含氰废水的处理
⑴ 化工厂的含氰废水怎么处理
什么化工厂?
氰化物浓度20mg/l以下,其他条件适合,可以用生化法
氰化物浓度20mg/l以上,需要考虑回化学法先去答除大部分
氰化物浓度过高了,可考虑:通常对于高浓度含氰废水,首先通过补充适量的亚铜离子使高浓度氰化物废水形成氰化亚铜沉淀,过滤后的滤液再考虑去除其它有害物质,最终达标排放或者回用。
⑵ 污水处理站怎样处理含氰废水
处理含氰废水的方法
除了氯氧化法、二氧化硫-空气氧化法、过氧化氢氧化法、酸化回收法、萃取法已独立或几种方法联合使用于黄金氰化厂外,生物化学法、离子交换法、吸附法、自然净化法在国内外也有工业应用,由于报道较少,工业实践时间短,资料数据有限,本章仅对这些方法的原理、特点、处理效果进行简要介绍。
一、生物化学法
1、生物法原理
生物法处理含氰废水分两个阶段,第一阶段是革兰氏杆菌以氰化物、硫氰化物中的碳、氮为食物源,将氰化物和硫氰化物分解成碳酸盐和氨:
微生物
Mn(CN)n(n-m)-+4H2O+O2─→Me-生物膜+2HCO3-+2NH3
对金属氰络物的分解顺序是Zn、Ni、Cu、Fe对硫氰化物的分解与此类似,而且迅速,最佳pH值6.7~7.2。
细菌
SCN-+2.5O2+2H2O→SO42-+HCO3-+NH3
第二阶段为硝化阶段,利用嗜氧自养细菌把NH3分解:
细菌
NH3+1.5O2→NO2-+2H++H2O
细菌
NO2-+0.5O2→NO3-
氰化物和硫氰化物经过以上两个阶段,分解成无毒物以达到废水处理目的。
生物化学法根据使用的设备和工艺不可又分为活性污泥法、生物过滤法、生物接触法和生物流化床法等等,国内外利用生物化学法处理焦化、化肥厂含氰废水的报导较多。
据报道,从1984年开始,美国霍姆斯特克(Homestake)金矿用生物法处理氰化厂废水,英国将一种菌种固化后用于处理2500ppm的废水,出水CN-可降低到1ppm,是今后发展的方向。
微生物法进入工业化阶段并非易事,自然界的菌种远不能适应每升数毫克浓度的氰化物废水,因此必须对菌种进行驯化,使其逐步适应,生物化学法工艺较长,包括菌种的培养,加入营养物等,其处理时间相对较长,操作条件严格。如温度、废水组成等必须严格控制在一定范围内,否则,微生物的代谢作用就会受到抑制甚至死亡。设备复杂、投资很大,因此在黄金氰化厂它的应用受到了限制。但生物化学法能分解硫氰化物,使重金属形成污泥从废水中去除,出水水质很好,故对于排水水质要求很高、地处温带的氰化厂,使用生物法比较合适。
2、生物法的应用情况
国外某金矿采用生物化学法处理氰化厂含氰废水。首先,含氰废水通过其它废水稀释,氰化物含量降低到生化法要求的浓度(CN-<10.0mg/L)、温度(10℃~18℃,必要时设空调),pH值(7~8.5)然后加入营养基(磷酸盐和碳酸钠),废水的处理分两段进行,两段均采用Φ3.6×6m的生物转盘,30%浸入废水中以使细菌与废水和空气接触,第一段用微生物把氰化物和硫氰化物氧化成二氧化碳、硫酸盐和氨,同时重金属被细菌吸附而从废水中除去,第二段包括氨的细菌硝化作用,首先转化为亚硝酸盐,然后被转化为硝酸盐,第一段采用事先经过驯化的,微生物从工艺水中以两种适应较高的氰化物和硫氰化物的浓度。第二段采用分离出来的普通的亚硝化细菌和硝化细菌,被附着在转盘上的细菌的浮生物膜吸附重金属并随生产膜脱落而被除去,通过加入絮凝剂使液固两相分开,清液达标排放,污泥排放尾矿库。该处理装置处理废水(包括其它废水)800m3/h,每个生物转盘直径3.6m,长6m。由波纹状塑料板组成。该处理厂总投资约1000万美元,其处理指标见表10-1。
表10-1 生物化学法处理含氰废水效果
废水名称 废水各组份含量(mg/L)
总CN- CN- SCN- Cu
处理前 3.67 2.30 61.5 0.56
处理后 0.33 0.05 0.50 0.04
3、生物化学法的特点
(一)优点
生物法处理的废水,水质比较好,CN-、SCN-、CNO-、NH3、重金属包括Fe(CN)64-均有较高的去除率,排水无毒,尤其是能彻底去除SCN-,是二氧化硫-空气法、过氧化氢氧化法、酸化回收法等无法做到的。
(二)缺点
1)适应性差,仅能处理极低浓度而且浓度波动小的含氰废水,故氰化厂废水应稀释数百倍才能处理,这就扩大了处理装置的处理规模,大大增加了基建投资。
2)温度范围窄,寒冷地方必须有温室才能使用。
3)只能处理澄清水,不能处理矿浆。
二、离子交换法
1950年南非开始研究使用离子交换法处理黄金行业含氰废水。1960年苏联也开始研究,并在杰良诺夫斯克浮选厂处理含氰废水并回收氰化物和金。
1970年工业装置投入运行,取得了较好的效果,1985年加拿大的威蒂克(Witteck)科技开发公司开发了一种处理含氰废水的离子交换法,不久又成立了一个专门推广该技术的公司,叫Cy-tech公司,离子交换法处理进行研究,取得了许多试验数据,并已达到了工业应用的水平。
1、离子交换法的基本原理
离子交换法就是用离子交换树脂吸附废水中以阴离子形式存在的各种氰化物:
R2SO4+2CN-→2R(CN)2+SO42-
R2SO4+Zn(CN)42-→R2Zn(CN)4+SO42-
R2SO4+Cu(CN)32-→R2Cu(CN)3+SO42-
2R2SO4+Fe(CN)64-→R4Fe(CN)6+2SO42-
Pb(CN)42-、Ni(CN)42-、Au(CN)2-、Ag(CN) 2-、Cu(CN)2-等的吸附与上述类似,硫氰化物阴离子在树脂上的吸附力比CN-更大,更易被吸附在树脂上。
R2SO4+2SCN-→2RSCN
在强碱性阴离子交换树脂上,黄金氰化厂废水中主要的几种阴离子的吸附能力如下:
Zn(CN)42->Cu(CN)32->SCN->CN->SO42-
树脂饱和时,如果继续处理废水,新进入树脂层的Zn(CN)42-就会将其它离子从树脂上排挤下来,使它们重新进入溶液,但即使继续进行这一过程,树脂上已吸附的各种离子也不会全部被排挤下来,各种离子在树脂上的吸附量根据各种离子在树脂上的吸附能力以及在废水中的浓度不同有一部分配比。对于强碱性树脂来说,这种现象十分明显,具体表现在流出液的组成随处理量的变化特性曲线上。各组分当被吸附力强于它的组分从树脂上排挤下来时,其流出液浓度会出现峰值。
不同的弱碱树脂具有不同的吸附特性。因此,对不同离子的吸附力也有很大差别,研究用离子交换法处理含氰废水的一个重要任务就是去选择甚至专门合成适用于我们要处理的废水特点的树脂,否则树脂处理废水的效果或洗脱问题将难以满足我们的需要。难以工业化应用。
2、离子交换法存在的问题及解决途径
离子交换法存在的问题主要是树脂的中毒问题,主要是吸附能力强于氰化物离子的硫氰化物、铜氰络合物和铁氰络合物。由于上述物质吸附到树脂上,使树脂的洗脱变得较为复杂甚至非常困难。
(一)硫氰化物
对于大部分金氰化厂来说,废水中含有100mg/L以上的SCN-,其中金精矿氰化厂废水SCN-高达800mg/L以上,由于强碱性阴离子交换树脂对SCN-的吸附力较大,而且SCN-的浓度如此之高,使树脂对其它应吸附而从废水中除去的组分的吸附量大为降低,如Zn(CN)42-、Cu(CN)32-,同时,由于SCN-的饱和,会使CN-过早泄漏,导致离子交换树脂的工作饱和容量过低。例如,当废水中SCN-350mg/L时,其工作饱和容量(指流出液中CN-≤0.5mg/L条件)仅20倍树脂体积,而且SCN-难以从树脂上通过简单的方法洗脱下来,这就限制了具有大饱和容量的强碱性阴离子交换树脂的应用,而弱碱性阴离子交换树脂饱和容量最高不过强碱性树脂的一半,从处理洗脱成本考虑,也不易使用,可见较高的SCN-浓度给离子交换树脂带来很大麻烦。如果从树脂上不洗脱SCN-,那么流出液CN-不能达标,即使不考虑CN-的泄漏,树脂对其它离子的工作容量也减少。
(二)铜
尽管树脂对Cu(CN)32-的吸附力不如Zn(CN)42-大,但它的浓度往往较高,在强碱树脂上的饱和容量约8~35kg/m3,甚至更高,但用酸洗脱树脂上的氰化物时,铜并不能被洗脱下来,而是在树脂上形成CuCN沉淀,为了洗脱强碱树脂上的铜,必须采用含氨洗脱液洗脱,使铜溶解,形成Cu(NH3)42-或Cu(NH3)2+而洗脱下来,这就使工艺复杂化,尤其是洗脱液的再生也不够简便。
(三)亚铁氰化物离子
Fe(CN)64-尽管在树脂上吸附量不大,但在用酸洗脱树脂上氰化物和锌时,会生成Zn2Fe(CN)6、Fe2Fe(CN)6、Cu2Fe(CN)6沉淀物,而使树脂呈深绿至棕黑色,影响树脂的再生效果,如果专门洗脱Fe(CN)64-,尽管效果好,可是,洗脱液再生等问题均使工艺变得更长,操作更复杂。
3、技术现状
根据国产强碱树脂的上述特点,提出二种工艺:一是用强碱性阴离子处理高、中浓度含氰废水,旨在去除废水中的Cu、Zn,废水不达标但由于Cu、Zn的大为减少而有宜于循环使用。二是用强碱性树脂处理不含SCN-或SCN-浓度100mg/L以下的废水,回收氰化物为主,处理后废水达标外排。例如,在金精矿烧渣为原料的氰化厂用离子交换法处理贫液。把离子交换法用于这两方面在技术和经济上估计比用酸化回收法优越。最好的办法是开发易洗脱再生的新型树脂,国外的许多开发新型树脂的报导介绍了吸附废水中Fe(CN)64-、而且较容易被洗脱下来的树脂,近年来,由于越来越重视三废的回收,使人们十分重视使用离子交换法处理废水使其达到排放标准同时使大多数氰化物得以回收并重新使用这类课题。
加拿大Witteck开发公司开发出的一种氰化物再循环工艺就是其中比较有代表性的一例,该公司为此成立了一个Cy-tech公司专门推销这种工艺装置。一份报导介绍,该工艺用于处理锌粉置换工艺产生的贫液,使用强碱性阴离子交换树脂吸附重金属氰化物,当流出液CN-超标时对树脂进行酸洗,使用硫酸自下而上通过树脂床即可使树脂上的重金属和氰化物被洗脱下来,其重金属以阳离子形式存在于洗脱液中,洗脱液用类似于酸化回收法的装置回收HCN,然后大部分洗脱液进行再生并重复用于洗脱。回收的NaCN用于氰化工段,少量洗脱液经过中和沉淀出重金属离子后外排。据称这种方法也可用于处理炭浆厂的尾浆,其工艺和树脂矿浆法十分类似。Cy-tech公司认为该工艺经改进后也可消除尾矿库排水中残余氰化物及其它重金属,该报导无详细数据、资料以及树脂的型号。
另一报导称,这项工艺的关键是在废水进入离子交换柱前,先完成一个化学反应(使游离CN-形成Zn(CN)42-),并在化学反应中应用一种催化剂,有关人士解释说,如果没有这个反应,废水就不得不通过若干个交换柱提出那些无用的分子,从而增加了系统的成本和复杂性。
采用一段顺流吸附装置处理效果是CN-<0.5mg/L、各种重金属的总和小于1mg/L,处理能力约720加仑/h,树脂量约36加仑。
该试验装置大约需要处理3500加仑废水才能使一个交换柱饱和,每隔一天对交换柱进行一次解吸,每月最大产渣量(重金属沉淀物)也可装入1只45加仑的桶中,其废水按所给数据估算重金属总含量不大于50mg/L,估计重金属绝大部分是锌粉置换产生的Zn(CN)42-,该工艺装置的投资与其它处理装置相当。能在一年多的时间里靠回收氰化物而收回全部投资,该工艺由Cy-tech公司开始转让。但无工业应用的详细报导。
我国对离子交换法处理氰化厂含氰废水的研究主要有两个目的,一是解决氰化—锌粉置换工艺产生贫液的全循环问题,即从贫液中除去铜和锌,为了达到较高的吸附容量,通常使用强碱性阴离子交换树脂, 当废水中铜、锌含量分别为140、100mg/L时,强碱树脂的工作吸附容量不小于15kg/m3和6.5kg/m3。饱和树脂经酸洗回收氰化物并能洗脱部分锌,然后用另一种洗脱剂洗脱铜,树脂即可再生,而铜的洗脱剂需经再生方可重复使用,由于工艺较长目前尚无工业应用。
含氰废水→过滤→离 子 交 换→(低浓度含氰废水)返回浸出或处理
↓
(饱和树脂)回收氰化物
↓ 再生树脂返回使用
洗脱重金属
重金属回收
图11-1离子交换法回收氰化物工艺
当然如果废水中铜和SCN-极低时,树脂的再生仅通过酸洗就
可完成,此条件下可保证离子交换工艺出水达标。无论是国内还是国外,其离子交换工艺原则流程大致相同,见图11-1。
4、离子交换法的特点
(一)优点:
1)当废水中CN-低于酸化回收法的经济效益下限时,采用离子交换法由于氰化物和贵金属具有较好的经济效益,其处理效果优于酸化法,当废水组成简单时可排放。
2)投资小于酸化回收法
3)与酸化回收法相比,该方法药耗、电耗小,金回收率高。
(二)缺点:
1)当废水中SCN-含量高时,洗脱困难,树脂的容量受到影响,处理效果变差,离子交换法的应用范围受SCN-很大影响。
2)在洗脱氰化物过程中,很难洗脱铜,故需专门的洗脱方法和步骤,使工艺复杂化。
3)在酸洗过程中,Fe(CN)64-会在树脂颗粒内形成重金属沉淀物而使树脂中毒。
4)对操作者的素质要求高。
三、吸附—回收法
前面已谈过,离子交换为化学吸附,吸附力较强,故解吸困难,解吸成本高。近来,国外开发了用吸附树脂、活性炭做吸附剂,从含氰矿浆或废水中回收铜和氰化物的技术,已完成了半工业试验。
1、吸附树脂吸附—回收法
西澳大利亚一炭浸厂对液相中铜、氰化钠浓度分别为85、158mg/L之氰尾进行了吸附─回收法半工业试验,采用法国地质科学研究所开发的V912吸附树脂,处理能力为10m3/d,处理后尾浆液相中游离氰化物(CN-)浓度小于0.5mg/L。饱和树脂分两级洗脱再返回使用,用金属洗脱剂洗重金属,用硫酸洗脱氰化物,洗脱液用与酸化回收法类似的方法回收氰化物。
试验表明,当铜浓度增加时,处理成本增加较大。
以半工业试验结果推算,建一座年处理能力100万吨的装置,在铜、氰化钠浓度分别为100、300mg/L条件下,设备费为250万加元。年回收铜122t,氰化钠377t,年洗脱树脂1700t次,洗脱每吨树脂的消耗如下(单位:t):
H2SO4攭NaOH Na2S 水 动力
0.5 0.453 0.048 17.5m3 12.3kwh
2、活性炭吸附—回收法
活性炭具有吸附废水中重金属和氰化物的特性,这早已人所共知,国外早在十年前就有金矿试验用来处理贫液中铜等杂质,使贫液全循环,但没能解决洗脱再生问题。
近年来,西澳大利亚一个炭浆厂完成了用洗性炭从浸出矿浆中回收铜和氰化物的半工业试验,采用加温解吸法选择性解吸铜,含铜解吸液在酸性条件下沉淀氰化铜,再把氰化铜用硫酸氧化为硫酸铜出售。酸性水中的HCN用碱性解吸液吸收再用于解吸工艺中。
铜是氰化过程增加氰化物耗量的一个较大因素,从浸出矿浆中回收铜和氰化物不但避免了铜对浸出的影响,提高了金的浸出率,而且减少了氰化物的消耗,具有一定的经济效益,这一技术在特定的条件下可用来做为贫液全循环工艺中的去除铜措施。
四、自然净化法
黄金氰化厂除少数收购金精矿进行提金然后把氰渣做硫精矿出售而不设尾矿库外,绝大部分矿山建有较大容量的尾矿库(池)。氰化厂废水在其内停留时间一般在1~3天,有个别尾矿库,废水可停留十天以上。由于曝气、光化学反应,共沉淀和生物作用,氰化物的浓度逐渐降低,这种靠尾矿库(池),降低氰化物含量的方法称为自然净化法。目前绝大部分氰化厂都把尾矿库自然净化法做为除氰的一种辅助手段,经废水处理装置处理后的废水再经尾矿库进行二级处理,排水氰含量进一步降低,由于这种方法没有处理成本问题(尾矿库的建设是为了沉降悬浮物和贮有尾矿),故对人们有很大的吸引力,甚至有些氰化厂建立了专门的自然净化池以期使自然净化法的处理效果更好,如何提高自然净化法的处理效果,把目前做为辅助处理方法的自然净化法单独用来处理含氰废水?这是一项很有意义的科研工作,许多科研人员都在深入研究这一课题。
1、自然净化法的特点
由于使用自然净化法的氰化厂不多,可靠的数据有限,其特点尚未充分暴露出来。
(一)优点
1)不使用药剂,处理成本低。
2)与其它方法配合,可做为一级处理方法也可做为二级处理方法,可灵活使用。
3)无二次污染。
(二)缺点
1)对尾矿库要求高,必须不渗漏,汇水面积要大。
2)受季节、气候影响大,在寒冷地区效果差。
2、自然净化法原理
已完成的研究表明,自然净化法至少是曝气、光化学反应、共沉淀和生物分解四种作用的叠加。自然,影响自然净化法效果的因素也就是上述四种作用之影响因素的叠加。
(一)曝气
含氰废水与大气接触,大气中的SO2、NOx、CO2就会被废吸收,使废崐水pH值下降。
CO2+OH-→HCO3-
SO2+OH攩-搅→HSO3-
随着废水pH值的下降,废水中的氰化物趋于形成HCN:
CN-+H+→HCN(aq)
亚铁氰化物会与重金属离子形成沉淀物这一反应促使重金属氰化物的解离,以Zn(CN)42-为例:
Zn(CN)42-+Fe(CN)64-+4H+→Zn2Fe(CN)6↓+4HCN(aq)
由于空气中HCN极微,废水中的HCN将倾向于全部逸入大气中,从动力学角度考虑,HCN的逸出速度受如下因素影响:
1)废水温度,废水温度高,HCN蒸气分压高,有利于HCN逸出,而且水温高,水的粘度小,液膜阻力减少。
2)风力,尾矿库上方风力大,水的扰动剧烈,气—液接触面积增大,酸性气体和HCN在气相扩散速度加快,水体内HCN的液相扩散也加快,酸性气体与水的反应加快。
3)尾矿库汇水特性
尾矿库汇水面积大,水层浅,使单位体积废水与空气接触表面增大,风力对水体的搅动效果增大,有利于HCN的逸出和酸性气体的吸收。
4)废水组成
废水中重金属含量高时,HCN的形成和逸出由于受络合物解离平衡的限制,速度明显变慢。
5)废水pH值
废水pH值低,有利于重金属氰络物的解离和HCN的形成。
HCN全部从水中逸出需要较长时间,其道理与酸化回收相似,在1m深的水层条件下,表层氰化物浓度为0.5mg/L时,底层氰化物浓度15mg/L,可见HCN逸出之难度。
在曝气过程中,空气中的氧不断地溶于废水中,其传质速率也受液相扩散阻力的影响,表层溶解氧浓度高,底部浓度低,溶解氧进入液相后,与氰化物发生氧化反应:
2Cu(CN)2-+0.5O2+3H2O+2H+→2Cu(OH)2↓+4HCN
2CN-+O2→2CNO-
CNO-+2H2O→CO32-+NH4+
含氰废水在尾矿库内,还会发生水解反应,生成甲酸铵,废水温度越高,反应速度越快:
HCN+H2O=HCO-ONH4
这些反应的总和就是曝气的效果,为了提高曝气效果,必须提高废水温度,废水与空气的接触表面积,增大水体的搅动程度,这样才能保证HCN迅速逸入空气而氧迅速溶解于废水中并和氰化物反应,曝气法受季节地域影响较大。
(二)光化学反应
废水中的各种氰化物在阳光紫外线的照射下,发生如下反应:
Fe(CN)64-+H2O→Fe(CN)53-·H2O+CN-
4Fe(CN)64-+O2+2H2O→4Fe(CN)63-+4OH-
4Fe(CN)64-+12H2O→4Fe(OH)3↓+12HCN+12CN-
亚铁氰化物和铁氰化物离子在光照下分解出游离氰化物,文献介绍在3~5小时的光照时间里,60%~70%的铁氰化物分解、80%~90%的亚铁氰化物分解。由于分解出的氰化物不会很快地被氧化,因而会造成水体氰化物含量增高,这就是地表水水质指标中要求用总氰浓度的原因之一。
分解出的游离氰化物不断地被氧化,水解以及逸入空气中,达到了降低废水中氰化物浓度的目的。
逸入空气中的HCN,在阳光紫外线作用下,与氧发生反应。
HCN+0.5O2→HCNO
夏季,反应时间约10分钟,冬季约1小时,从这点看,HCN的逸出不会影响大气的质量,许多焦化厂利用曝气法处理含氰废水,其氰化物挥发量比黄金行业多,而且大部分工厂位于城市,并未闻发生污染事故。
光化学反应与气温和光照强度有关,因此,夏季除氰效果远比冬季好。
(三)共沉淀作用
废水中亚铁氰化物还会形成Zn2Fe(CN)6、Pb2Fe(CN)6之类的沉淀,与Cu(OH)2、Fe(OH)3、CaCO3、CaSO4等凝聚在一起,沉于水底从而达到了去除重金属和氰化物的效果,沉淀效果受pH值和废崐水组成的制约,pH值低时效果好。
(四)生物化学反应
当尾矿库废水氰化物浓度很低时,废水中的破坏氰化物的微生物将逐渐繁殖起来,并以氰化物为碳、氮源,把氰化物分解成碳酸盐和硝酸盐。
生物化学作用受废水组成和温度影响,如果氰化物浓度高达100mg/L,那么微生物就会中毒死亡,如果温度低于10℃,则微生物不能繁殖,生化反应也不能进行。
综上所述,自然净化法的效果受地理位置(南、北方、高原、平原)、天气(阴、晴、气温、风力)、尾矿库(汇水面积、水深、水流速度)微生物,废水组成(pH、氰化物浓度、重金属浓度)废水在尾矿库内停留时间等诸因素的影响。至崐于上述因素对曝气、光化学反应,共沉淀以及生化反应的影响程度,以及这四种除氰途径哪个作用大,目前尚无定量的数据可供参考。某研究所提出的氰化物自净数学模型如下:
C=C0e-kt
其中,k为常数,单位:小时;t为自然净化时间(小时),C、C0分别为某时某刻氰化物浓度和原始氰化物浓度。当温度在10~30℃范围内时,式中k值在0.005~0.01范围,由于k值仅反应了温度,没有反应其它众多的因素,故无多大应用价值。
正因为自然净化法受许多因素制约,其处理效果并不稳定,如果进入尾矿库的崐废水氰化物浓度低(<10mg/L)、废水在尾矿库停留时间长,排水有可能达标,大部分氰化厂把尾矿库做为二级处理设施。然而近年来,由于氰化物处理费用增高,一些氰化厂正探索用尾矿库做为氰化物的一级处理设施。
3、自然净化法的实践
某全泥氰化厂尾矿库建在较厚(2~5m),黄土层的沟内,废水无渗入地下水的可能,该地区干燥少雨,年蒸发水量大于降雨量,故尾矿库无排水,氰化物在尾矿库内自然净化,不再采用其它方法处理,节省了大量药剂、费用,降低了选矿成本。
某全泥氰化厂尾矿库不渗漏,含氰化物尾矿浆直接排入尾矿库,经自然净化再进行二级处理,使其达标排放,由于二级处理的是澄清水,而且氰化物浓度有较大的降低,故处理成本大幅度下降,处理效果好。
某浮选—氰化—锌粉置换工艺装置,其贫液用酸化回收法处理后,残氰在5~20mg/L经浮选废水(浆)稀释后,氰化物含量在0.5~2范围,进入尾矿库自然净化,外排水CN-<0.5mg/L。
某氰化厂采用酸化回收法处理贫液,其酸性废水含氰5~10mg/L,在2m深的废水池内,经20天的自然净化,氰化物降低到0.5mg/L。
⑶ 含氰废水处理安全注意事项
含氰废水处理 1.1 酸化法
酸化法是金矿和氰化电镀厂处理含氰污水的传统方法。早在1930年国外某金矿就采用了此法处理含氰污水。我国金矿采用酸化法处理高浓度含氰污水也有十几年的历史,现已拓宽到处理中等浓度的氰化贫液。其突出优点是能回收污水或矿浆中的氰。
酸化法原理是将废水酸化至PH=2.5—3,金属氰络合物分解生成HCN,HCN的沸点仅25.6℃,当向废水中充气时极易挥发,挥发的HCN用碱液(NaOH)吸收回收使用。
含氰废水处理 1.2氯化法
碱性氯化法是破坏废水中氰化物的较成熟的方法,广泛用于处理氰化电镀厂、炼焦工厂、金矿氰化厂等单位的含氰废水。其原理是采用氯气或液氯、漂白粉将废水中氰氧化成C02和N 2等无毒物质。其中酸性液氯法除氰工艺与碱性氯化法相比,其除氰能力更强、一次处理合格,处理后排放污水含氰<0.3-0.4mg/L;药剂消耗大幅度降低,处理成本也低于碱性处理方法。处理时间有所降低。但酸性法需全封闭式操作,应拥有一定难度。
含氰废水处理 1.3 S02法
S02法又称InCo法,是美国InCo金属公司在80年代初研究成功的,其原理是用S02和空气作氧化剂,在铜离子作催化剂条件下氧化废水中的氰化物,生成HC03-、NH4+。该法的优点是不仅可除去游离CN-、分子氰和络合氰,而且能除去氯化法难以除去的铁氰络合物,反应快,处理后废水达到排放标难;处理成本比臭氧法、湿式空气氧化法和碱氯法低;药剂来源广,可利用焙烧S02烟气或固体NaS2O3代替S02。但该法难以氧化SCN-,而SCN-以后又可离解出CN-,故不适合处理含SCN-高的含氰废水。
含氰废水处理 1.4 双氧水氧化法和臭氧氧化法。
双氧水氧化法适合处理低浓度含氰废水。H20¬在碱性pH=10~11、有铜离子作催化剂的条件下氧化氰化物。生成CN0-、NH4+等。重金属离子生成氢氧化物沉淀,铁氰络离子与其它重金属离子生成铁氰络合盐除去。
H202氧化法的缺点是H202价格较贵,来源不足,处理成本较高;运输、使用有一定危险;对SCN-难氧化,仍有一定毒性。
含氰废水处理 1.5 臭氧氧化法。
该法适用于处理很稀的含氰废液。其机理是在碱性PH=11~12下用O3氧化氰化物,生成HC03-和N2。但该法不能除去铁氰络合物。为了能除去铁氰络合物,需采用臭氧法与紫外光解法联合处理工艺。臭氧氧化法简单方便,无需药剂购运,只需奥氧发生器即可,处理后污水含氰CN-<1mg/L。该法的缺点是,臭氧发生器电耗大,处理费用高于碱氯法,应用远不如碱氯法。
含氰废水处理 1.6 活性炭处理含氰废水及回收金、银。
该法的原理是,活性炭吸附含氰废水中的02和氰化物。在活性炭表面上02和H20生成H202(活性炭本身作催化剂),又在铜盐作用下,发生氰化物被H202氧化分解的反应。若废水中H202不足,则在活性炭表面上发生水解反应:
HCN+H20=HCONH2
活性炭吸附废水中的Au(CN)2-后转化为AuCN或Au,故又可回收废水中金、银。
对于含有一定浓度的金、银的废水,采用活性炭吸附法处理可以吸附回收金银,具有一定的应用价值。
含氰废水处理 1.8 电解氧化法
电解氧化法是在国外研究得很多,主要用于处理电镀含氰废水。电解前首先调整pH>7,并加入少量食盐,电解时,CN-在阳极上氧化生成CN0-、C02、N2,同时C1-被氧化成C12,C12进入溶液后生成HCl0,加强对氧的氧化作用;阴极上析出金属。
该法的优点是占地面积小,污泥量小,能回收金属。缺点是电流效率低,电耗大,成本比漂白粉法稍高,会产生气体CNCl,处理废水难以达标排放。若要达标需电解几天。一般光将高浓度含氰废水电解到一定浓度后,再用氯化法处理后排放。目前国内已很少采用此法。
含氰废水处理 1.9 生物处理法。
生物处理法原理是当废水中氰化物浓度较低时,利用能破坏氰化物的一种或几种微生物,以氰化物和硫氰化物为碳源和氮源,将氰化物和硫氰化物氧化为C02、氨和硫酸盐,或将氰化物水解成甲酰胺,同时重金属被细菌吸附而随生物膜脱落除去。
生物处理法分为生物酶法和生物池法。工业上生物池法包括富氧活性污泥法、滴渗池法、富氧污泥储留池法、旋转生物接触器(RBC)法。由于旋转生物接触器是敞开的,易逸出HCN有毒气体。
国外生物法处理含氰废水已经开展工业化的应用。我国也开始进行了生物处理含氰废水的工业试验。
含氰废水处理 1.10 其他方法
化学沉淀法是向废水中加入FeS04或FeS04+Na2S03,使氰化物生成铁氰化物沉淀(Me2Fe(CN)6•XH20);pH>8时,重金属生成氢氧化物沉淀除去。也可以与内电解法配合,在氰废水中加入Fe屑,使氰化物生成Fe2[Fe(CN)6]沉淀。同时由于原电池的作用,CN-被氧化为CN0-,进一步生成C02、NH4+,从而达到除氰目的。自然净化法是暴气、光化学反应、共沉淀和生物分解等多种作用的整加,在这些作用下,氰化物逐渐分解为无毒的碳酸盐、硝酸盐及铁氰化物沉淀,使废水得以净化。但该法过程缓慢。受到自然因素影响很大,排放废水难达标,有一定危险性。
⑷ 含氰废水最常用的处理方法有哪些
1·各种处理方法简述 国内含氰废水处理方法比较多[3,4],但应用哪一种工艺主要决定于含氰废水的质量浓度、性质以及实际处理的效果。废水中氰的质量浓度可粗略分为高、中、低3种。
⑸ 含氰污水(废液)如何处理
含氰废液的处理方法有两种:氧化法(最常用)和络合法。
氧化版法即使用强氧化剂(如O2、ClO-、H2O2)在一权定条件下氧化CN-生成CO2、N2等,如:
4CN- + 5O2 + 4OH- ==(一定条件)== 4CO3(2-) + 2N2 + 2H2O
络合法则是利用CN-的强络合能力来促使CN-形成稳定的无毒络合物。
⑹ 含铬废水和含氰废水怎么处理的,加什么药
含铬废水,如果是六价铬需在酸性条件下把六价还原成三家(用亚硫酸钠)。再在中性条件下形成氢氧化铬沉淀。
含氰废水需要两级破氢,一级PH10.5用次氯酸钠,二级PH9次氯酸钠。
⑺ 求含氰废水的处理方法
不可以,含氰废水中若氰含量高可以回收利用,或者用次氯酸钠氧化
⑻ 含氰废水怎么处理经济效益最好
您好,抄含氰废水处理应该如何处理经济效益高,下面下边为您介绍一些含氰废水一些处理方法,我的回答希望对您会有帮助
电镀生产工艺有很多种,由于电镀工艺不同,所产生的废水也各不相同,一般电镀企业所排出的废水包括有酸、碱等前处理废水,氰化镀铜的含氰废水、含铜废水、含镍废水、含铬废水等重金属废水。此外还有多种电镀废液产生。
含氰废水处理工艺流程如下:
含氰废水→调节池→一级破氰池→二级破氰池→综合废水池、含铬废水→调节池→铬还原池→综合废水池综合废水→综合废水池→快混池→慢混池→斜管沉淀池→中间池→过滤器→pH回调池→紫外线杀菌消毒设备(紫外线杀菌器或紫外线消毒器)→排放
⑼ 有机化学 含氰废水如何处理求反应式
^主要化学反应为:
FeSO4·7H20 → Fe2+ + SO4^2- + 7H2O
Fe2+ + 6CN-→ [Fe(CN)6]^(4-)
2Fe2+ + [Fe(CN)6]^(4-) →Fe2[Fe(CN)6]
最终转化成普鲁士蓝版型不溶性权化合物。