当前位置:首页 » 污水废水 » 城市污水污泥热干化特性及能耗研究

城市污水污泥热干化特性及能耗研究

发布时间: 2021-03-26 03:47:13

① 城市污水处理产生的污泥主要成分是

市政污水主要成分为有机质、有机质细胞内的水、细胞外的水、细胞内内的水是最难以脱除的。容
尼科环境科技有限公司污泥无热干化NHD™技术,采用不加热的方式对污泥进行脱水和干化,只需10分钟就可将污泥的含水率从85%-80%降至55%,后经过不加热状态下的强制通风干化技术,将污泥中的含水率持续降至40%,而能耗只有热干化的10%,并且处理过程不会产生臭气。
“污泥无热干化NHD™技术”攻克了污泥干化能耗高、产生臭气这一世界性难题。取得的另一项惊人的成果是:干化后的泥饼具有相当高的热值。由于采用不加热的方式进行干化处理,避免了污泥中有机质的损失。用干化后的泥饼制成的生物质燃料,经权威部门检测,以秦皇岛抚宁区中冶污水处理厂污泥无热干化项目的实际检测效果为例,热值达到4080大卡,高于褐煤,真正做到了变泥为“煤”。实现了国家倡导的循环经济原则,真正让污泥处理处置实现了资源再利用。

② 污水处理厂的污泥处置费用问题

城市污泥不同处理处置方式的成本和效益分析
——以北京市为例
张义安,高 定,陈同斌*,郑国砥,李艳霞
中国科学院地理科学与资源研究所环境修复中心,北京 100101

摘要:以北京市为例,估算不同电价及运输距离下填埋、焚烧及堆肥等方式的城市污泥处理处置成本,在此基础上讨论各种处理处置方案的前景,展望北京市污泥处理处置出路。污泥填埋在一定时期内还将是主要处理处置方式,但所占比例将逐渐下降;堆肥是经济上较为可行的处理处置方式,适合大力推广;随着经济实力与技术水平提高,焚烧法可以适用于个别特殊地点。同时,分析了政府补贴对污泥处理处置效益的影响。
关键词:城市污泥;处理处置成本;填埋;焚烧;堆肥
中图分类号:X703 文献标识码:A 文章编号:1672-2175(2006)02-0234-05
城市污泥是污水处理的副产物,以含水率97%计算,体积占处理污水的0.3%~0.5%[1],深度处理产泥量还将增加50%~100%。目前我国每年排放的干污泥大约1.3×106 t,并以大约10%的速率在增加。
北京市全区域规划污水排放量为330×104 m3/d,其中2003年市区污水排放量约为230×104 m3/d[2]。规划建设14座污水处理厂,2015年污水处理能力预计将超过320×104 m3/d,处理率将超过90%。到2008年,北京市将新增9座中水处理厂,深度处理能力将由目前的1×104 m3/d提高到47.6×104 m3/d,届时每年产生含水率 80% 城市污泥超过80×104 m3。北京市最大的污水处理厂——高碑店污水处理厂污泥外运运输费用占到全厂运行费用的1/3[3]。
城市污泥的大量产生,已引起日益严峻的二次污染,并成为城市污水处理行业瓶颈。污泥处理处置率低,其中非常重要的一个原因就是投资和运行成本方面的限制。但到目前为止,还未见关于不同污泥处理处置方案的经济分析,导致不同单位和设计人员在方案的选择上存在较大的盲目性。本文以北京为例,对几种典型的城市污泥处理处置方式进行经济分析,以便为城市污泥处理处置技术的选择提供参考依据。
1 城市污泥处理处置成本估算
1.1 估算方法
以1 t干污泥(DS)为计算基准,综合成本=运行成本+设备折价成本。运行成本以目前较为成熟的处理处置方式进行估算。
北京市污泥机械脱水效果通常在80%左右。各方案中的成本估算涉及或包括焚烧、运输、填埋等3个流程;设备折价成本取15 a使用年限,年折旧7%,社会利率10%,即年折价17%,设备年工作时数以8000 h计。因此,设备折价=设备价格×指数×0.17/8000。
1.2 估算细则
(1)单位成本
填埋:生活垃圾卫生填埋的成本约60~70 ¥/t,污泥填埋时按照压实生活垃圾∶土∶污泥容重比为0.8∶1∶1,污泥填埋成本为48~56 ¥/t,取52¥/t。
干化:干燥能耗与脱水量成正比。燃气加热效率85%、锅炉热效率70%、过程热损失5%时,水的蒸发能耗为150 (kW•h)/t,每小时去除1 t水的设备投资为180×104¥[4]。
焚烧:目前多采用流化床技术,每h焚烧1 t干化污泥的设备成本为528×104¥,污泥按干质量减量60%。焚烧的运行费用24¥/t,烟气处理消耗NaOH量约为37 kg/t,折价约128¥/t [5]。
电价:北京市工业电价高峰期、平段区、低谷期分别为0.278、0.488、0.725¥/(kW•h)。按不同补贴方案,将电价设定为0.30、0.60¥/(kW•h)。
运费:北京市运输价格在0.45~0.65¥/(t•km)之间,污泥为特殊固体废物,需特殊箱式货车运送,价格处于高端。另外,近年运输价格有上涨趋势。因此,运费取0.65 ¥/(t•km)。
此外,干化及焚烧均按设备成本添加30%物耗人工管理费及土建配套费。
(2)污泥含水率
污泥的有机质和水分含量较高,填埋存在一系列问题,当前主要关心的是土力学性能,当含水率高于68% 时需按m(土)∶m(污泥)=0.4~0.6的比例混入土 [6-8]。含水率降低时污泥性状存在突变,因此填埋脱水目标设定为80%、30%。
含水率是污泥焚烧处理中的一个关键因素。有机质含量高、含水率低利于维持自燃,降低污泥含水率对降低污泥焚烧设备及处理费用至关重要。一般将污泥含水率降至与挥发物含量之比小于3.5时,可形成自燃[9]。北京市污泥有机物含量在45% 以下,因此使污泥维持自燃焚烧的水分含量应小于61.2%。朱南文总结了几种国外污泥热干燥技术,可以将污泥干燥至10%含水率[10]。污泥焚烧综合成本随干燥程度动态变化,干化程度越高,干化能耗升高,焚烧设备及运行费用随之下降。简化起见,本文以污泥保持热量平衡燃烧为估算前提,不再进行高水分下加入重油的成本估算。因此污泥焚烧的干化目标定为:60%和10%。
表1 北京市填埋场概况[11]及离污水处理厂的最近距离
Table 1 Description of landfill sites and wastewater treatment plants
填埋场 填埋场位置 处理规模/(t•d-1) 预计关闭时间 最近的污水处理厂 最近直线距离/km 1)
北神树 通县次渠乡 980 2006 高碑店 20
安定 大兴区安定乡 700 2006 小红门 36
六里屯 海淀区永丰屯乡 1500 2017 清河 15
高安屯 朝阳区楼梓庄乡 1000 2018 高碑店 15
阿苏卫 昌平区小汤山乡 2000 2012 清河、北小河 40
焦家坡 门头沟区永定镇 600 2011 卢沟桥 15
1) 最近距离数据为作者实测

综上所述,污泥的处理处置方式计有:堆肥,分别干燥至含水80%、30% 时填埋,干燥至含水

60%、10%时焚烧。
1.3 填埋成本
填埋成本=能耗成本+运输成本+填埋场成本+设备折价成本
能耗成本=[1/(1-η0)-1/(1-ηe)]×150×α×Pele
运输成本=0.65×L /(1-ηe)
填埋场成本=βPf /(1-ηe)
设备折价=[1/(1-η0)-1/(1-ηe)]×180×α× 0.17×104/8000
其中,η0、ηe分别为处理处置始、末的含水率;Pele为电价,¥/(kW•h);L为运输距离,km;α为土建及人工配套费指数,1.3;β为体积系数,含水率≥68%时在1.4~1.6之间,取1.5,含水率<68%时取1;Pf为填埋场填埋价格,40~60¥/t,取52¥/t。
污泥填埋运输距离:北京市现有填埋场容量不足以满足生活垃圾处置需求,即使规划中的填埋场建成之后,富余填埋能力也很有限,污泥填埋需另外觅地新建填埋场。随着城市发展及填埋场地质条件要求,运输距离也将越来越远,参照表1,污泥
填埋的运输距离将在40 km以上,因此在估算今后的填埋成本时,分别取50、100 km作为近期及远期填埋场运输距离。
1.4 堆肥成本及收益
城市污泥经过堆肥无害化处理之后进行土地利用,是国际上普遍采用的处理处置方式。强制通风静态垛堆肥处理是泥堆肥主流技术,其处理成本与污泥初始含水率、处理规模、堆肥厂与污水处理厂之间距离以及设备原产地等因素相关。堆肥厂宜建在污水处理厂周围,运输成本计为0,堆肥成本主要由鼓风、烘干、筛分能耗,调理剂及设备折价成本组成。目前,堆肥产品的市场销售价格为350~500¥/t,扣除15%含水率后取500¥/t DS。
利用CTB堆肥自动控制系统[12,13]进行强制通风静态垛堆肥在河南省漯河市城市污泥堆肥厂的应用结果表明,当污泥含水率不高于80%时,鼓风能耗在40~60 (kW•h)/t DS之间,取60 (kW•h)/t DS。CTB调理剂价格为300 ¥/t,损耗率一般为5% [14]。经过10~14 d堆肥,污泥干物质减量30%,含水45%。采用热干燥技术烘干至含水15%,脱水负荷0.45 t/t DS;调理剂在烘干前筛分后自然晾干,需筛分能耗;筛分负荷共9.3 t/t DS,筛分能力1 t/h,功率3 kW。全程能耗95 (kW•h)/t DS,考虑到未知能耗,取100 (kW•h)/t DS。
设备折价:处理干污泥能力为 0.3×104 t/a的污泥堆肥厂设备投资约700万¥,设备折价182 ¥/t DS(含占地成本),取200¥/t DS。
1.5 焚烧成本
考虑到焚烧废气排放等问题,外运30 km以上焚烧为佳,取30 km;焚烧按干物质减量60%,烧余物需运至填埋场填埋,运输距离取50 km。参考表3可知,干燥至10%焚烧成本较干燥至60%低。干燥程度越高,焚烧厂占地面积也越小,因此焚烧前以干化至10%为宜。
1.6 干化农用成本
未经稳定化处理污泥存在施用安全危险,考虑到干化的稳定效果较差,安全性有限,不再估算。
2 讨论与分析
2.1 处理成本和经济效益
表2 处理处置1 t城市污泥(干质量)所需的成本及其效益
Table 2 Comparison of the estimated cost and benefit of sewage sludge treated and/or disposed by different ways
填 埋
干化 运输 填埋 综合成本/¥
目标 能耗/¥ 设备折价/¥ 距离/km 运费/¥ 填土比例 费用/¥
80% 0 0 50 163 50% 390 5531),5532)
30% 2091),4182) 178 50 46 0 74 5071),7162)
80% 0 0 100 325 50% 390 7151),7152)
30% 2091),4182) 178 100 93 0 74 5541),7632)
焚烧
干化 焚 烧 烧余物 综合成本/¥
目标 能耗/¥ 设备折价/¥ 运行/¥ 设备折价/¥ NaOH/¥ 运费/¥ 填埋/¥
60% 1461),2932) 124 60 365 128 13 20 8561),10022)
10% 2281),4552) 193 27 162 128 13 20 7711),9982)
堆 肥
能耗/¥ 设备折价/¥ 调理剂损耗/¥ 总成本/¥ 销售/¥ 总效益/¥
391),782) 200 75 3141),3532) 410 961),572)
1) 电价取0.30 ¥/(kW·h);2) 电价取0.60 ¥/(kW·h)

各种处理方式处理成本估算过程及结果如表2所示。由表2可知,污泥处理处置以堆肥方式成本

最低,约300~350¥/t DS;填埋方式约500~760¥/t DS。焚烧方式成本最高,约800~1000¥/t DS。堆肥成本低于填埋方式,显著低于焚烧方式,随运输距离增加填埋成本显著高于堆肥成本。此外,污泥焚烧处理一次性投资大,运行维护费用最高。

各种处理方式中,污泥填埋没有资源回收,效益为零;考虑到污泥热值水平,回收焚烧热能可能性较低,对净效益影响不大;污泥干化可以起到脱水的效果,但稳定化的效果有限,加之干化过程中容易产生爆炸和肥效缓慢等问题,不宜提倡;在产品销售良好情况下,按电价不同,堆肥处理可以盈利50~100¥/t DS。
2.2 各种处理处置技术的优缺点
现有的大部分填埋场设计建造标准低、缺乏污染控制措施,存在稳定性差等问题,导致散发气体和臭味,污染地下水,不能保证填埋垃圾的安全,只是延缓污染但没有最终消除污染。一些国家为了把上述问题降低到最小程度,制定了待处理污泥物理特性的最低标准,使污泥填埋的处理成本大大增加。例如德国要求填埋污泥干基含量不低于35%。为避免污泥中有机物分解造成的地下水污染,1992年德国发布了《城市废弃物控制和处置技术纲要》,要求从2005年起,任何被填埋处理的物质其有机物含量不超过5% [15],这意味着污泥即便是经过干燥也不满足填埋的要求。污泥填埋面临填埋场地、公众及法规等多重压力,填埋成本将逐步升高,近年来国外污泥填埋处理方式比例越来越小[6]。
是否推广堆肥处理城市污泥,首先应切实评估施用污泥堆肥的潜在环境风险。杜兵等[16]研究表明,同国外相比北京市某典型污水处理厂酚类、酞酸酯类、多环芳烃类均处于污染程度较低的水平。堆肥处理的持续高温可以确保杀灭病菌,保证污泥的农用安全。陈同斌等[17]对中国城市污泥的重金属含量及其变化趋势的研究结果表明,我国城市污泥中平均含量普遍较低,金属含量基本未超过农用标准[18],且呈现逐渐下降的趋势。近年相关研究也证明:科学合理地进行城市污泥农用不会造成土壤和农产品的重金属污染问题[19]。我国城市污泥的土地利用重金属环境风险并不像人们想象的那样严重。
焚烧减量最为显著,含水80%的污泥焚烧后减容率超过90%。然而,污泥含有多种有机物,焚烧时会产生大量有害物质,如二恶英、二氧化硫、盐酸等,受国内焚烧技术的限制,二恶英污染问题尚未很好解决,重金属烟雾与燃烧灰烬也可能造成二次污染。此外,焚烧浪费了污泥中的营养物质。对比三种处理处置方式,污泥焚烧占地面积最小,但综合成本最高,设备维护要求高,环保风险较大,这些不利之处都限制了污泥焚烧技术的广泛应用。
综上所述,堆肥处理实现污泥的资源化利用,科学合理施用下可以保证卫生安全及重金属安全,同时较为经济可行,是污泥处理处置技术的主要发展方向。但是,从市场销售的角度来看,污泥堆肥产品的销售渠道有待改善。各种处理方式优缺点概括于表3(下页)。
2.3 电价影响及政府补贴
电价影响到污泥处理处置成本。电价从0.60¥/(kW•h)降低到0.30 ¥/(kW•h),各种处理方式的综合成本分别降低40~230 ¥/t DS。如电价取至用电低谷期电价或者更低,成本可以进一步降低。
表3 各种处理处置技术优缺点对比
Table 3 Comparison of landfill, composting and incineration for sewage sludge
处理处置方式 收支平衡/(¥•t-1) 1) 技术难度 场地要求 能否资源化 无害化程度
填埋 -507~ -763 简单 大 不能 延缓污染, 没有最终消除污染风险
堆肥 57~96 较简单 较小 能 重金属低于农用标准时可以达到无害化要求
焚烧 -771~ -1000 技术设备要求高 小 不能 尾气可能带来二次污染
1) 运输距离100 km、电价0.60 ¥/(kw•h)时, 以80%含水率填埋成本略低于30%含水率填埋, 但其占地为后者5.25倍, 综合考虑采取30%填埋

污泥含水80%及60%下填埋占地分别为30%下填埋的5.25倍、1.75倍。政府通过补贴如降低电价等调控手段,将污水处理投入合理分配到其中的污泥处理单元,可以降低污泥处理单元的焚烧成本、填埋占地,降低堆肥成本。政府补贴可以发挥经济杠杆作用,调控污泥处理行业投入产出状况,有利于污泥处理处置行业的健康发展。总之,污泥处理处置应该有适宜的政府补贴。
3 结论
(1)污泥堆肥成本随电价变化约300~350 ¥/t DS,堆肥销售可以补偿部分处理成本,使污泥堆肥达到微利水平。合理施用堆肥可以提供养分和有机质,是污泥处理处置技术的重要方向。
(2)污泥填埋操作简单,但其成本约500~760 ¥/t DS,高于堆肥处理。考虑到土地资源日益稀缺及二次污染问题,且从发达国家的经验来看污泥填埋将逐步受到限制,因此其应用比例应逐渐减少。
(3)污泥焚烧减量效果最明显,但其初始投资及运行费用最高,综合成本约771~1000 ¥/t DS。其设备维护复杂,如果对尾气处理不当会造成二次污染。

参考文献:
[1] Edward S R, Cliff I D. 工程与环境引论[M]. 北京: 清华大学出版社, 2002.
Edward S R, Cliff I D. Introction to engineering & the environment [M]. Beijing: Tsinghua University Press, 2002.
[2] 柯建明, 王凯军, 田宁宁. 北京市城市污水污泥的处理和处置问题研究[J]. 中国沼气, 2000, 18(3): 35-36.
KE Jianming, WANG Kaijun, TIAN Ningning. Disposal of excess sludge from urban wastewater treatment plant in Beijing city [J]. China Biogas, 2000, 18(3): 35-36.
[3] 彭晓峰, 陈剑波, 陶涛, 等. 污泥特性及相关热物理研究方向[J]. 中国科学基金, 2002, 5: 284-287.
PENG Xiaofeng, CHEN Jianbo, TAO Tao, et al. The specialties of sludge and associated thermal physical issues [J]. China Science Fund, 2002, 5: 284-287.
[4] 何品晶, 邵立明, 宗兵年. 污水厂污泥综合利用与消纳的可行性途径分析[J]. 环境卫生工程, 1997, 4:21-25.
HE Pinjing, SHAO Liming, ZONG Bingnian. The feasible way analysis on comprehensive utilization and outlet of sludge in sewage treatment plant [J]. Environmental & Sanitary Engineerin,. 1997, 4:21-25.
[5] 邓晓林, 王国华, 任鹤云. 上海城市污水处理厂的污泥处置途径探讨[J]. 中国给水排水, 2000, 16(5): 19-22.
DENG Xiaolin, WANG Guohua, REN Heyun. Discussion at the treatment and disposal of the sewage sludge in Shanghai wastewater plants [J]. China Water and Wastewater, 2000, 16(5): 19-22.
[6] 国家建设部. CJ 3025 城市污水处理厂污水污泥排放标准[S]. 1993: 2.
Ministry of Construction of PR China. CJ 3025 Wastewater and sludge disposal standard for municipal wastewater treatment plants[S]. 1993: 2.
[7] 国家建设部. CJJ 17城市生活垃圾卫生填埋技术规范[S]. 2001: 20.
Ministry of Construction of PR China. CJJ 17 Technical Code for Sanitary Landfill of Municipal Domestic Refuse[S]. 2001: 20.
[8] 赵乐军, 戴树桂, 辜显华. 污泥填埋技术应用进展[J]. 中国给水排水, 2004, 20(4): 27-30.
ZHAO Lejun, DAI Shugui, GU Xianhua. Application headway of sewage sludge landfill technique [J]. China Water & Wastewater, 2004, 20(4): 27-30.
[9] 高廷耀. 水处理手册[M]. 北京: 高教出版社, 1983: 288-289.
GAO Tingyao. Handbook of water treatment [M].Beijing: Higher Ecation Press, 1983: 255-289.
[10] 朱南文, 徐华伟. 国外污泥热干燥技术[J]. 给水排水, 2002, 28(1): 16-19.
ZHU Nanwen, XU Huawei. Overseas technique of thermal drying sewage sludge [J]. Water Supply and Drainage.2002, 28(1): 16-19.
[11] 刘建国, 聂永丰. 京城垃圾处置[J]. 科技潮, 2004,7: 32-35.
LIU Jianguo, NIE Yongfeng. Treatment of waste in Beijing [J]. Technological Tides, 2004, 7: 32-35.
[12] 陈同斌, 高定, 黄启飞. 一种用于堆肥的自动控制装置: 中国, 0112522.9[P].
CHEN Tongbin, GAO Ding, Huang Q F. A servomechanism for composting: 中国, 0112522.9[P].
[13] 高定, 黄启飞, 陈同斌. 新型堆肥调理剂的吸水特性及应用[J]. 环境工程, 2002, 20(3): 48-50.
GAO Ding, HUANG Qifei, CHEN Tongbin. Water absorbability and application of a new type compost amendment [J]. Environmental Engineering, 2002, 20(3): 48-50.
[14] 高定. 堆肥自动测控系统及其在猪粪堆肥中的应用[D]. 北京: 中国科学院地理科学与资源研究所, 2002: 78.
GAO Ding. The Development of Measuring and Controlling System and Its Application to Swine Manure Composting [D]. Beijing: Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, 2002: 78.
[15] 李美玉, 李爱民, 王志, 等. 发展我国污泥流化床焚烧技术[J]. 劳动安全与健康, 2001, 8: 20-23.
LI Meiyu, LI Aimin, WANG Zhi, et al. Develop sewage sludge fluidized bed incineration technique in our country [J]. Safety & Health at Work, 2001, 8: 20-23.
[16] 杜兵, 张彭义, 张祖麟, 等. 北京市某典型污水处理厂中内分泌干扰物的初步调查[J]. 环境科学, 2004, 25(1): 114-116.
DU Bing, ZHANG Pengyi, ZHANG Zulin, et al. Preliminary investigation on endocrine disrupting chemicals in a sewage treatment plant of Beijing [J]. Environmental Science, 2004, 25(1): 114-116.
[17] 陈同斌, 黄启飞, 高定, 等. 中国城市污泥的重金属含量及其变化趋势[J]. 环境科学学报, 2003, 23(5): 561-569.
CHEN Tongbin, HUANG Qifei, GAO Ding, et al. Heavy metal concentrations and their decreasing trends in sewage sludge of China [J]. Transaction of Environmental Science, 2003, 23(5): 561-569.
[18] 国家环境保护总局. 城镇污水处理厂污染物排放标准: 中国, 18918-2002[S]. 北京: 中国环境出版社, 2002: 5.
State Environmental Protection Agency. Discharge Standard of Pollutants for Municipal Wastewater Treatment Plant: China, 18918-2002[S]. Beijing: China Environment Press, 2002: 5.
[19] 田宁宁, 王凯军, 柯健明. 剩余污泥好氧堆肥生产有机复混肥的肥分及效益分析[J]. 城市环境与城市生态, 2001, 14(1): 9-11.
TIAN Ningning, WANG Kaijun, KE Jianming. Evaluation of organic complex fertilizer made of excess sludge from municipal wastewater treatment plant [J]. Urban Environment & Urban Ecology, 2001, 14(1): 9-11.

③ 国内目前最先进污泥处理新技术(污泥处理技术)是什么样的

污泥无热干化技术

采用不加热的方式对污泥进行脱水和干化,只需10分钟就回可将污泥的含水率从答85%-80%降至55%,后经过不加热状态下的强制通风干化技术,将污泥中的含水率持续降至40%,而能耗只有热干化的10%,并且处理过程不会产生臭气。
“污泥无热干化NHD™技术”攻克了污泥干化能耗高、产生臭气这一世界性难题。取得的另一项惊人的成果是:干化后的泥饼具有相当高的热值。由于采用不加热的方式进行干化处理,避免了污泥中有机质的损失。用干化后的泥饼制成的生物质燃料,真正做到了变泥为“煤”。实现了国家倡导的循环经济原则,真正让污泥处理处置实现了资源再利用。

④ 国内城市污水污泥处理中存在的问题主要有几个方面

1) 污泥处理率低、工艺不完善
我国存在着重废水处理,轻污泥处理的倾向。很多城市未把污泥的处理作为污水厂的必要组成部分,往往是污水处理厂建成后,相当长的时间后才建污泥处理系统,造成我国城市污水污泥处理率很低。从表 1 的工艺中也可以看出,国内城市污水厂的污泥处理工艺是很不完善的。污泥经过浓缩、消化稳定和干化脱水处理的污水厂仅占上述城市污水厂的 25.68%。这说明我国 70%以上的污水厂中不具有完整的污泥处理工艺。不具有污泥稳定处理的污水厂占 55.70%,大量未经过稳定处理的污水污泥将对环境产生严重的二次污染。不具有污泥干化脱水处理的污水厂约占 48.65%。污泥经浓缩、消化后,尚有约 95%~97%含水率,体积仍然很大。这样庞大体积的污泥如果不经过污泥的干化脱水处理,将为运输及后续处置带来许多不便。

2) 污泥处理技术设备落后
当前我国有些污水处理厂所采用的污泥处理技术已经是发达国家所摈弃的技术,其水平还停留在发达国家的 70、80 年代的水平,有的甚至是国外的 60 年代的水平。而且有些污泥处理技术根本不合乎国内的污水污泥特性,对所采用的技术缺乏必要的调查研究。污泥处理设备也比较落后,性能差、效率低、能耗高,专用设备少,未能形成标准化和系列化。因此,限制了我国污泥处理技术的提高和发展。

3) 污泥处理管理水平低
很多已建成的污泥处理设施不能正常运行,除技术水平外,管理水平低也是重要因素。大部分污水厂的管理人员和操作人员的素质较差,缺乏管理经验,不能有效地组织生产,加上技术人员少,各个专业不配套,所以一旦生产上出现问题,不知如何处理,有的污水处理厂的污泥处理系统只好长期停止运行。提高污水厂的管理水平,早日实现科学管理是保证污水厂污泥系统长期运转关键所在。

4) 污泥处理设计水平低
我国排水事业有很大发展,积累了较为丰富的污水处理设计经验,并培养了大批设计人材。但在污泥处理方面,我国还缺乏实践经验和设计经验,尤其是污泥处理系统的整体水平还比较低,从已建成的污水处理厂的污泥处理装置看,运行工况不佳,不能保证长期运行,很多厂的装置建成后,又进行较大的技术改造,造成人力、物力和财力的极大浪费。

5) 污泥处理投资低
国内污泥处理投资只占污水处理厂总投资的 20%~50%,而发达国家污泥处理投资要占总投资的 50%~70%。

⑤ 城市污水处理厂污泥可以如何处理

尼科环境科技有限公司污泥无热干化NHD™技术,采用不加热的方式对污泥进行脱水回和干化,只需10分钟就可将污泥的含答水率从85%-80%降至55%,后经过不加热状态下的强制通风干化技术,将污泥中的含水率持续降至40%,而能耗只有热干化的10%,并且处理过程不会产生臭气。
“污泥无热干化NHD™技术”攻克了污泥干化能耗高、产生臭气这一世界性难题。取得的另一项惊人的成果是:干化后的泥饼具有相当高的热值。由于采用不加热的方式进行干化处理,避免了污泥中有机质的损失。用干化后的泥饼制成的生物质燃料,经权威部门检测,以秦皇岛抚宁区中冶污水处理厂污泥无热干化项目的实际检测效果为例,热值达到4080大卡,高于褐煤,真正做到了变泥为“煤”。实现了国家倡导的循环经济原则,真正让污泥处理处置实现了资源再利用。

⑥ 污泥的哪些特性,导致污泥处理及其后续处置与资源化利用较困难

城市污泥不同处理处置方式的成本和效益分析
——以北京市为例
张义安,高 定,陈同斌*,郑国砥,李艳霞
中国科学院地理科学与资源研究所环境修复中心,北京 100101

摘要:以北京市为例,估算不同电价及运输距离下填埋、焚烧及堆肥等方式的城市污泥处理处置成本,在此基础上讨论各种处理处置方案的前景,展望北京市污泥处理处置出路。污泥填埋在一定时期内还将是主要处理处置方式,但所占比例将逐渐下降;堆肥是经济上较为可行的处理处置方式,适合大力推广;随着经济实力与技术水平提高,焚烧法可以适用于个别特殊地点。同时,分析了政府补贴对污泥处理处置效益的影响。
关键词:城市污泥;处理处置成本;填埋;焚烧;堆肥
中图分类号:X703 文献标识码:A 文章编号:1672-2175(2006)02-0234-05
城市污泥是污水处理的副产物,以含水率97%计算,体积占处理污水的0.3%~0.5%[1],深度处理产泥量还将增加50%~100%。目前我国每年排放的干污泥大约1.3×106 t,并以大约10%的速率在增加。
北京市全区域规划污水排放量为330×104 m3/d,其中2003年市区污水排放量约为230×104 m3/d[2]。规划建设14座污水处理厂,2015年污水处理能力预计将超过320×104 m3/d,处理率将超过90%。到2008年,北京市将新增9座中水处理厂,深度处理能力将由目前的1×104 m3/d提高到47.6×104 m3/d,届时每年产生含水率 80% 城市污泥超过80×104 m3。北京市最大的污水处理厂——高碑店污水处理厂污泥外运运输费用占到全厂运行费用的1/3[3]。
城市污泥的大量产生,已引起日益严峻的二次污染,并成为城市污水处理行业瓶颈。污泥处理处置率低,其中非常重要的一个原因就是投资和运行成本方面的限制。但到目前为止,还未见关于不同污泥处理处置方案的经济分析,导致不同单位和设计人员在方案的选择上存在较大的盲目性。本文以北京为例,对几种典型的城市污泥处理处置方式进行经济分析,以便为城市污泥处理处置技术的选择提供参考依据。
1 城市污泥处理处置成本估算
1.1 估算方法
以1 t干污泥(DS)为计算基准,综合成本=运行成本+设备折价成本。运行成本以目前较为成熟的处理处置方式进行估算。
北京市污泥机械脱水效果通常在80%左右。各方案中的成本估算涉及或包括焚烧、运输、填埋等3个流程;设备折价成本取15 a使用年限,年折旧7%,社会利率10%,即年折价17%,设备年工作时数以8000 h计。因此,设备折价=设备价格×指数×0.17/8000。
1.2 估算细则
(1)单位成本
填埋:生活垃圾卫生填埋的成本约60~70 ¥/t,污泥填埋时按照压实生活垃圾∶土∶污泥容重比为0.8∶1∶1,污泥填埋成本为48~56 ¥/t,取52¥/t。
干化:干燥能耗与脱水量成正比。燃气加热效率85%、锅炉热效率70%、过程热损失5%时,水的蒸发能耗为150 (kW?h)/t,每小时去除1 t水的设备投资为180×104¥[4]。
焚烧:目前多采用流化床技术,每h焚烧1 t干化污泥的设备成本为528×104¥,污泥按干质量减量60%。焚烧的运行费用24¥/t,烟气处理消耗NaOH量约为37 kg/t,折价约128¥/t [5]。
电价:北京市工业电价高峰期、平段区、低谷期分别为0.278、0.488、0.725¥/(kW?h)。按不同补贴方案,将电价设定为0.30、0.60¥/(kW?h)。
运费:北京市运输价格在0.45~0.65¥/(t?km)之间,污泥为特殊固体废物,需特殊箱式货车运送,价格处于高端。另外,近年运输价格有上涨趋势。因此,运费取0.65 ¥/(t?km)。
此外,干化及焚烧均按设备成本添加30%物耗人工管理费及土建配套费。
(2)污泥含水率
污泥的有机质和水分含量较高,填埋存在一系列问题,当前主要关心的是土力学性能,当含水率高于68% 时需按m(土)∶m(污泥)=0.4~0.6的比例混入土 [6-8]。含水率降低时污泥性状存在突变,因此填埋脱水目标设定为80%、30%。
含水率是污泥焚烧处理中的一个关键因素。有机质含量高、含水率低利于维持自燃,降低污泥含水率对降低污泥焚烧设备及处理费用至关重要。一般将污泥含水率降至与挥发物含量之比小于3.5时,可形成自燃[9]。北京市污泥有机物含量在45% 以下,因此使污泥维持自燃焚烧的水分含量应小于61.2%。朱南文总结了几种国外污泥热干燥技术,可以将污泥干燥至10%含水率[10]。污泥焚烧综合成本随干燥程度动态变化,干化程度越高,干化能耗升高,焚烧设备及运行费用随之下降。简化起见,本文以污泥保持热量平衡燃烧为估算前提,不再进行高水分下加入重油的成本估算。因此污泥焚烧的干化目标定为:60%和10%。
表1 北京市填埋场概况[11]及离污水处理厂的最近距离
Table 1 Description of landfill sites and wastewater treatment plants
填埋场 填埋场位置 处理规模/(t?d-1) 预计关闭时间 最近的污水处理厂 最近直线距离/km 1)
北神树 通县次渠乡 980 2006 高碑店 20
安定 大兴区安定乡 700 2006 小红门 36
六里屯 海淀区永丰屯乡 1500 2017 清河 15
高安屯 朝阳区楼梓庄乡 1000 2018 高碑店 15
阿苏卫 昌平区小汤山乡 2000 2012 清河、北小河 40
焦家坡 门头沟区永定镇 600 2011 卢沟桥 15
1) 最近距离数据为作者实测

综上所述,污泥的处理处置方式计有:堆肥,分别干燥至含水80%、30% 时填埋,干燥至含水

60%、10%时焚烧。
1.3 填埋成本
填埋成本=能耗成本+运输成本+填埋场成本+设备折价成本
能耗成本=[1/(1-η0)-1/(1-ηe)]×150×α×Pele
运输成本=0.65×L /(1-ηe)
填埋场成本=βPf /(1-ηe)
设备折价=[1/(1-η0)-1/(1-ηe)]×180×α× 0.17×104/8000
其中,η0、ηe分别为处理处置始、末的含水率;Pele为电价,¥/(kW?h);L为运输距离,km;α为土建及人工配套费指数,1.3;β为体积系数,含水率≥68%时在1.4~1.6之间,取1.5,含水率<68%时取1;Pf为填埋场填埋价格,40~60¥/t,取52¥/t。
污泥填埋运输距离:北京市现有填埋场容量不足以满足生活垃圾处置需求,即使规划中的填埋场建成之后,富余填埋能力也很有限,污泥填埋需另外觅地新建填埋场。随着城市发展及填埋场地质条件要求,运输距离也将越来越远,参照表1,污泥
填埋的运输距离将在40 km以上,因此在估算今后的填埋成本时,分别取50、100 km作为近期及远期填埋场运输距离。
1.4 堆肥成本及收益
城市污泥经过堆肥无害化处理之后进行土地利用,是国际上普遍采用的处理处置方式。强制通风静态垛堆肥处理是泥堆肥主流技术,其处理成本与污泥初始含水率、处理规模、堆肥厂与污水处理厂之间距离以及设备原产地等因素相关。堆肥厂宜建在污水处理厂周围,运输成本计为0,堆肥成本主要由鼓风、烘干、筛分能耗,调理剂及设备折价成本组成。目前,堆肥产品的市场销售价格为350~500¥/t,扣除15%含水率后取500¥/t DS。
利用CTB堆肥自动控制系统[12,13]进行强制通风静态垛堆肥在河南省漯河市城市污泥堆肥厂的应用结果表明,当污泥含水率不高于80%时,鼓风能耗在40~60 (kW?h)/t DS之间,取60 (kW?h)/t DS。CTB调理剂价格为300 ¥/t,损耗率一般为5% [14]。经过10~14 d堆肥,污泥干物质减量30%,含水45%。采用热干燥技术烘干至含水15%,脱水负荷0.45 t/t DS;调理剂在烘干前筛分后自然晾干,需筛分能耗;筛分负荷共9.3 t/t DS,筛分能力1 t/h,功率3 kW。全程能耗95 (kW?h)/t DS,考虑到未知能耗,取100 (kW?h)/t DS。
设备折价:处理干污泥能力为 0.3×104 t/a的污泥堆肥厂设备投资约700万¥,设备折价182 ¥/t DS(含占地成本),取200¥/t DS。
1.5 焚烧成本
考虑到焚烧废气排放等问题,外运30 km以上焚烧为佳,取30 km;焚烧按干物质减量60%,烧余物需运至填埋场填埋,运输距离取50 km。参考表3可知,干燥至10%焚烧成本较干燥至60%低。干燥程度越高,焚烧厂占地面积也越小,因此焚烧前以干化至10%为宜。
1.6 干化农用成本
未经稳定化处理污泥存在施用安全危险,考虑到干化的稳定效果较差,安全性有限,不再估算。
2 讨论与分析
2.1 处理成本和经济效益
表2 处理处置1 t城市污泥(干质量)所需的成本及其效益
Table 2 Comparison of the estimated cost and benefit of sewage sludge treated and/or disposed by different ways
填 埋
干化 运输 填埋 综合成本/¥
目标 能耗/¥ 设备折价/¥ 距离/km 运费/¥ 填土比例 费用/¥
80% 0 0 50 163 50% 390 5531),5532)
30% 2091),4182) 178 50 46 0 74 5071),7162)
80% 0 0 100 325 50% 390 7151),7152)
30% 2091),4182) 178 100 93 0 74 5541),7632)
焚烧
干化 焚 烧 烧余物 综合成本/¥
目标 能耗/¥ 设备折价/¥ 运行/¥ 设备折价/¥ NaOH/¥ 运费/¥ 填埋/¥
60% 1461),2932) 124 60 365 128 13 20 8561),10022)
10% 2281),4552) 193 27 162 128 13 20 7711),9982)
堆 肥
能耗/¥ 设备折价/¥ 调理剂损耗/¥ 总成本/¥ 销售/¥ 总效益/¥
391),782) 200 75 3141),3532) 410 961),572)
1) 电价取0.30 ¥/(kW?h);2) 电价取0.60 ¥/(kW?h)

各种处理方式处理成本估算过程及结果如表2所示。由表2可知,污泥处理处置以堆肥方式成本

最低,约300~350¥/t DS;填埋方式约500~760¥/t DS。焚烧方式成本最高,约800~1000¥/t DS。堆肥成本低于填埋方式,显著低于焚烧方式,随运输距离增加填埋成本显著高于堆肥成本。此外,污泥焚烧处理一次性投资大,运行维护费用最高。

各种处理方式中,污泥填埋没有资源回收,效益为零;考虑到污泥热值水平,回收焚烧热能可能性较低,对净效益影响不大;污泥干化可以起到脱水的效果,但稳定化的效果有限,加之干化过程中容易产生爆炸和肥效缓慢等问题,不宜提倡;在产品销售良好情况下,按电价不同,堆肥处理可以盈利50~100¥/t DS。
2.2 各种处理处置技术的优缺点
现有的大部分填埋场设计建造标准低、缺乏污染控制措施,存在稳定性差等问题,导致散发气体和臭味,污染地下水,不能保证填埋垃圾的安全,只是延缓污染但没有最终消除污染。一些国家为了把上述问题降低到最小程度,制定了待处理污泥物理特性的最低标准,使污泥填埋的处理成本大大增加。例如德国要求填埋污泥干基含量不低于35%。为避免污泥中有机物分解造成的地下水污染,1992年德国发布了《城市废弃物控制和处置技术纲要》,要求从2005年起,任何被填埋处理的物质其有机物含量不超过5% [15],这意味着污泥即便是经过干燥也不满足填埋的要求。污泥填埋面临填埋场地、公众及法规等多重压力,填埋成本将逐步升高,近年来国外污泥填埋处理方式比例越来越小[6]。
是否推广堆肥处理城市污泥,首先应切实评估施用污泥堆肥的潜在环境风险。杜兵等[16]研究表明,同国外相比北京市某典型污水处理厂酚类、酞酸酯类、多环芳烃类均处于污染程度较低的水平。堆肥处理的持续高温可以确保杀灭病菌,保证污泥的农用安全。陈同斌等[17]对中国城市污泥的重金属含量及其变化趋势的研究结果表明,我国城市污泥中平均含量普遍较低,金属含量基本未超过农用标准[18],且呈现逐渐下降的趋势。近年相关研究也证明:科学合理地进行城市污泥农用不会造成土壤和农产品的重金属污染问题[19]。我国城市污泥的土地利用重金属环境风险并不像人们想象的那样严重。
焚烧减量最为显著,含水80%的污泥焚烧后减容率超过90%。然而,污泥含有多种有机物,焚烧时会产生大量有害物质,如二恶英、二氧化硫、盐酸等,受国内焚烧技术的限制,二恶英污染问题尚未很好解决,重金属烟雾与燃烧灰烬也可能造成二次污染。此外,焚烧浪费了污泥中的营养物质。对比三种处理处置方式,污泥焚烧占地面积最小,但综合成本最高,设备维护要求高,环保风险较大,这些不利之处都限制了污泥焚烧技术的广泛应用。
综上所述,堆肥处理实现污泥的资源化利用,科学合理施用下可以保证卫生安全及重金属安全,同时较为经济可行,是污泥处理处置技术的主要发展方向。但是,从市场销售的角度来看,污泥堆肥产品的销售渠道有待改善。各种处理方式优缺点概括于表3(下页)。
2.3 电价影响及政府补贴
电价影响到污泥处理处置成本。电价从0.60¥/(kW?h)降低到0.30 ¥/(kW?h),各种处理方式的综合成本分别降低40~230 ¥/t DS。如电价取至用电低谷期电价或者更低,成本可以进一步降低。
表3 各种处理处置技术优缺点对比
Table 3 Comparison of landfill, composting and incineration for sewage sludge
处理处置方式 收支平衡/(¥?t-1) 1) 技术难度 场地要求 能否资源化 无害化程度
填埋 -507~ -763 简单 大 不能 延缓污染, 没有最终消除污染风险
堆肥 57~96 较简单 较小 能 重金属低于农用标准时可以达到无害化要求
焚烧 -771~ -1000 技术设备要求高 小 不能 尾气可能带来二次污染
1) 运输距离100 km、电价0.60 ¥/(kw?h)时, 以80%含水率填埋成本略低于30%含水率填埋, 但其占地为后者5.25倍, 综合考虑采取30%填埋

污泥含水80%及60%下填埋占地分别为30%下填埋的5.25倍、1.75倍。政府通过补贴如降低电价等调控手段,将污水处理投入合理分配到其中的污泥处理单元,可以降低污泥处理单元的焚烧成本、填埋占地,降低堆肥成本。政府补贴可以发挥经济杠杆作用,调控污泥处理行业投入产出状况,有利于污泥处理处置行业的健康发展。总之,污泥处理处置应该有适宜的政府补贴。
3 结论
(1)污泥堆肥成本随电价变化约300~350 ¥/t DS,堆肥销售可以补偿部分处理成本,使污泥堆肥达到微利水平。合理施用堆肥可以提供养分和有机质,是污泥处理处置技术的重要方向。
(2)污泥填埋操作简单,但其成本约500~760 ¥/t DS,高于堆肥处理。考虑到土地资源日益稀缺及二次污染问题,且从发达国家的经验来看污泥填埋将逐步受到限制,因此其应用比例应逐渐减少。
(3)污泥焚烧减量效果最明显,但其初始投资及运行费用最高,综合成本约771~1000 ¥/t DS。其设备维护复杂,如果对尾气处理不当会造成二次污染。

参考文献:
[1] Edward S R, Cliff I D. 工程与环境引论[M]. 北京: 清华大学出版社, 2002.
Edward S R, Cliff I D. Introction to engineering & the environment [M]. Beijing: Tsinghua University Press, 2002.
[2] 柯建明, 王凯军, 田宁宁. 北京市城市污水污泥的处理和处置问题研究[J]. 中国沼气, 2000, 18(3): 35-36.
KE Jianming, WANG Kaijun, TIAN Ningning. Disposal of excess sludge from urban wastewater treatment plant in Beijing city [J]. China Biogas, 2000, 18(3): 35-36.
[3] 彭晓峰, 陈剑波, 陶涛, 等. 污泥特性及相关热物理研究方向[J]. 中国科学基金, 2002, 5: 284-287.
PENG Xiaofeng, CHEN Jianbo, TAO Tao, et al. The specialties of sludge and associated thermal physical issues [J]. China Science Fund, 2002, 5: 284-287.
[4] 何品晶, 邵立明, 宗兵年. 污水厂污泥综合利用与消纳的可行性途径分析[J]. 环境卫生工程, 1997, 4:21-25.
HE Pinjing, SHAO Liming, ZONG Bingnian. The feasible way analysis on comprehensive utilization and outlet of sludge in sewage treatment plant [J]. Environmental & Sanitary Engineerin,. 1997, 4:21-25.
[5] 邓晓林, 王国华, 任鹤云. 上海城市污水处理厂的污泥处置途径探讨[J]. 中国给水排水, 2000, 16(5): 19-22.
DENG Xiaolin, WANG Guohua, REN Heyun. Discussion at the treatment and disposal of the sewage sludge in Shanghai wastewater plants [J]. China Water and Wastewater, 2000, 16(5): 19-22.
[6] 国家建设部. CJ 3025 城市污水处理厂污水污泥排放标准[S]. 1993: 2.
Ministry of Construction of PR China. CJ 3025 Wastewater and sludge disposal standard for municipal wastewater treatment plants[S]. 1993: 2.
[7] 国家建设部. CJJ 17城市生活垃圾卫生填埋技术规范[S]. 2001: 20.
Ministry of Construction of PR China. CJJ 17 Technical Code for Sanitary Landfill of Municipal Domestic Refuse[S]. 2001: 20.
[8] 赵乐军, 戴树桂, 辜显华. 污泥填埋技术应用进展[J]. 中国给水排水, 2004, 20(4): 27-30.
ZHAO Lejun, DAI Shugui, GU Xianhua. Application headway of sewage sludge landfill technique [J]. China Water & Wastewater, 2004, 20(4): 27-30.
[9] 高廷耀. 水处理手册[M]. 北京: 高教出版社, 1983: 288-289.
GAO Tingyao. Handbook of water treatment [M].Beijing: Higher Ecation Press, 1983: 255-289.
[10] 朱南文, 徐华伟. 国外污泥热干燥技术[J]. 给水排水, 2002, 28(1): 16-19.
ZHU Nanwen, XU Huawei. Overseas technique of thermal drying sewage sludge [J]. Water Supply and Drainage.2002, 28(1): 16-19.
[11] 刘建国, 聂永丰. 京城垃圾处置[J]. 科技潮, 2004,7: 32-35.
LIU Jianguo, NIE Yongfeng. Treatment of waste in Beijing [J]. Technological Tides, 2004, 7: 32-35.
[12] 陈同斌, 高定, 黄启飞. 一种用于堆肥的自动控制装置: 中国, 0112522.9[P].
CHEN Tongbin, GAO Ding, Huang Q F. A servomechanism for composting: 中国, 0112522.9[P].
[13] 高定, 黄启飞, 陈同斌. 新型堆肥调理剂的吸水特性及应用[J]. 环境工程, 2002, 20(3): 48-50.
GAO Ding, HUANG Qifei, CHEN Tongbin. Water absorbability and application of a new type compost amendment [J]. Environmental Engineering, 2002, 20(3): 48-50.
[14] 高定. 堆肥自动测控系统及其在猪粪堆肥中的应用[D]. 北京: 中国科学院地理科学与资源研究所, 2002: 78.
GAO Ding. The Development of Measuring and Controlling System and Its Application to Swine Manure Composting [D]. Beijing: Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, 2002: 78.
[15] 李美玉, 李爱民, 王志, 等. 发展我国污泥流化床焚烧技术[J]. 劳动安全与健康, 2001, 8: 20-23.
LI Meiyu, LI Aimin, WANG Zhi, et al. Develop sewage sludge fluidized bed incineration technique in our country [J]. Safety & Health at Work, 2001, 8: 20-23.
[16] 杜兵, 张彭义, 张祖麟, 等. 北京市某典型污水处理厂中内分泌干扰物的初步调查[J]. 环境科学, 2004, 25(1): 114-116.
DU Bing, ZHANG Pengyi, ZHANG Zulin, et al. Preliminary investigation on endocrine disrupting chemicals in a sewage treatment plant of Beijing [J]. Environmental Science, 2004, 25(1): 114-116.
[17] 陈同斌, 黄启飞, 高定, 等. 中国城市污泥的重金属含量及其变化趋势[J]. 环境科学学报, 2003, 23(5): 561-569.
CHEN Tongbin, HUANG Qifei, GAO Ding, et al. Heavy metal concentrations and their decreasing trends in sewage sludge of China [J]. Transaction of Environmental Science, 2003, 23(5): 561-569.
[18] 国家环境保护总局. 城镇污水处理厂污染物排放标准: 中国, 18918-2002[S]. 北京: 中国环境出版社, 2002: 5.
State Environmental Protection Agency. Discharge Standard of Pollutants for Municipal Wastewater Treatment Plant: China, 18918-2002[S]. Beijing: China Environment Press, 2002: 5.
[19] 田宁宁, 王凯军, 柯健明. 剩余污泥好氧堆肥生产有机复混肥的肥分及效益分析[J]. 城市环境与城市生态, 2001, 14(1): 9-11.
TIAN Ningning, WANG Kaijun, KE Jianming. Evaluation of organic complex fertilizer made of excess sludge from municipal wastewater treatment plant [J]. Urban Environment & Urban Ecology, 2001, 14(1): 9-11.

⑦ 日处理量10万吨的污水处理厂每天产生多少污泥

日处理量万吨的污水处理厂每天会产生100吨的湿污泥。
污水处理厂在选购污泥处理设备时首先要计算每日产生的污泥量,这里所说的污泥产生量包括污水处理每个工序产生的污泥,以及处理完最终产生的污泥。
影响污水处理厂污泥产量的原因有许多方面,其中污水处理工艺,以及水质的影响比较大。投产的污水处理厂,一般一万吨污水会产生10吨以上的污泥,这些污泥含水率较高,一般在80%以上。而污水处理厂都要求配有相应的污泥处理设备,对污泥减量化、无害化处理后,才可运输到污水处理厂外。
污泥压干机、污泥压滤机等经过多个污水处理厂使用,可将含水率90%以上的污泥压干成含水率40%的泥饼,使污泥体积减小为原来的1/10,很大程度的实现了污泥的减量化,既便于运输,又解决了占地面积大、污染范围大的难题。
通过以上数据可粗略估算,如果一座污水处理厂日污水处理量为10万吨,则会产生100吨的湿污泥。因此也需要处理量不小于100吨/日的污泥处理设备,才能顺利运行,不因污泥堆置问题影响正常运营。

城市污水处理厂的污泥量按照南方的多个城市统计;1万吨污水处理厂年平均值1吨 / 日绝干污泥,折
合含含水率80%,产污泥5吨。10万吨污水处理厂含水率80%,产污泥50吨 / 日。
一般夏季多一点,冬季略少一点。

拓展资料

污水处理 (sewage treatment,wastewater treatment):为使污水达到排入某一水体或再次使用的水质要求对其进行净化的过程。污水处理被广泛应用于建筑、农业、交通、能源、石化、环保、城市景观、医疗、餐饮等各个领域,也越来越多地走进寻常百姓的日常生活。

处理污水的方法很多,一般可归纳为物理法、化学法和生物法等。

污水处理厂:有人调查100多座大处理厂,一半晒太阳呢,还有资金不足成本高效率低的,普遍效率不足70%,低的只有40%。

(参考资料:网络 污水处理)

⑧ 污水处理厂污泥对环境的影响

污泥——由来污水处理自过程所产生的固体沉淀物质组成,是水处理过程中不可避免的副产物。污泥中的寄生虫、病原菌、重金属等随意弃放,势必带来较严重的二次污染,对污泥进行减量、无害化处理处置是整个净化系统不可或缺的环节。
纺织印染行业废水处理产生的污泥与城市污水的污泥成分稍有不同,印染污泥一般惰性物质较高,例如牛仔服装洗漂废水产生的污泥含砂量很高,而有机物、病原菌等含量较城市污泥少,热值也较低,一般重金属含量较城市污泥高。且印染行业本身因使用原料、产品品种、产品加工方式等不同产生的污泥成分也不尽相同,使用硫化染料的企业,硫化物的含量势必较高。
危害:印染污泥含有大量的化学物质残留,内在水份比例高很难脱水,成份非常复杂、有害物质含量高、有一定的粘性等特殊性,一直以来印染污泥处理都是一个难题,一般未经处理的污泥随意倾倒或未经处理填埋,造成大量的土地报废,地下水受到严重污染,

⑨ 城市污水处理厂节能技术研究的具体意义

污水处理厂节能的意义
1、 概述
污水处理是一个世界性的难题,近年来,随着全球经济的迅速发展,污水处理厂的规模越来越大,因此产生能耗问题也越来越严峻。据统计,处理活性污泥的系统中,其运行成本但能耗成本就占到总成本的30%~ 80%。美国有官方数据表明:城镇的污水处理厂所耗费的电能占全国总用电量的3%。其还有数据预测,由于人口的不断增长与污物处理的标准越来越高,在未来的15~20年内,污水处理厂的能耗成本将增加20%以上。我国目前经济发展迅速,城镇化进程不断推进,全国大部分的城镇都增加了污水设施,在提升了污水处理率的同时,能耗率也随之上升。在未来的几年,为了适应经济发展的需求,同时也响应国家的号召,污水处理的规模将会越来越大,使得全国范围内的电力资源紧缺日益突出。因此,对污水处理厂的能耗管理和节能降耗措施进行研究,达到节能降耗的目标,这对我国的社会稳定与经济发展都存在极其重要的意义。
2、 污水处理厂的能耗分析
2.1 国外污水处理厂的能耗分析
西方发达国家比较早产生能源危机意识,这是有其历史渊源的。从上个实际70 年代开始,西方欧美等发达国家相继爆发了能源危机,这个局面直接导致欧美等国发达国家在20 世纪末能源价格开始飙升。鉴于此,在工业领域内最先由美国掀起了节能技术的研究。此后美国一直引领工业节能技术的潮流,包括对污水处理厂的节能技术研究。美国的污水研究人员曾对全国的公共污水处理设备进行了关于单元过程与单元操作的能耗情况的调查,并在做了一次详尽的污水处理设备能耗分析报告。当时这
次调查覆盖了几乎全部的城镇污水处理的生物、物理和化学等方式,甚至对建筑物附属的制冷、制暖等设备也进行了调查。在此基础上,也详尽计算了可回收利用的能量。此后,美国另外几位研究人员E.J.Middlebrooks、C.H.Middle-brooks等根据 Wesner的研究结果,估算了每个污水处理系统的最小能耗量。最后,在其分析报告中指出,随着经济规模的扩大以及能源价格的提升,每年用于污水处理的能耗开支将大幅度上升,而选择低流量的污水处理工艺将作为节能能源开支的重要的手段。接着,另外两名研究人员Roberts 与Hagan 通过分析处理100mgd 较具典型性的活性污泥污所需要的总能量,研究出了污水处理厂能源消耗的结构,并且首次提出对污水处理厂进行节能降耗,需要建立在资源管理与综合平衡利用的基础上,而不仅仅依靠节省能源的技术。2.2国内污水处理厂的能耗分析在上个世纪七八十年代经济刚刚复苏的阶段,我国的污水处理规模尚小,随着改革开放的深入,各类型的工厂如雨后春笋,纷纷屹立在神州大地上,不可避免地产生了污水污染问题,随着能源的消耗越老越多,国家不能不考虑对污水处理厂实施节能降耗的措施。但是,因为我国正处于经济发展的上升阶段,一直以来对此问题的重视程度不够,相关的调查研究也较少。当前,我国城镇污水处理厂处理污水普遍采用生物处理工艺。这种工艺以二级处理或者三级处理为主体,处理的内容通常包括污水、污染物的预处理、生化处理及污泥处理三个部分。而消耗的能源主要是燃料、药剂和电能。
通过国内外许多污水处理厂的数据指出,污水的提升泵、污泥处理设备与曝气系统是主要的耗能设备。从事排水工程的工程师羊寿生曾设计了一个试验,对我国典型一级、二级污水处理厂各单元操作过程作了电能耗费估算,污水厂规模按25000m3Pd,二级处理厂的电能耗值为0.266kWhPm3,用处理单位体积污水的耗电量(kWhPm3)表示估算的结果。结果显示,我国城市污水处理厂能耗主要用于污水、污泥的提升,生物处理的供氧,以及污泥处理这几个工艺过程,其中在二级处理工艺中,污水提升泵的用电量在总用电量的10%~20%之间,污泥加热设备的用电量占总用电量的10% ~25%之间,而曝气系统则占总用电量的50%~70%。三者用电量相加,高达总用电量的70%以上。所以,对污水处理厂进行节能降耗,重点在于降低污水提升泵、污泥处理设备以及曝气系统的用电率,借此实现节能降耗的目标。
3、 污水处理厂耗能现状分析
随着人民生活水平以及经济水平的提高,国家不断提高污水处理厂的水质,以满足经济生活的需求。现行的污水处理耗能标准达到0.15~0.28(kW·h)/m3污水,全国污水处理的成本开支平均为0.8元/m3,而且这样的成本价格呈现上涨的趋势。相关的部门面对如此高的污水处理成本,正想方设法利用新技术,结合各个地区的特点与各个处理厂的优势,努力探明单元过程的能量需求(energyrequirements),做出污水处理厂的有效运转和管理规划,首先在污水处理厂的规划、设计阶段体现节能目的,然后通过选择污水处理的适合工艺、设别和途径进行节能降耗,国家法律部门加紧制定相关节能减排的规定,对不执行法律法规的个别单位进行严惩警告,切实际落实好污水处理厂的节能降耗工作,以维持国家经济发展的可持续发展过程。
4.污水处理厂节能途径与措施
4.1污水处理厂能量利用审核
传统的污水处理厂进行处理活动时,缺乏利用能量的具体方案和规划,由此造成无节制的能源消耗,甚至能源浪费。针对此问题,相关部门对能量的使用进行审核管理,监督污水处理厂开始提前制定能量利用规划,由管理部门作出审核结果。审核管理不但可以提供使污水处理厂正常运转的数据,还能对污水处理厂的工艺选择以及处理方案有一定的指导性。使用生命周期分析成本的办法,对各单位的组件以及处理系统进行数据分析,并且优化其结构,以此满足降低能耗的要求,节省成本;构建科学的能源利用审核程序和评估标准,用这套程序和标准对各厂的污水处理所需能量进行审核,同时要监督污水处理厂对设备进行维护,对于老旧、存在隐患的设备进行更新换代,对其设备的升级和更换提出建议和方案。通常审核能源利用的程序分为两步:一是研究工程的可行性,包括处理方案的评估;初步的设计方案;项目的工作范围、成本以及财务评价等;二是详细的设计流程,包含施工、试营运、职业培训、运正式行和维护等内容,正常营运一段时间后,依据运行能耗数据检验系统的效率和成本开支。这个审核的过程从工程的预备阶段一直持续到工程运行后的维护、检测阶段,这样可以明确具备节能降耗的单元。

⑩ 关于污水处理厂污泥处置的申请报告模板

城市污泥同处理处置式本效益析
——北京市例
张义安高 定陈同斌*郑砥李艳霞
科院理科与资源研究所环境修复北京 100101

摘要:北京市例估算同电价及运输距离填埋、焚烧及堆肥等式城市污泥处理处置本基础讨论各种处理处置案前景展望北京市污泥处理处置路污泥填埋定期内主要处理处置式所占比例逐渐降;堆肥经济较行处理处置式适合力推广;随着经济实力与技术水平提高焚烧适用于别特殊点同析政府补贴污泥处理处置效益影响
关键词:城市污泥;处理处置本;填埋;焚烧;堆肥
图类号:X703 文献标识码:A 文章编号:1672-2175(2006)02-0234-05
城市污泥污水处理副产物含水率97%计算体积占处理污水0.3%~0.5%[1]深度处理产泥量增加50%~100%目前我每排放干污泥约1.3×106 t并约10%速率增加
北京市全区域规划污水排放量330×104 m3/d其2003市区污水排放量约230×104 m3/d[2]规划建设14座污水处理厂2015污水处理能力预计超320×104 m3/d处理率超90%2008北京市新增9座水处理厂深度处理能力由目前1×104 m3/d提高47.6×104 m3/d届每产含水率 80% 城市污泥超80×104 m3北京市污水处理厂——高碑店污水处理厂污泥外运运输费用占全厂运行费用1/3[3]
城市污泥量产已引起益严峻二污染并城市污水处理行业瓶颈污泥处理处置率低其非重要原投资运行本面限制目前止未见关于同污泥处理处置案经济析导致同单位设计员案选择存较盲目性本文北京例几种典型城市污泥处理处置式进行经济析便城市污泥处理处置技术选择提供参考依据
1 城市污泥处理处置本估算
1.1 估算
1 t干污泥(DS)计算基准综合本=运行本+设备折价本运行本目前较熟处理处置式进行估算
北京市污泥机械脱水效通80%左右各案本估算涉及或包括焚烧、运输、填埋等3流程;设备折价本取15 a使用限折旧7%社利率10%即折价17%设备工作数8000 h计设备折价=设备价格×指数×0.17/8000
1.2 估算细则
(1)单位本
填埋:垃圾卫填埋本约60~70 ¥/t污泥填埋按照压实垃圾∶土∶污泥容重比0.8∶1∶1污泥填埋本48~56 ¥/t取52¥/t
干化:干燥能耗与脱水量比燃气加热效率85%、锅炉热效率70%、程热损失5%水蒸发能耗150 (kW?h)/t每除1 t水设备投资180×104¥[4]
焚烧:目前采用流化床技术每h焚烧1 t干化污泥设备本528×104¥污泥按干质量减量60%焚烧运行费用24¥/t烟气处理消耗NaOH量约37 kg/t折价约128¥/t [5]
电价:北京市工业电价高峰期、平段区、低谷期别0.278、0.488、0.725¥/(kW?h)按同补贴案电价设定0.30、0.60¥/(kW?h)
运费:北京市运输价格0.45~0.65¥/(t?km)间污泥特殊固体废物需特殊箱式货车运送价格处于高端另外近运输价格涨趋势运费取0.65 ¥/(t?km)
外干化及焚烧均按设备本添加30%物耗工管理费及土建配套费
(2)污泥含水率
污泥机质水含量较高填埋存系列问题前主要关土力性能含水率高于68% 需按m(土)∶m(污泥)=0.4~0.6比例混入土 [6-8]含水率降低污泥性状存突变填埋脱水目标设定80%、30%
含水率污泥焚烧处理关键素机质含量高、含水率低利于维持自燃降低污泥含水率降低污泥焚烧设备及处理费用至关重要般污泥含水率降至与挥发物含量比于3.5形自燃[9]北京市污泥机物含量45% 使污泥维持自燃焚烧水含量应于61.2%朱南文总结几种外污泥热干燥技术污泥干燥至10%含水率[10]污泥焚烧综合本随干燥程度态变化干化程度越高干化能耗升高焚烧设备及运行费用随降简化起见本文污泥保持热量平衡燃烧估算前提再进行高水加入重油本估算污泥焚烧干化目标定:60%10%
表1 北京市填埋场概况[11]及离污水处理厂近距离
Table 1 Description of landfill sites and wastewater treatment plants
填埋场 填埋场位置 处理规模/(t?d-1) 预计关闭间 近污水处理厂 近直线距离/km 1)
北神树 通县渠乡 980 2006 高碑店 20
安定 兴区安定乡 700 2006 红门 36
六屯 海淀区永丰屯乡 1500 2017 清河 15
高安屯 朝阳区楼梓庄乡 1000 2018 高碑店 15
阿苏卫 昌平区汤山乡 2000 2012 清河、北河 40
焦家坡 门沟区永定镇 600 2011 卢沟桥 15
1) 近距离数据作者实测

综所述污泥处理处置式计:堆肥别干燥至含水80%、30% 填埋干燥至含水

60%、10%焚烧
1.3 填埋本
填埋本=能耗本+运输本+填埋场本+设备折价本
能耗本=[1/(1-η0)-1/(1-ηe)]×150×α×Pele
运输本=0.65×L /(1-ηe)
填埋场本=βPf /(1-ηe)
设备折价=[1/(1-η0)-1/(1-ηe)]×180×α× 0.17×104/8000
其η0、ηe别处理处置始、末含水率;Pele电价¥/(kW?h);L运输距离km;α土建及工配套费指数1.3;β体积系数含水率≥68%1.4~1.6间取1.5含水率<68%取1;Pf填埋场填埋价格40~60¥/t取52¥/t
污泥填埋运输距离:北京市现填埋场容量足满足垃圾处置需求即使规划填埋场建富余填埋能力限污泥填埋需另外觅新建填埋场随着城市发展及填埋场质条件要求运输距离越越远参照表1污泥
填埋运输距离40 km估算今填埋本别取50、100 km作近期及远期填埋场运输距离
1.4 堆肥本及收益
城市污泥经堆肥害化处理进行土利用际普遍采用处理处置式强制通风静态垛堆肥处理泥堆肥主流技术其处理本与污泥初始含水率、处理规模、堆肥厂与污水处理厂间距离及设备原产等素相关堆肥厂宜建污水处理厂周围运输本计0堆肥本主要由鼓风、烘干、筛能耗调理剂及设备折价本组目前堆肥产品市场销售价格350~500¥/t扣除15%含水率取500¥/t DS
利用CTB堆肥自控制系统[12,13]进行强制通风静态垛堆肥河南省漯河市城市污泥堆肥厂应用结表明污泥含水率高于80%鼓风能耗40~60 (kW?h)/t DS间取60 (kW?h)/t DSCTB调理剂价格300 ¥/t损耗率般5% [14]经10~14 d堆肥污泥干物质减量30%含水45%采用热干燥技术烘干至含水15%脱水负荷0.45 t/t DS;调理剂烘干前筛自晾干需筛能耗;筛负荷共9.3 t/t DS筛能力1 t/h功率3 kW全程能耗95 (kW?h)/t DS考虑未知能耗取100 (kW?h)/t DS
设备折价:处理干污泥能力 0.3×104 t/a污泥堆肥厂设备投资约700万¥设备折价182 ¥/t DS(含占本)取200¥/t DS
1.5 焚烧本
考虑焚烧废气排放等问题外运30 km焚烧佳取30 km;焚烧按干物质减量60%烧余物需运至填埋场填埋运输距离取50 km参考表3知干燥至10%焚烧本较干燥至60%低干燥程度越高焚烧厂占面积越焚烧前干化至10%宜
1.6 干化农用本
未经稳定化处理污泥存施用安全危险考虑干化稳定效较差安全性限再估算
2 讨论与析
2.1 处理本经济效益
表2 处理处置1 t城市污泥(干质量)所需本及其效益
Table 2 Comparison of the estimated cost and benefit of sewage sludge treated and/or disposed by different ways
填 埋
干化 运输 填埋 综合本/¥
目标 能耗/¥ 设备折价/¥ 距离/km 运费/¥ 填土比例 费用/¥
80% 0 0 50 163 50% 390 5531)5532)
30% 2091)4182) 178 50 46 0 74 5071)7162)
80% 0 0 100 325 50% 390 7151)7152)
30% 2091)4182) 178 100 93 0 74 5541)7632)
焚烧
干化 焚 烧 烧余物 综合本/¥
目标 能耗/¥ 设备折价/¥ 运行/¥ 设备折价/¥ NaOH/¥ 运费/¥ 填埋/¥
60% 1461)2932) 124 60 365 128 13 20 8561)10022)
10% 2281)4552) 193 27 162 128 13 20 7711)9982)
堆 肥
能耗/¥ 设备折价/¥ 调理剂损耗/¥ 总本/¥ 销售/¥ 总效益/¥
391)782) 200 75 3141)3532) 410 961)572)
1) 电价取0.30 ¥/(kW?h);2) 电价取0.60 ¥/(kW?h)

各种处理式处理本估算程及结表2所示由表2知污泥处理处置堆肥式本

低约300~350¥/t DS;填埋式约500~760¥/t DS焚烧式本高约800~1000¥/t DS堆肥本低于填埋式显著低于焚烧式随运输距离增加填埋本显著高于堆肥本外污泥焚烧处理性投资运行维护费用高

各种处理式污泥填埋没资源收效益零;考虑污泥热值水平收焚烧热能能性较低净效益影响;污泥干化起脱水效稳定化效限加干化程容易产爆炸肥效缓慢等问题宜提倡;产品销售良情况按电价同堆肥处理盈利50~100¥/t DS
2.2 各种处理处置技术优缺点
现部填埋场设计建造标准低、缺乏污染控制措施存稳定性差等问题导致散发气体臭味污染水能保证填埋垃圾安全延缓污染没终消除污染些家述问题降低程度制定待处理污泥物理特性低标准使污泥填埋处理本增加例德要求填埋污泥干基含量低于35%避免污泥机物解造水污染1992德发布《城市废弃物控制处置技术纲要》要求2005起任何填埋处理物质其机物含量超5% [15]意味着污泥即便经干燥满足填埋要求污泥填埋面临填埋场、公众及规等重压力填埋本逐步升高近外污泥填埋处理式比例越越[6]
否推广堆肥处理城市污泥首先应切实评估施用污泥堆肥潜环境风险杜兵等[16]研究表明同外相比北京市某典型污水处理厂酚类、酞酸酯类、环芳烃类均处于污染程度较低水平堆肥处理持续高温确保杀灭病菌保证污泥农用安全陈同斌等[17]城市污泥重金属含量及其变化趋势研究结表明我城市污泥平均含量普遍较低金属含量基本未超农用标准[18]且呈现逐渐降趋势近相关研究证明:科合理进行城市污泥农用造土壤农产品重金属污染问题[19]我城市污泥土利用重金属环境风险并像想象严重
焚烧减量显著含水80%污泥焚烧减容率超90%污泥含种机物焚烧产量害物质二恶英、二氧化硫、盐酸等受内焚烧技术限制二恶英污染问题尚未解决重金属烟雾与燃烧灰烬能造二污染外焚烧浪费污泥营养物质比三种处理处置式污泥焚烧占面积综合本高设备维护要求高环保风险较些利处都限制污泥焚烧技术广泛应用
综所述堆肥处理实现污泥资源化利用科合理施用保证卫安全及重金属安全同较经济行污泥处理处置技术主要发展向市场销售角度看污泥堆肥产品销售渠道待改善各种处理式优缺点概括于表3(页)
2.3 电价影响及政府补贴
电价影响污泥处理处置本电价0.60¥/(kW?h)降低0.30 ¥/(kW?h)各种处理式综合本别降低40~230 ¥/t DS电价取至用电低谷期电价或者更低本进步降低
表3 各种处理处置技术优缺点比
Table 3 Comparison of landfill, composting and incineration for sewage sludge
处理处置式 收支平衡/(¥?t-1) 1) 技术难度 场要求 能否资源化 害化程度
填埋 -507~ -763 简单 能 延缓污染, 没终消除污染风险
堆肥 57~96 较简单 较 能 重金属低于农用标准达害化要求
焚烧 -771~ -1000 技术设备要求高 能 尾气能带二污染
1) 运输距离100 km、电价0.60 ¥/(kw?h), 80%含水率填埋本略低于30%含水率填埋, 其占者5.25倍, 综合考虑采取30%填埋

污泥含水80%及60%填埋占别30%填埋5.25倍、1.75倍政府通补贴降低电价等调控手段污水处理投入合理配其污泥处理单元降低污泥处理单元焚烧本、填埋占降低堆肥本政府补贴发挥经济杠杆作用调控污泥处理行业投入产状况利于污泥处理处置行业健康发展总污泥处理处置应该适宜政府补贴
3 结论
(1)污泥堆肥本随电价变化约300~350 ¥/t DS堆肥销售补偿部处理本使污泥堆肥达微利水平合理施用堆肥提供养机质污泥处理处置技术重要向
(2)污泥填埋操作简单其本约500~760 ¥/t DS高于堆肥处理考虑土资源益稀缺及二污染问题且发达家经验看污泥填埋逐步受限制其应用比例应逐渐减少
(3)污泥焚烧减量效明显其初始投资及运行费用高综合本约771~1000 ¥/t DS其设备维护复杂尾气处理造二污染

参考文献:
[1] Edward S R, Cliff I D. 工程与环境引论[M]. 北京: 清华版社, 2002.
Edward S R, Cliff I D. Introction to engineering & the environment [M]. Beijing: Tsinghua University Press, 2002.
[2] 柯建明, 王凯军, 田宁宁. 北京市城市污水污泥处理处置问题研究[J]. 沼气, 2000, 18(3): 35-36.
KE Jianming, WANG Kaijun, TIAN Ningning. Disposal of excess sludge from urban wastewater treatment plant in Beijing city [J]. China Biogas, 2000, 18(3): 35-36.
[3] 彭晓峰, 陈剑波, 陶涛, 等. 污泥特性及相关热物理研究向[J]. 科基金, 2002, 5: 284-287.
PENG Xiaofeng, CHEN Jianbo, TAO Tao, et al. The specialties of sludge and associated thermal physical issues [J]. China Science Fund, 2002, 5: 284-287.
[4] 何品晶, 邵立明, 宗兵. 污水厂污泥综合利用与消纳行性途径析[J]. 环境卫工程, 1997, 4:21-25.
HE Pinjing, SHAO Liming, ZONG Bingnian. The feasible way analysis on comprehensive utilization and outlet of sludge in sewage treatment plant [J]. Environmental & Sanitary Engineerin,. 1997, 4:21-25.
[5] 邓晓林, 王华, 任鹤云. 海城市污水处理厂污泥处置途径探讨[J]. 给水排水, 2000, 16(5): 19-22.
DENG Xiaolin, WANG Guohua, REN Heyun. Discussion at the treatment and disposal of the sewage sludge in Shanghai wastewater plants [J]. China Water and Wastewater, 2000, 16(5): 19-22.
[6] 家建设部. CJ 3025 城市污水处理厂污水污泥排放标准[S]. 1993: 2.
Ministry of Construction of PR China. CJ 3025 Wastewater and sludge disposal standard for municipal wastewater treatment plants[S]. 1993: 2.
[7] 家建设部. CJJ 17城市垃圾卫填埋技术规范[S]. 2001: 20.
Ministry of Construction of PR China. CJJ 17 Technical Code for Sanitary Landfill of Municipal Domestic Refuse[S]. 2001: 20.
[8] 赵乐军, 戴树桂, 辜显华. 污泥填埋技术应用进展[J]. 给水排水, 2004, 20(4): 27-30.
ZHAO Lejun, DAI Shugui, GU Xianhua. Application headway of sewage sludge landfill technique [J]. China Water & Wastewater, 2004, 20(4): 27-30.
[9] 高廷耀. 水处理手册[M]. 北京: 高教版社, 1983: 288-289.
GAO Tingyao. Handbook of water treatment [M].Beijing: Higher Ecation Press, 1983: 255-289.
[10] 朱南文, 徐华伟. 外污泥热干燥技术[J]. 给水排水, 2002, 28(1): 16-19.
ZHU Nanwen, XU Huawei. Overseas technique of thermal drying sewage sludge [J]. Water Supply and Drainage.2002, 28(1): 16-19.
[11] 刘建, 聂永丰. 京城垃圾处置[J]. 科技潮, 2004,7: 32-35.
LIU Jianguo, NIE Yongfeng. Treatment of waste in Beijing [J]. Technological Tides, 2004, 7: 32-35.
[12] 陈同斌, 高定, 黄启飞. 种用于堆肥自控制装置: , 0112522.9[P].
CHEN Tongbin, GAO Ding, Huang Q F. A servomechanism for composting: , 0112522.9[P].
[13] 高定, 黄启飞, 陈同斌. 新型堆肥调理剂吸水特性及应用[J]. 环境工程, 2002, 20(3): 48-50.
GAO Ding, HUANG Qifei, CHEN Tongbin. Water absorbability and application of a new type compost amendment [J]. Environmental Engineering, 2002, 20(3): 48-50.
[14] 高定. 堆肥自测控系统及其猪粪堆肥应用[D]. 北京: 科院理科与资源研究所, 2002: 78.
GAO Ding. The Development of Measuring and Controlling System and Its Application to Swine Manure Composting [D]. Beijing: Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, 2002: 78.
[15] 李美玉, 李民, 王志, 等. 发展我污泥流化床焚烧技术[J]. 劳安全与健康, 2001, 8: 20-23.
LI Meiyu, LI Aimin, WANG Zhi, et al. Develop sewage sludge fluidized bed incineration technique in our country [J]. Safety & Health at Work, 2001, 8: 20-23.
[16] 杜兵, 张彭义, 张祖麟, 等. 北京市某典型污水处理厂内泌干扰物初步调查[J]. 环境科, 2004, 25(1): 114-116.
DU Bing, ZHANG Pengyi, ZHANG Zulin, et al. Preliminary investigation on endocrine disrupting chemicals in a sewage treatment plant of Beijing [J]. Environmental Science, 2004, 25(1): 114-116.
[17] 陈同斌, 黄启飞, 高定, 等. 城市污泥重金属含量及其变化趋势[J]. 环境科报, 2003, 23(5): 561-569.
CHEN Tongbin, HUANG Qifei, GAO Ding, et al. Heavy metal concentrations and their decreasing trends in sewage sludge of China [J]. Transaction of Environmental Science, 2003, 23(5): 561-569.
[18] 家环境保护总局. 城镇污水处理厂污染物排放标准: , 18918-2002[S]. 北京: 环境版社, 2002: 5.
State Environmental Protection Agency. Discharge Standard of Pollutants for Municipal Wastewater Treatment Plant: China, 18918-2002[S]. Beijing: China Environment Press, 2002: 5.
[19] 田宁宁, 王凯军, 柯健明. 剩余污泥氧堆肥产机复混肥肥及效益析[J]. 城市环境与城市态, 2001, 14(1): 9-11.
TIAN Ningning, WANG Kaijun, KE Jianming. Evaluation of organic complex fertilizer made of excess sludge from municipal wastewater treatment plant [J]. Urban Environment & Urban Ecology, 2001, 14(1): 9-11.

热点内容
丁度巴拉斯情人电影推荐 发布:2024-08-19 09:13:07 浏览:886
类似深水的露点电影 发布:2024-08-19 09:10:12 浏览:80
《消失的眼角膜》2电影 发布:2024-08-19 08:34:43 浏览:878
私人影院什么电影好看 发布:2024-08-19 08:33:32 浏览:593
干 B 发布:2024-08-19 08:30:21 浏览:910
夜晚看片网站 发布:2024-08-19 08:20:59 浏览:440
台湾男同电影《越界》 发布:2024-08-19 08:04:35 浏览:290
看电影选座位追女孩 发布:2024-08-19 07:54:42 浏览:975
日本a级爱情 发布:2024-08-19 07:30:38 浏览:832
生活中的玛丽类似电影 发布:2024-08-19 07:26:46 浏览:239