T11901-1989)
COD:《水质 化学需氧量的测定 重铬酸盐法》(GB/T11914-1989)
氨氮:《水质 氨氮的测定 纳氏试剂分光光度法》(HJ 535-2009)
总磷:《水质 总磷的测定 钼酸铵分光光度法》(GB/T11893-1989)
动植物油:《水质 石油类和动植物油的测定 红外光度法》(GB/T16488-1996)
食堂油烟:《饮食业油烟排放标准》(GB 18483-2001)