金属废水回收利用
Ⅰ 在废水处理中,如何低成本的处理金属离子
特种树脂吸附法针对精度去除方面具有很好的效果,而且成本很低。
这里说的特种树脂包括除硼、除氟、除氨氮、除硝态氮、除磷、除砷、除重金属等树脂,这样的树脂中通常嫁接了针对性吸附特征物的官能团,能对特征物进行吸附而不受其他离子的影响,而且吸附精度极高,吸附后出水特征物能达到ppb级别。
由于特种树脂的吸附量较大,针对微量超标的水体,树脂的用量一般很小,从而压缩了大量的投资。而这些树脂又可以再生,重复使用,使用寿命长达5-8年,从而将运行成本压缩到最低限。比如除硼树脂,针对废水硼含量从3mg/L降到0.1mg/L,其运行成本不足0.1元/吨水。
Ⅱ 重金属废水提炼
是一种废水里面含铜。镍还是,一种废水含铜,另一种含镍。
最简单的方法是向废回水中加入碱,(氢氧化钠或者答氢氧化钙),使生成氢氧化铜或氢氧化镍的沉淀
废水中的PH在8左右,废水中的铜基本都会生成氢氧化铜沉淀,然后将沉淀收集起来,如果需要硫酸铜,再加入硫酸反应即可。
Ⅲ 重金属废水怎么处理
含重金属废水处理流程如下图:
本方法适用于各类重金属废水甚至含络合重金属难处理废水的处理,使出水满足国标GB21900-2008的表3排放标准。
Ⅳ 重金属污水废水处理再利用技术
●
电化学浓缩技术
对污水中的重金属离子进行电化学处理,在电化学作用下,重金属离子产生定向移动,向阴极移动,在阴极得到高浓度的含有重金属离子的液体。
●
化学分离技术
对浓缩后含有重金属离子的浓液,根据溶液中各类金属离子性质的不同,分别加入不同的化学试剂,在不同的反应条件下,将溶液中的重金属离子,分段以络合沉淀物的形式从溶液中析出,得到重金属盐。
●
离子交换技术
离子交换技术是利用离子交换树脂对溶液中的重金属离子进行交换吸附,然后脱附浓缩。
离子交换技术包含阳离子吸附技术何阳离子选择性吸附技术。
Ⅳ 重金属废水的处理方法
可分为两类:一是使废水中呈溶解状态的重金属转变成不溶的重金属化合物或元素,经沉淀和上浮从废水中去除,可应用中和沉淀法、硫化物沉淀法、上浮分离法、离子浮选法、电解沉淀或电解上浮法、隔膜电解法等;二是将废水中的重金属在不改变其化学形态的条件下进行浓缩和分离,可应用反渗透法、电渗析法、蒸发法、离子交换法等。第一类方法特别是中和沉淀法、硫化物沉淀法和电解沉淀法应用最广。从重金属废水回用的角度看,第二类方法比第一类优越,因为用第二类方法处理,重金属是以原状浓缩,不添加任何化学药剂,可直接回用于生产过程。而用第一类方法,重金属要借助于多次使用的化学药剂,经过多次的化学形态的转化才能回收利用。一些重金属废水如电镀漂洗水用第二类方法回收,也容易实现闭路循环。但是第二类方法受到经济和技术上的一些限制,目前还不适于处理大流量的工业废水如矿冶废水。这类废水仍以化学沉淀为主要处理方法,并沿着有利于回收重金属的方向改进。
电解法:比较广泛地用于处理含氰的重金属废水。以电解氧化使氰分解和使重金属形成氢氧化物沉淀的方式去除废水中的氰和重金属。硫化汞废渣用电解法处理能高效地回收纯汞或汞化物。
上浮法:废水中的重金属氢氧化物和硫化物还可用鼓气上浮法去除,其中以加压溶气上浮法最为有效。电解上浮法能有效地处理多种重金属废水,特别是含有重金属络合物的废水。这是因为在电解过程中能将重金属络合物氧化分解生成重金属氢氧化物,它们能被铝或铁阳极溶解形成的活性氢氧化铝或氢氧化铁吸附,在共沉作用下完全沉淀。废水中的油类和有机杂质也能被吸附,并借助阴极上产生的细小氢气泡浮上水面。此法处理效率高,在电镀废水处理中往往作为中和沉淀处理后的进一步净化处理措施。
离子浮选法:往重金属废水中投加阴离子表面活性剂,如黄原酸钠、十二烷基苯磺酸钠、明胶等,与其中的重金属离子形成具有表面活性的络合物或螯合物。不同的表面活性剂对不同的金属离子或同一种表面活性剂在不同的pH值等条件下对不同的重金属离子具有选择络合性,从而可对废水中的重金属进行浮选分离。此法可用于处理矿冶废水。
离子交换和吸附:废水中的重金属如果以阳离子形式存在,用阳离子交换树脂或其他阳离子交换剂处理;如果以阴离子形式存在,如氯碱工业的含汞废水中的氯化汞络合阴离子(HgCl4)-2,氰化电镀废水中的重金属氰化络合阴离子Zn(CN)厈、Cd(CN)+、Cu(CN),含铬废水中的铬酸根阴离子CrO-,则用阴离子交换树脂处理。
活性炭能在酸性(pH值2~3)条件下从低浓度含铬废水中有效地去除铬。含硫活性炭能有效地去除废水中的汞。活性炭还可用于处理含锌和铜的电镀废水。活性炭能吸附CN-,并在有Cu2+和O2存在的条件下使CN-氧化,从而使吸附CN-的部位得到再生。
膜法:主要有电渗析和反渗透法。电渗析的特点是浓缩倍数有限,须经多级电渗析处理,才能把废水中有用物质浓缩到可回用的程度。反渗透法用于处理镀镍、镀铜、镀锌、镀镉等电镀漂洗废水。对镍、铜、锌、镉等离子的去除率大都大于99%。因此重金属废水通过反渗透处理就能浓缩和回用重金属,反渗透水(产水)质量好时也可回用。
纳米重金属水处理技术:
纳米材料因其比表面积远超普通材料,故同一种物质将会显示出不同的物化特型,很多新型的纳米材料都不断地在水处理行业中实验、实践。被环保部、科技部、工信部、财政部四部委联合审批立项为“2011年国家重大科技成果转化项目”———纳米水处理工艺及系列产品,在江西铜业股份有限公司应用取得了历史性的突破,填补了国内空白 。
国内通常采用的重金属废水处理方法,包括石灰中和法和硫化法等。这些传统的处理工艺,虽然可以将废水中的重金属去除掉,但是处理效果并不稳定,处理后回收的清水水质仍难以确保稳定达标排放,而且还会产生二次污染。纳米重金属水处理技术不仅能使处理后的出水水质优于国家规定的排放标准且稳定可靠,投资成本和运行成本较低,与水中重金属离子反应快,吸附、处理容量是普通材料的10倍到1000倍,而且使沉淀的污泥量较传统工艺降低50%以上,污泥中杂质也少,有利于后续处理和资源回收。有数据显示,同样是每日处理300立方米重金属污水量,传统工艺每天要产生25吨石灰渣污泥,而采用纳米技术后每月只产生25吨纳米金属泥。尤其值得关注的是,这种污泥中的重金属单位含量提高了30倍。若以铜冶炼厂的废水处理为例,其回收的纳米铜泥品位已达到20%,完全可以作为铜矿资源再生利用。
Ⅵ 如何处理重金属废水
1.首先,根据重金属含量和络合剂种类计算重金属捕集剂的用量。根据重金属离子用量列表计算。(对于铜,重金属捕集剂的用量是铜的3-6倍左右(重量比);对镍,重金属捕集剂的用量是镍的7.5倍左右,实际用量依具体情况而定。
2.用自来水将重金属捕集剂溶解成2%的溶液。
3.调整废水的PH值,重金属捕集剂适应的PH为2-14,最佳PH=8-9。具体的起始PH根据水质情来定。
4在快速搅拌下(>150转/分),加入计量的重金属捕集剂重金属捕集剂溶液,反应时间2-5分钟。若废水有强络合剂(如EDTA),反应时间适当延长到10-15分钟。
5.取反应后的少许废水过滤,
5.1 定性检测滤液重金属的去除情况。检测方法:在滤液中加入重金属捕集剂溶液,如变色或有沉淀产生,说明重金属离子尚未除净,继续在废水加重金属捕集剂溶液;如不变色或无沉淀产生,证明重金属已除净。
5.2 定性测重金属捕集剂是否过量。方法:在滤液里加入原始的废水,变色或有沉淀产生,说明重金属捕集剂过量;如不变色或无沉淀产生,证明重金属捕集剂用量刚好进行下一步操作。
6. 加入2%PAC溶液,用量是重金属捕集剂的0.7-1.2倍。如果PAC的用量<100ppm,一般要加大PAC用量,使PAC用量>100ppm,这样在后续工序的矾花就会粗大,沉降速度也更快。在快速搅拌情况下,反应时间3-8分钟。
7.加入0.05%PAM(阴离子)溶液,用量为废水的5ppm,慢速搅拌(<10转/分),絮凝3-5分钟。沉淀30-60分钟,取上层清液测重金属离子含量。
Ⅶ 含重金属废水处理的处理方法
含重金属废水处理使用膜处理技术:
其中纳滤可以浓缩废水中金属离子、盐类等,反渗透可以膜截留金属离子和有机添加剂,而让水分子透过膜,而达到分离、浓缩目的。
含重金属废水进入处理系统,根据需要,经过复合试剂预处理,减少其它离子对膜系统的影响,之后通过纳滤膜、反渗透膜实现物料分离、浓缩。
本系统设置多套纳滤装置,既可以辅助实现浓缩倍数的要求,也可以切换实现出水重金属离子实现达标排放的要求。
重金属废水来源及其处理原则:
重金属废水主要来自矿山、冶炼、电解、电镀、农药、医药、油漆、颜料等企业排出的废水。废水中重金属的种类、含量及存在形态随不同生产企业而异。由于重金属不能分解破坏,而只能转移它们的存在位置和转变它们的物理和化学形态。
例如,经化学沉淀处理后,废水中的重金属从溶解的离子形态转变成难溶性化台物而沉淀下来,从水中转移到污泥中;经离子交换处理后,废水中的重金属离子转移到离子交换树脂上,经再生后又从离子交换树脂上转移到再生废液中。
因此,重金属废水处理原则是:首先,最根本的是改革生产工艺.不用或少用毒性大的重金属。其次是采用合理的工艺流程、科学的管理和操作,减少重金属用量和随废水流失量,尽量减少外排废水量。
Ⅷ 重金属废水回收怎么做
处理特点和基本原则废水中的重金属是各种常用方法不能分解破坏的,而只能转移它们的存在位置和转变它们的物理和化学形态。例如,经化学沉淀处理后,废水中的重金属从溶解的离子状态转变成难溶性化合物而沉淀下来,从水中转移到污泥中;经离子交换处理后,废水中的金属离子转移到离子交换树脂上;经再生后又从离子交换树脂上转移到再生废液中。总之,重金属废水经处理后形成两种产物,一是基本上脱除了重金属的处理水,一是重金属的浓缩产物。重金属浓度低于排放标准的处理水可以排放;如果符合生产工艺用水要求,最好回用。浓缩产物中的重金属大都有使用价值,应尽量回收利用;没有回收价值的,要加以无害化处理。
重金属废水的治理,必须采用综合措施。首先,最根本的是改革生产工艺,不用或少用毒性大的重金属;其次是在使用重金属的生产过程中采用合理的工艺流程和完善的生产设备,实行科学的生产管理和运行操作,减少重金属的耗用量和随废水的流失量;在此基础上对数量少、浓度低的废水进行有效的处理。重金属废水应当在产生地点就地处理,不同其他废水混合,以免使处理复杂化。更不应当不经处理直接排入城市下水道,同城市污水混合进入污水处理厂。如果用含有重金属的污泥和废水作为肥料和灌溉农田,会使土壤受污染,造成重金属在农作物中积蓄。在农作物中富集系数最高的重金属是镉、镍和锌,而在水生生物中富集系数最高的重金属是汞、锌等。
Ⅸ 电解重金属废水的重金属怎么回收
多孔材料吸附废水中的重金属离子研究 多孔材料是一种由相互贯通或封闭的孔洞构成网络结构的材料,其比表面积大,有利于重金属离子的吸附。传统的孔材料主要有活性炭、硅藻土、沸石、海泡石、膨润土、介孔材料等。王泽红等以天然沸石为原料,采用酸、碱、盐改性后用来处理废水中的铅和铜离子,实验结果表明,通过碱改性的沸石对铅和铜的去除能力大为改善,对初始质量浓度100 mg/L的铜和铅溶液,其去除率可达99%以上,可以达标排放。谢治民等用FeCl3改性海泡石处理废水中的锑,实验结果表明:铁改性海泡石结构发生了变化,增强了其吸附性能;海泡石对pH有缓冲作用,增加其使用范围;用0.1 mol/L NaOH再生后,使用6次,吸附量可达12.5 mg/g。Pingxiao Wu等通过改性制备了羟基铁柱撑膨润土,并研究了其对镉的吸附,吸附量可达25.7 mg/g。但这些传统的吸附材料普遍吸附容量较低,需要修饰或者改性。近些年来,研究人员通过化学组装,人工合成了金属-有机骨架材料,这类材料具有各种微纳尺度的骨架型规整孔道结构、超大比表面积、空隙率以及小的固体密度。Fei Ke等采用巯基对三维金属-有机骨架结构进行改性用于分离水中的Hg2+。实验表明,改性的金属-有机骨架化合物不仅显示很强的吸附亲和力(Kd=4.73×105 mL/g)和很高的吸附Hg2+容量(最大吸附量可达714.29 mg/g),而且吸附平衡时间短。金属-有机骨架材料因其具有高比表面积和高孔隙率,吸附容量大,是重金属废水处理材料发展的一个方向。
沉淀法
氢氧化物沉淀法
往重金属废水中加入碱性溶液,利用OH-与重金属离子反应生成难溶的金属氢氧化物沉淀,通过过滤予以分离。氢氧化物沉淀法包括分步沉淀法和一次沉淀法两种。分步沉淀法是分段加入石灰乳,利用不同的金属氢氧化物在不同的pH值下沉淀析出的特性,依次回收各种金属氢氧化物。一次沉淀法则是一次性投加石灰乳,使溶液达到额定的pH值,从而使废水中的各种重金属离子同时以氢氧化物沉淀的形式析出。
硫化物沉淀法
将重金属废水pH值调节为一定碱性后,再通过向重金属废水中投加硫化钠或硫化钾等硫化物,或者直接通入硫化氢气体,使重金属离子同硫离子反应生成难溶的金属硫化物沉淀,然后被过滤分离。由于金属硫化物的溶度积比相应的金属氢氧化物的溶度积小得多,因此,硫化物沉淀法比氢氧化物沉淀法具有更多的优点,比如沉渣量少,容易脱水,沉渣金属品位高,有利于金属的回收。可是硫化物沉淀法也有不足之处,比方说硫化物结晶比较细小,难以沉降,因而应用也不是很广。
还原-沉淀法
这种方法的原理是,用还原剂将重金属废水中的重金属离子还原为金属单质或者价态较低的金属离子,先将金属过滤收集,然后再往处理液中加入石灰乳,使得还原态的重金属离子以氢氧化物的形式沉淀收集。铜和汞等的回收可以利用这种方法,该法也常用于含铬废水的处理。较常使用的还原剂有硫酸亚铁、亚硫酸氢钠、铁粉等。
絮凝浮选沉淀法
通过添加絮凝剂使得重金属废水中的小胶体颗粒稳定性变差,聚集形成大颗粒胶体物质,最终通过重力作用沉淀下来。为增大胶体颗粒的尺寸,采用浮选的办法,用于将不稳定的胶体粒子变为固相絮凝物。这一浮选过程一般包括两个重要的步骤,一是调节pH值,二是加入含铁或铝盐的絮凝剂,以克服离子间静电排斥导致的稳定作用。
树脂吸附
环保是树脂吸附法的一个重要的特点,这种方法能够分离、纯化、回收重金属,效果显着。主要是由于树脂中含有各种活性基团,比较典型的有羟基、羧基、氨基等,能够与重金属离子进行螯合,因而这些功能性树脂材料能有效的吸附重金属离子。根据活性基团的种类不同,分为阳离子交换树脂和阴离子交换树脂。
生物吸附
近些年来,很多研究者将各种生物(如植物、细菌、真菌、藻类以及酵母)经处理加工成生物吸附剂,用于处理含重金属废水。生物体具有特定的化学结构以及成分特征,而生物吸附法的主要原理,就是利用生物体的这些特性来吸附溶于水中的重金属离子。生物吸附法具有几个特点:①生物吸附剂可以降解,一般不会发生二次污染;②来源广泛,容易获取并且价格便宜;③生物吸附剂容易解析,能够有效地回收重金属。
浮选法
往重金属废水中通入气体产生气泡,废水中的胶体颗粒会附着在气泡表面,这些胶体粒子可随气泡的上浮从而实现将依附在粒子上的重金属离子加以分离。该方法具有如下优点:对小粒子的去除效果好,操作省时,费用低廉,在一定条件下,既可消除重金属污染,又可回收金属,并且还能避开某些重金属氢氧化物或碳酸盐过滤困难的问题。
离子交换法
用离子交换树脂把废水中的重金属离子交换出来,从而除去重金属离子。不过,离子交换树脂价格昂贵,其再生费用也比较高,所以,在废水处理中使用很少。但对于少量有回收价值的有毒金属来说是个不错的方法。
7
电化学处理技术
电解法
电解法的主要原理,是对重金属废水进行电解时,重金属离子在阴极得到电子被还原,这些重金属要么沉淀在电极表面,要么沉淀到反应槽底部,从而起到降低废水中重金属含量的效果。
电沉积
这种方法的原理是,在传统的化学沉淀方法中,加入电压,通过改变溶液的电势,促进重金属离子更好地沉淀。电沉积在酸性和碱性废液中都适用。