(复1)制1 2 1 2 1
(2)m(O
2 )=
(3)反应时产生H
+ ,而本反应要求溶液保持碱性(pH为8.0—8.4)。
(4)6 3 5 7 6
4. 污水中COD、BOD、氨氮、总氮的概念分别是什么
污水中COD、BOD、氨氮、总氮的概念分别是:
1、COD:即化学需氧量(Chemical Oxygen Demand),指用强化学氧化剂(中国法定用重铬酸钾)在酸性条件下,将有机物氧化成CO2与H2O所消耗的氧量(mg/L),用CODcr表示,简写为COD。化学需氧量越高,表示水中有机污染物越多,污染越严重。
2、BOD:即生化需氧量,水中有机污染物被好氧微生物分解时所需的氧量称为生化需氧量(mg/L)。一般用20℃时,五天生化需氧量(BOD5)表示。
如果污水成分相对稳定,则一般来说,COD> BOD5。一般BOD5/COD大于0.3,认为适宜采用生化处理。
3、氨氮:指水中以游离氨(NH3)和铵离子(NH4+)形式存在的氮。动物性有机物的含氮量一般较植物性有机物为高。同时,人畜粪便中含氮有机物很不稳定,容易分解成氨。因此,水中氨氮含量增高时指以氨或铵离子形式存在的化合氮。
4、总氮:简称为TN,指污水中含氮化合物分为有机氮、氨氮、亚硝酸盐氮、硝酸盐氮,四种含氮化合物总量称为总氮(TN)。
COD测定方法:
1、高锰酸钾(KmnO4)法:氧化率较低,但比较简便,在测定水样中有机物含量的相对比较值时,可以采用。COD(KmnO4法)>5mg/L时,水质已开始变差。
2、重铬酸钾(K2Cr2O7)法:氧化率高,再现性好,适用于测定水样中有机物的总量。
(4)废水中的含氮有机物对生物扩展阅读
污水产生的原因:
1、工业污染
工业废水,是工业污染引起水体污染的最重要的原因。它占工业排出的污染物的大部分。工业除了排出的废水直接注入水体引起污染外,固体废物和废气也会污染水体。
2、农业污染
首先是由于耕作或开荒使土地表面疏松,在土壤和地形还未稳定时降雨,大量泥沙流入水中,增加水中的悬浮物。
还有一个重要原因是农药、化肥的使用量日益增多,而使用的农药和化肥只有少量附着或被吸收,其余绝大部分残留在土壤和漂浮在大气中,通过降雨,经过地表径流的冲刷进入地表水和渗入地表水形成污染。
3、城市污染
城市污染源是因城市人口集中,城市生活污水、垃圾和废气引起水体污染造成的。城市污染源对水体的污染主要是生活污水,它是人们日常生活中产生的各种污水的混合液,其中包括厨房、洗涤房、浴室和厕所排出的污水。
5. 生活污水中含有大量的有机和无机含氮化合物 脱氮过程中某一反应
根据Ⅱ级反应池中,硝化细菌将NH 4 + 转化成NO 3 - ,其反应为:NH 4 + +2O 2 =NO 3 - +2H + +H 2 O,反应后溶液呈酸内性,但反应的pH要求容为8.0~8.4,所以反应过程中,需要添加适量的碱性物质,
故答案为:碱性;反应后溶液呈酸性,但反应的pH要求为8.0~8.4.
6. 废水中的有毒有害的有机化合物有哪些/
某药类产品,以硝基苯类化合物为起始原料,并使用了许多溶剂及硫醇类等有毒有害物质作为辅助原料,因此产生的废水系高浓度、有毒、有害难生化降解的废水,这就给废水的处理带来困难。废水水量约为 5 t/d,经测混合废水的CODcr值一般在1—100000之间波动,有时高达几十万mg/L。废水中除了一般的溶剂外,还含有氨基甲酸酯、异硫脲、硝基苯、芳胺类及甲硫醇、丙硫醇类化合物,因此混合废水的BOD/COD比值低,实测值几乎为零。该混合废水经稀释后,如采用常规的活性污泥法处理,则发生污泥自溶,导致生化处理失败。
为了解决这个问题,经过讨论认为对于高浓度、有毒、有害、生化难降解的废水,在生化处理前必须进行必要的预处理,将废水中对活性污泥微生物有毒成份去除,并采取必要的方法提高废水的可降解性,然后再进行生化处理,使废水得到有效处理。
对于预处理,我们采用先在石灰存在下,控制PH>10,控制温度在90℃,处理时间为3.5h,加热回收低沸点溶剂,如甲醇等,同时在加热过程中,废水中的一些氨基甲酸酯、异硫脲等化合物在碱性条件下发生水解反应,破坏了这些对微生物的有毒成份,减轻了对废水的毒性。当废水冷却后,再加入1%的硫酸亚铁,使废水中的硝基化合物在碱性条件下被新形成的氢氧化亚铁迅速的还原成芳胺类化和物,同时一些硫醇类化合物也与亚铁盐或还原硝基时形成的三价铁化合物形成不溶性的硫醇铁类沉淀而被去除,过滤时可以加入适量的阴离子型聚丙烯酰胺,其分子量宜选用800万左右,通过上述处理,废水中所有有毒、有害物质均被转化或去除。在室内的生化实验装置中也证明,经过上述处理的废水,不会使活性污泥中的微生物自溶,而且有一定的CODcr去除率。经测BOD/COD的比值也从近乎于零上升到0.34,证明废水已从不可降解上升至可以进行生化降解。在本过程中硫酸亚铁在碱性条件下对硝基苯类化合物具有强大的选择性还原作用,使其还原成苯胺类化合物,反应是瞬时的,反应速度受传质控制,而不受反应动力学控制。采用本预处理方法,原废水的CODcr的去除率根据水质一般可以达到40-88%。
7. 废水中有哪些有机物
总体上分为颗粒状有机物和溶解性有机物,颗粒状有机物在普通显微镜下可以观察到,它包括有生命的有机体(浮游动植物、细菌菌团等)和无生命的有机物颗粒,后者在水中可逐渐沉降。溶解性有机物包括真溶液状态和胶体状态两种,又可分为类脂物质、氨基酸、烃类、碳水化合物、维生素及腐殖质等。主要的有机物有以下几种:(1)碳水化合物 天然水体中的碳水化合物包括各种单糖和复杂的多糖类,海水中碳水化合物的总浓度为200-600ug*L-1。天然水中碳水化合物主要来源于浮游植物的光合作用,它是许多微生物和水生生物的营养物,易被分解,其水解产物为五碳糖和六碳糖;(2)腐殖质 在天然水域和土壤中,尤其是泥碳和腐泥中,广泛存在着分子组成复杂、性质较为稳定、而化学成分不十分确定的一类有机化合物,通常称为腐殖质,显然是多种物质的综合体,它们中大部分的成分和结构至今尚不十分清楚,有些研究者认为,由于成因不同海水和淡水中腐殖质有所差异。但是这类物质基本均是动植物尸体经过一系列物理、化学和生物过程形成的。腐殖质通常可以看作是低聚物(相对分子质量为300-30000),含有酚羟基和羟基,有较低数量的脂族羟基。根据其在碱x性和酸性溶液中的溶解度,腐殖质通常划分为以下三种:①腐殖酸,在碱性溶液中溶解,但酸化后即沉淀;②富里酸,这是腐殖质中在酸化水溶液中存在的部分,也是在整个pH范围内都溶解的部分;③腐黑物,以酸或碱都不能提取的部分。这三种腐殖质结构相似,但相对分子质量和官能团含量不同,富里酸相对分子质量可能低于腐殖酸和腐黑物,但亲水基团较多。Schnitzer根据分级分离和降解研究指出,富里酸是由酚和苯羧酸以氢键结合而成,形成聚合物结构,具有相当的稳定性。子对河水中腐殖酸盐的凝聚作用有关。
(3)类脂化合物 类脂化合物是能被非极性或弱极性有机溶剂萃取的组分,如长链脂肪酸、脂肪酸酯或蜡酯、长链醇、磷脂、甾族化合物等,萃取时,虽然烃类可同时被萃取,但习惯上将它们另归一类。
(4)含氮有机物 水体中含氮有机物主要是氨基酸和多肽,氨基酸是蛋白质的基本组成单元,其主要来源于浮游生物的代谢和分解产物,它能为异养微生物提供有机物质和能源,通常存在于淡水、海水中的是低分子量的氨基酸(如甘氨酸,丙氨酸和丝氨酸等),总氨基酸含量一般为10-100ug/L。此外水体中存在的含氮化合物还有尿素、嘌
呤和尿嘧啶等,它们也是水生生物的降解产物。
(5)烃类 烃类能与类脂物同时被有机溶剂萃取,在环境污染的监测中,水体中烃类有其特殊的重要性。石油烃类的存在与人类活动有关,进入水体中的石油可导致水体缺氧,从而造成对生物的威胁,而卤代烃类农药和多氯联苯是人工合成物,而自然界中又不存在分解这些化合物的酶类,因此它们在水体中滞留时间很长,不易被分解,具有很高的生物毒性。
(6)维生素 在天然水体中已检出的维生素有硫胺素(维生素B1)、钴胺素(维生素B12)和生物素(维生素H),它们在水体中的含量极微,但与生物生长关系十分密切。(7)其它化合物 除了上述几种主要化合物外,在水体中已检出的还有丙酮、丁酮、甲乙酮、丁醛、糠醛、核酸、甲烷、乙烷、丙烷、乙酸乙酯和某些刺激素和生长抑制剂等有机化合物。
8. 如何根据废水中有机物含量进行生物处理后有关转化物的计算
看具体的元素比例
9. 我公司的废水含有有机氨,经过生化池,由于氨化作用,氨氮就会上升,请问有什么好的解决方法么
该考虑化学生物联用
本文作者: 陈昭考
随着工农业生产的发展和人民生活水平的提高,含氮化合物的排放量急剧增加,已成为环境的主要污染源,并引起各界的关注。经济有效地控制氨氮废水污染已经成为当今环境工作者所面临的重大课题。
1 氨氮废水的来源
含氮物质进入水环境的途径主要包括自然过程和人类活动两个方面。含氮物质进入水环境的自然来源和过程主要包括降水降尘、非市区径流和生物固氮等。人类的活动也是水环境中氮的重要来源,主要包括未处理或处理过的城市生活和工业废水、各种浸滤液和地表径流等。人工合成的化学肥料是水体中氮营养元素的主要来源,大量未被农作物利用的氮化合物绝大部分被农田排水和地表径流带入地下水和地表水中。随着石油、化工、食品和制药等工业的发展,以及人民生活水平的不断提高,城市生活污水和垃圾渗滤液中氨氮的含量急剧上升。近年来,随着经济的发展,越来越多含氮污染物的任意排放给环境造成了极大的危害。氮在废水中以有机态氮、氨态氮(NH4+-N)、硝态氮(NO3--N)以及亚硝态氮(NO2--N)等多种形式存在,而氨态氮是最主要的存在形式之一。废水中的氨氮是指以游离氨和离子铵形式存在的氮,主要来源于生活污水中含氮有机物的分解,焦化、合成氨等工业废水,以及农田排水等。氨氮污染源多,排放量大,并且排放的浓度变化大。
2 氨氮废水的危害
水环境中存在过量的氨氮会造成多方面的有害影响:
(1)由于NH4+-N的氧化,会造成水体中溶解氧浓度降低,导致水体发黑发臭,水质下降,对水生动植物的生存造成影响。在有利的环境条件下,废水中所含的有机氮将会转化成NH4+-N,NH4+-N是还原力最强的无机氮形态,会进一步转化成NO2--N和NO3
--N。根据生化反应计量关系,1gNH4+-N氧化成NO2--N消耗氧气3.43 g,氧化成NO3--N耗氧4.57g。
(2)水中氮素含量太多会导致水体富营养化,进而造成一系列的严重後果。由于氮的存在,致使光合微生物(大多数为藻类)的数量增加,即水体发生富营养化现象,结果造成:堵塞滤池,造成滤池运转周期缩短,从而增加了水处理的费用;妨碍水上运动;藻类代谢的最终产物可产生引起有色度和味道的化合物;由于蓝-绿藻类产生的毒素,家畜损伤,鱼类死亡;由于藻类的腐烂,使水体中出现氧亏现象。
(3)水中的NO2--N和NO3--N对人和水生生物有较大的危害作用。长期饮用NO3--N含量超过10mg/L的水,会发生高铁血红蛋白症,当血液中高铁血红蛋白含量达到70mg/L,即发生窒息。水中的NO2--N和胺作用会生成亚硝胺,而亚硝胺是“三致”物质。NH4+-N和氯反应会生成氯胺,氯胺的消毒作用比自由氯小,因此当有NH4+-N存在时,水处理厂将需要更大的加氯量,从而
增加处理成本。近年来,含氨氮废水随意排放造成的人畜饮水困难甚至中毒事件时有发生,我国长江、淮河、钱塘江、四川沱江等流域都有过相关报道,相应地区曾出现过诸如蓝藻污染导致数百万居民生活饮水困难,以及相关水域受到了“牵连”等重大事件,因此去除废水中的氨氮已成为环境工作者研究的热点之一。
3 氨氮废水处理的主要技术
目前,国内外氨氮废水处理有折点氯化法、化学沉淀法、离子交换法、吹脱法和生物脱氨法等多种方法,这些技术可分为物理化学法和生物脱氮技术两大类。
3.1 生物脱氮法
微生物去除氨氮过程需经两个阶段。第一阶段为硝化过程,亚硝化菌和硝化菌在有氧条件下将氨态氮转化为亚硝态氮和硝态氮的过程。第二阶段为反硝化过程,污水中的硝态氮和亚硝态氮在无氧或低氧条件下,被反硝化菌(异养、自养微生物均有发现且种类很多)还原转化为氮气。在此过程中,有机物(甲醇、乙酸、葡萄糖等)作为电子供体被氧化而提供能量。常见的生物脱氮流程可以分为3类,分别是多级污泥系统、单级污泥系统和生物膜系统。
工业氨氮去除大全
根据废水中氨氮浓度的不同,可将废水分为3类:高浓度氨氮废水(NH3-N>500mg/l),中等浓度氨氮废水(NH3-N:50-500mg/l),低浓度氨氮废水(NH3-N<50mg/l)。然而高浓度的氨氮废水对微生物的活性有抑制作用,制约了生化法对其的处理应用和效果,同时会降低生化系统对有机污染物的降解效率,从而导致处理出水难以达到要求。故本工程的关键之一在于氨氮的去除,去除氨氮的主要方法有:物理法、化学法、生物法。物理法含反渗透、蒸馏、土壤灌溉等处理技术;化学法含离子交换、氨吹脱、折点加氯、焚烧、化学沉淀、催化裂解、电渗析、电化学等处理技术;生物法含藻类养殖、生物硝化、固定化生物技术等处理技术。目前比较实用的方法有:折点加氯法、选择性离子交换法、氨吹脱法、生物法以及化学沉淀法。1. 折点氯化法去除氨氮折点氯化法是将氯气或次氯酸钠通入废水中将废水中的NH3-N氧化成N2的化学脱氮工艺。当氯气通入废水中达到某一点时水中游离氯含量最低,氨的浓度降为零。当氯气通入量超过该点时,水中的游离氯就会增多。因此该点称为折点,该状态下的氯化称为折点氯化。处理氨氮废水所需的实际氯气量取决于温度、pH值及氨氮浓度。氧化每克氨氮需要9~10mg氯气。pH值在6~7时为最佳反应区间,接触时间为0.5~2小时。折点加氯法处理後的出水在排放前一般需要用活性碳或二氧化硫进行反氯化,以去除水中残留的氯。1mg残留氯大约需要0.9~1.0mg的二氧化硫。在反氯化时会产生氢离子,但由此引起的pH值下降一般可以忽略,因此去除1mg残留氯只消耗2mg左右(以CaCO3计)。折点氯化法除氨机理如下: Cl2+H2O→HOCl+H++Cl- NH4++HOCl→NH2Cl+H++H2O NHCl2+H2O→NOH+2H++2Cl- NHCl2+NaOH→N2+HOCl+H++Cl- 折点氯化法最突出的优点是可通过正确控制加氯量和对流量进行均化,使废水中全部氨氮降为零,同时使废水达到消毒的目的。对于氨氮浓度低(小于50mg/L)的废水来说,用这种方法较为经济。为了克服单独采用折点加氯法处理氨氮废水需要大量加氯的缺点,常将此法与生物硝化连用,先硝化再除微量残留氨氮。氯化法的处理率达90%~100%,处理效果稳定,不受水温影响,在寒冷地区此法特别有吸引力。投资较少,但运行费用高,副产物氯胺和氯化有机物会造成二次污染,氯化法只适用于处理低浓度氨氮废水。2. 选择性离子交换化去除氨氮离子交换是指在固体颗粒和液体的界面上发生的离子交换过程。离子交换法选用对NH4+离子有很强选择性的沸石作为交换树脂,从而达到去除氨氮的目的。沸石具有对非离子氨的吸附作用和与离子氨的离子交换作用,它是一类矽质的阳离子交换剂,成本低,对NH4+有很强的选择性。O.Lahav等用沸石作为离子交换材料,将沸石作为一种把氨氮从废水中分离出来的分离器以及硝化细菌的载体。该工艺在一个简单的反应器中分吸附阶段和生物再生阶段两个阶段进行。在吸附阶段,沸石柱作为典型的离子交换柱;而在生物再生阶段,附在沸石上的细菌把脱附的氨氮氧化成硝态氮。研究结果表明,该工艺具有较高的氨氮去除率和稳定性,能成功地去除原水和二级出水中的氨氮。沸石离子交换与pH的选择有很大关系,pH在4~8的范围是沸石离子交换的最佳区域。当pH<4时,H+与NH4+发生竞争;当pH>8时,NH4+变为NH3而失去离子交换性能。用离子交换法处理含氨氮10~20mg/L的城市污水,出水浓度可达1mg/L以下。离子交换法具有工艺简单、投资省去除率高的特点,适用于中低浓度的氨氮废水(<500mg/L),对于高浓度的氨氮废水会因树脂再生频繁而造成操作困难。但再生液为高浓度氨氮废水,仍需进一步处理。3. 空气吹脱法与汽提法去除氨氮空气吹脱法是将废水与气体接触,将氨氮从液相转移到气相的方法。该方法适宜用于高浓度氨氮废水的处理。吹脱是使水作为不连续相与空气接触,利用水中组分的实际浓度与平衡浓度之间的差异,使氨氮转移至气相而去除废水中的氨氮通常以铵离子(NH4+)和游离氨(NH3)的状态保持平衡而存在。将废水pH值调节至堿性时,离子态铵转化为分子态氨,然後通入空气将氨吹脱出。吹脱法除氨氮,去除率可达60%~95%,工艺流程简单,处理效果稳定,吹脱出的氨气用盐酸吸收生成氯化铵可回用于纯堿生产作母液,也可根据市场需求,用水吸收生产氨水或用硫酸吸收生产硫酸铵副产品,未收尾气返回吹脱塔中。但水温低时吹脱效率低,不适合在寒冷的冬季使用。用该法处理氨氮时,需考虑排放的游离氨总量应符合氨的大气排放标准,以免造成二次污染。低浓度废水通常在常温下用空气吹脱,而炼钢、石油化工、化肥、有机化工、有色金属冶炼等行业的高浓度废水则常用蒸汽进行吹脱。该方法比较适合处理高浓度氨氮废水,但吹脱效率影响因子多,不容易控制,特别是温度影响比较大,在北方寒冷季节效率会大大降低,现在许多吹脱装置考虑到经济性,没有回收氨,直接排放到大气中,造成大气污染。汽提法是用蒸汽将废水中的游离氨转变为氨气逸出,处理机理与吹脱法一样是一个传质过程,即在高pH值时,使废水与气体密切接触,从而降低废水中氨浓度的过程。传质过程的推动力是气体中氨的分压与废水中氨的浓度相当的平衡分压之间的差。延长气水间的接触时间及接触紧密程度可提高氨氮的处理效率,用填料塔可以满足此要求。塔的填料或充填物可以通过增加浸润表面积和在整个塔内形成小水滴或生成薄膜来增加气水间的接触时间汽提法适用于处理连续排放的高浓度氨氮废水,操作条件与吹脱法类似,对氨氮的去除率可达97%以上。但汽提塔内容易生成水垢,使操作无法正常进行。吹脱和汽提法处理废水後所逸出的氨气可进行回收:用硫酸吸收作为肥料使用;冷凝为1%的氨溶液。4. 生物法去除氨氮生物法去除氨氮是在指废水中的氨氮在各种微生物的作用下,通过硝化和反硝化等一系列反应,最终形成氮气,从而达到去除氨氮的目的。生物法脱氮的工艺有很多种,但是机理基本相同。都需要经过硝化和反硝化两个阶段。硝化反应是在好氧条件下通过好氧硝化菌的作用将废水中的氨氮氧化为亚硝酸盐或硝酸盐,包括两个基本反应步骤:由亚硝酸菌参与的将氨氮转化为亚硝酸盐的反应。由硝酸菌参与的将亚硝酸盐转化为硝酸盐的反应。亚硝酸菌和硝酸菌都是自养菌,它们利用废水中的碳源,通过与NH3-N的氧化还原反应获得能量。反应方程式如下: 亚硝化: 2NH4++3O2→2NO2-+2H2O+4H+ 硝化 : 2NO2-+O2→2NO3-硝化菌的适宜pH值为8.0~8.4,最佳温度为35℃,温度对硝化菌的影响很大,温度下降10℃,硝化速度下降一半;DO浓度:2~3mg/L;BOD5负荷:0.06-0.1kgBOD5/(kgMLSS•d);泥龄在3~5天以上。在缺氧条件下,利用反硝化菌(脱氮菌)将亚硝酸盐和硝酸盐还原为氮气而从废水中逸出由于兼性脱氮菌(反硝化菌)的作用,将硝化过程中产生的硝酸盐或亚硝酸盐还原成N2的过程,称为反硝化。反硝化过程中的电子供体是各种各样的有机底物(碳源)。以甲醇为碳源为例,其反应式为: 6NO3-+2CH3OH→6NO2-+2CO2+4H2O 6NO2-+3CH3OH→3N2+3CO2+3H2O+6OH-反硝化菌的适宜pH值为6.5~8.0;最佳温度为30℃,当温度低于10℃时,反硝化速度明显下降,而当温度低至3℃时,反硝化作用将停止;DO浓度<0.5mg/L;BOD5/TN>3~5。生物脱氮法可去除多种含氮化合物,总氮去除率可达70%~95%,二次污染小且比较经济,因此在国内外运用最多。其缺点是占地面积大,低温时效率低。常见的生物脱氮流程可以分为3类:⑴多级污泥系统多级污泥系统通常被称为传统的生物脱氮流程。此流程可以得到相当好的BOD5去除效果和脱氮效果,其缺点是流程长,构筑物多,基建费用高,需要外加碳源,运行费用高,出水中残留一定量甲醇;⑵单级污泥系统单级污泥系统的形式包括前置反硝化系统、後置反硝化系统及交替工作系统。前置反硝化的生物脱氮流程,通常称为A/O流程。与传统的生物脱氮工艺流程相比,该工艺特点:流程简单、构筑物少,只有一个污泥回流系统和混合液回流系统,基建费用可大大节省;将脱氮池设置在去碳源,降低运行费用;好氧池在缺氧池後,可使反硝化残留的有机污染物得到进一步去除,提高出水水质;缺氧池在前,污水中的有机碳被反硝化菌所利用,可减轻其後好氧池的有机负荷。此外,後置式反硝化系统,因为混合液缺乏有机物,一般还需要人工投加碳源,但脱氮的效果高于前置式,理论上可接近100%的脱氮效果。交替工作的生物脱氮流程主要由两个串联池子组成,通过改换进水和出水的方向,两个池子交替在缺氧和好氧的条件下运行。它本质上仍是A/O系统,但利用交替工作的方式,避免了混合液的回流,其脱氮效果优于一般A/O流程。其缺点是运行管理费用较高,必须配置计算机控制自动操作系统;⑶生物膜系统将上述A/O系统中的缺氧池和好氧池改为固定生物膜反应器,即形成生物膜脱氮系统。此系统中应有混合液回流,但不需污泥回流,在缺氧的好氧反应器中保存了适应于反硝化和好氧氧化及硝化反应的两个污泥系统。由于常规生物处理高浓度氨氮废水还存在以下:为了能使微生物正常生长,必须增加回流比来稀释原废水;硝化过程不仅需要大量氧气,而且反硝化需要大量的碳源,一般认为COD/TKN至少为9。5. 化学沉淀法去除氨氮化学沉淀法是根据废水中污染物的性质,必要时投加某种化工原料,在一定的工艺条件下(温度、催化剂、pH值、压力、搅拌条件、反应时间、配料比例等等)进行化学反应,使废水中污染物生成溶解度很小的沉淀物或聚合物,或者生成不溶于水的气体产物,从而使废水净化,或者达到一定的去除率。化学沉淀法处理NH3-N是始于20世纪60年代,在90年代兴起的一种新的处理方法,其主要原理就是NH4+、Mg2+、PO43-在堿性水溶液中生成沉淀。在氨氮废水中投加化学沉淀剂Mg(OH)2、H3PO4与NH4+反应生成MgNH4PO4•6H2O(鸟粪石)沉淀,该沉淀物经造粒等过程後,可开发作为复合肥使用。整个反应的pH值的适宜范围为9~11。pH值<9时,溶液中PO43-浓度很低,不利于MgNH4PO4•6H2O沉淀生成,而主要生成Mg(H2PO4)2;如果pH值>11,此反应将在强堿性溶液中生成比MgNH4PO4•6H2O更难溶于水的Mg3(PO4)2的沉淀。同时,溶液中的NH4+将挥发成游离氨,不利于废水中氨氮的去除。利用化学沉淀法,可使废水中氨氮作为肥料得以回收。
10. 污水处理生物脱氮主要使用哪些微生物菌
1
氨化脱氮菌:污水来中的含氮有机物,在自生物处理过程中被好氧或厌氧异养型氨化菌氧化分解为氨氮的过程;
2/4
硝化脱氮菌:在好氧条件下,污水中的氨氮在自养型硝化菌的作用下被转化为NO2-和NO3-的过程;
3/4
反硝化脱氮菌:污水中的NO2-和NO3-在缺氧条件下在兼性异养型反硝化菌的作用下被还原为N2的过程;
4/4
蒙特利脱氮复合杆菌IDN-B5属于反硝化脱氮菌,是针对废水中硝酸盐总氮高筛选出的菌株,该菌种主要用于提高污水处理系统的反硝化能力,增加污泥密度,使得硝酸盐总氮在低温、高盐分、高毒性物质等严苛的环境下更高效的转化为N2的过程。