污水脱盐的方法
① 高盐分污水处理方法
高含盐废水处理是很多企业面临的一个难题,依斯倍拥有相关的电渗析处理回高盐分废水技术,电答渗析是电化学过程和渗析扩散过程的结合;在外加直流电场的驱动下,利用离子交换膜的选择透过性(即阳离子可以透过阳离子交换膜,阴离子可以透过阴离子交换膜),阴、阳离子分别向阳极和阴极移动。离子迁移过程中,若膜的固定电荷与离子的电荷相反,则离子可以通过;如果它们的电荷相同,则离子被排斥,从而实现溶液淡化、浓缩、精制或纯化等目的。依斯倍环保采用均相膜EDR技术来对高盐分废水进行盐分分离,项目中高盐废水的TDS去除率高达 80% 以上。
② 寻求污水中脱盐的药物
脱什么盐?
太笼统了。
膜浓缩是时下很火爆的方式
③ 什么是脱盐水脱盐有哪些方法一般工艺流程怎样
抄脱盐水(desalted water)是将所含易于除去的强电解质除去或减少到一定程度的水。脱盐水中的剩余含盐量应在1~5 毫克/升之间。
制取脱盐水的方法主要有以下三种:
①蒸馏法,使含盐的水加热蒸发,将蒸气冷凝即得脱盐水;
②离子交换法,使含盐的水通过装有泡沸石或离子交换剂的交换柱(见离子交换),钙、镁等离子留在交换柱上,滤过的水为脱盐水;
③电渗析法,借离子交换膜对离子的选择透过性,在外加电场作用下,使两种离子交换膜之间的水中的阳、阴离子,分别通过交换膜向阴、阳两极集中。于是膜间区成为淡水区,膜外为浓水区。从淡水区引出的水即为脱盐水。
蒸馏法多用于实验室用来洗刷容器或制备溶液,适用于量不多纯度要求较高场所。离子交换法与电渗析法多用于化工业如锅炉用水可以减少结垢和腐蚀,适用于量大纯度要求不是很高的场所。
④ 如何降低污水中的盐分。求较低成本的去除废水中盐分。。。
膜法已经是最便宜的方案了,但是也很贵,从废水中脱盐没有真正意义上的低成本方案,只有相对低。最好的方法是从源头想办法,不要让高盐废水与低盐废水混合,分流处理总的经济成本会比较低。
⑤ 简单介绍下什么是高含盐废水处理中的三效蒸发器脱盐法
蒸发是现代化工抄单元操作之一袭,即用加热的方法使溶液中的部分溶剂汽化并去除,以提高溶液的浓度,或为溶质析出创造条件。三效蒸发器脱盐法是利用浓缩结晶系统将废液中的无机盐通过蒸发的方式加以去除的方法。三效蒸发器是由相互串联的三个蒸发器组成,低温(90℃左右)加热蒸气被引入第一效,加热其中的废液,产生的蒸气被引入第二效作为加热蒸气,使第二效的废液以比第一效更低的温度蒸发,这个过程一直重复到最后一效。第一效凝水返回热源处,其它各效凝水汇集后作为淡化水输出,一份的蒸气投入,可以蒸发出多倍的水出来。同时,高盐废水经过由第一效到最末效的依次浓缩,在最末效达到过饱和而结晶析出,由此实现盐分与废水的固液分离。
在含盐废水的处理过程中,含盐废水进入三效浓缩结晶装置,经过三效蒸发冷凝的浓缩结晶过程,分离为淡化水(淡化水可能含有微量低沸点有机物)和浓缩晶浆废液;无机盐和部分有机物可结晶分离出来,焚烧处理为无机盐废渣;不能结晶的有机物浓缩废液可采用滚筒蒸发器,形成固态废渣,焚烧处理;淡化水可返回生产系统替代软化水加以利用。
港荣水务 ,可以咨询下
⑥ 污水的净化方法与过程
污水净化,是通过相应的过滤材料,根据不同的最终用水需求,以物理或化学的方式,去除水中的铁锈、泥沙、余氯、有机物、有害的重金属离子、细菌、病毒等的过程。显而易见,如果水净化全程运用的是物理过滤方式,则不会在水中产生或添加任何新的物质,更不会改变水的性状,因而是最安全的方式。污水净化被广泛应用于建筑、农业,交通、能源、石化、环保、城市景观、医疗、餐饮等各个领域,也越来越多地走进寻常百姓的日常生活。
污水净化过程
方案一:
截留法
通常都以格栅或筛网作为污水处理厂的第一个处理工序,其主要作用四去除废水中粗大的悬浮物质,以保护后续的处理设备如污水泵,并防止管道堵塞。
格栅由一组平行的金属栅天构成,其截留悬浮物质的效率决定于栅条间隙的宽度。当格栅设在污水泵站前时,缝隙宽常大于50mm,当设在沉沙池前时,一般采用15~40mm。通过格栅的水流速度应保持在0.6~1.0m/s之间。当通过格栅的水头损失超过10cm时,应清除格栅前的污物,以免雍水现象。大型处理厂应采用机械清除格栅。格栅截留的污物被清除后,应妥善处理,方法有填埋、焚烧、堆肥或与其它污泥混合后进行消化处理,也可以将污物粉碎后送进污水厂进口。
污水净化过程
方案二:
膜分离的电渗析法
利用过滤性,摸得选择透过性对水中杂质进行浓缩、分离的方法,统称为膜分离。根据膜孔隙的大小及过滤是的动力,膜分离可分为微过滤、超过滤、纳米过滤、电渗析反渗透等。对于冶金工业废水的处理一般采用电渗析处理方法。
电渗析:电渗析是在电场作用下使溶液中离子通过膜进行传递的过程,所应用的膜为离子交换膜。阳离子交换膜只允许阳离子透过,阴离子交换膜则只允许阴离子通过。在电渗析设备中,阳离子交换膜和阴离子交换膜交替排列于正负两个电极之间,并用特别的隔板将其隔开,形成脱盐水和浓缩水两个系统。在直流电场作用下,阳离子向阴极迁移,阴离子向阳极迁移,由于离子交换膜的选择透过性,淡室中的盐水逐渐淡化,浓室中的盐水被浓缩,以此实现脱盐的目的。
电渗析用于重金属工业的废水处理。
污水净化过程
方案三:
磁力分离法
磁力分离式利用磁场力截留和分离废水中污染物质的方法。主要应用于去除废水中磁性及非磁性悬浮物和重金属离子,对废水中有机物和营养物的去除也有帮助。
当废水通过磁场时,水中磁性粒子同时受磁场吸引力、外力和重力、粒子互相作用等的作用,如磁力大于外力磁性粒子既能被磁场捕获,从水中分离出来。磁场吸引力还可以起到促进絮凝的作用。
使用较多的磁过滤器的主要部分为电磁铁和铁磁性过滤介质金属球、钢毛等。其次为磁吸离器,它由不锈钢圆盘制成,上面粘结了极性交错排列的数百块永久磁铁,并用铝板覆盖。运转时圆盘转动,浸没部分吸引水中磁性物质,转离水面后,将表面泥渣即被挂走。磁性铁粉可以在用分离心法从泥渣中回收。该分离机以其特有的快速分离的特点在生产中得到了实际应用
⑦ 如何解释分休高盐分废水处理中多效蒸发器脱盐法
蒸发是现代化工单元操作之一,即用加热的方法使溶液中的部分溶剂汽化并去除,以版提高溶液的浓度,或权为溶质析出创造条件。三效蒸发器脱盐法是利用浓缩结晶系统将废液中的无机盐通过蒸发的方式加以去除的方法。三效蒸发器是由相互串联的三个蒸发器组成,低温(90℃左右)加热蒸气被引入第一效,加热其中的废液,产生的蒸气被引入第二效作为加热蒸气,使第二效的废液以比第一效更低的温度蒸发,这个过程一直重复到最后一效。第一效凝水返回热源处,其它各效凝水汇集后作为淡化水输出,一份的蒸气投入,可以蒸发出多倍的水出来。同时,高盐废水经过由第一效到最末效的依次浓缩,在最末效达到过饱和而结晶析出,由此实现盐分与废水的固液分离。
在含盐废水的处理过程中,含盐废水进入三效浓缩结晶装置,经过三效蒸发冷凝的浓缩结晶过程,分离为淡化水(淡化水可能含有微量低沸点有机物)和浓缩晶浆废液;无机盐和部分有机物可结晶分离出来,焚烧处理为无机盐废渣;不能结晶的有机物浓缩废液可采用滚筒蒸发器,形成固态废渣,焚烧处理;淡化水可返回生产系统替代软化水加以利用。
这方面广东港荣水务有多年的设计生产经验,
可以咨询下
⑧ 污水处理的基本方法
污水处理按照处理程度划分,可分为一级、二级和三级处理。
一级处理,属于物理处理,主要去除污水中呈悬浮状态的固体污染物质,物理处理法大部分只能完成一级处理的要求。经过一级处理的污水,BOD一般可去除30%左右,达不到排放标准。一级处理属于二级处理的预处理。
二级处理,主要去除污水中呈胶体和溶解状态的有机污染物质(BOD,COD物质),去除率可达90%以上,使有机污染物达到排放标准。
三级处理,进一步处理难降解的有机物、氮和磷等能够导致水体富营养化的可溶性无机物等。主要方法有生物脱氮除磷法,混凝沉淀法,砂滤法,活性炭吸附法,离子交换法和电渗分析法等。
整个过程为通过粗格栅的原污水通过污水提升泵提升后,流经格栅或者砂滤器,之后进入沉砂池,经过砂水分离的污水进入初次沉淀池,以上为一级处理,初沉池的出水进入生物处理设备,有活性污泥法和生物膜法,(其中活性污泥法的反应器有曝气池,氧化沟等,生物膜法包括生物滤池、生物转盘、生物接触氧化法和生物流化床),生物处理设备的出水进入二次沉淀池,二沉池的出水经过消毒排放或者进入三级处理,一级处理结束到此为二级处理,三级处理包括生物脱氮除磷法,混凝沉淀法,砂滤法,活性炭吸附法,离子交换法和电渗析法。二沉池的污泥一部分回流至初次沉淀池或者生物处理设备,一部分进入污泥浓缩池,之后进入污泥消化池,经过脱水和干燥设备后,污泥被最后利用。
⑨ 钢铁工业废水如何除盐
钢铁工业作为我国工业发展的基础产业, 既是用水大户也是排污大户。随着现代化工业的迅速发展, 用水量剧增,水资源短缺,已成为钢铁工业发展的瓶颈。要解决这一问题, 钢铁企业仅靠节水是不够的, 必须要寻求新的供水来源,而最直接、 最经济、 最有效的途径就是将综合排放的废水处理后循环利用。钢铁工业废水回收利用技术及设备研究工作是一项极具有社会效益和经济效益的工作。但是在钢铁企业的废水处理过程中, 如果不涉及脱盐工艺,处理后的水的含盐量会很高,仍不能满足工业循环水系统补充水的要求。循环水经高倍浓缩后, 水中各种离子浓度增加, 会产生一系列物理、化学变化, 导致管道系统腐蚀、 结垢严重, 影响设备正常运行,甚至缩短设备的使用寿命。因此,在钢铁工业废水处理技术中,研发高效低耗的新型除盐技术具有积极意义。目前钢铁厂废水脱盐技术主要有3 种: 即离子交换工艺(阳床+ 阴床+ 混床)、 膜法除盐工艺(超滤和反渗透)和电吸附除盐工艺。长期实践已证明,离子交换是一种成熟有效的水处理工艺,脱盐效果好。但该工艺存在设备占地面积大、 系统操作维护频繁复杂、 出水水质呈周期性波动的缺陷,并且需要投加絮凝剂和耗费大量的酸碱,不利于环境保护;膜法除盐工艺和电吸附除盐工艺集技术性、 可靠性、 环保性、 经济性为一体,比离子交换工艺更具有综合优势,目前得到广泛重视,下面对这两种工艺分别进行介绍。1、膜法除盐工艺的应用双膜法工艺主要指超滤+ 反渗透( RO) 的处理工艺,该工艺主要采用膜分离技术制取脱盐水。超滤原理是一种膜分离过程原理, 是利用一种有机或无机超滤膜,在外界推动力(压力) 作用下截留水中胶体、 颗粒和大分子量的的物质,而水和小的溶质颗粒透过膜的分离过程。当水通过超滤膜后,可将水中含有的大部分胶体硅除去,同时可去除大量的有机物等。超滤的采用大大提升了预处理的效果,增强了对反渗透系统的产水率,并且延长了膜的使用寿命。反渗透是用足够的压力使溶液中的溶剂(一般是水)通过反渗透膜而分离出来,这个过程和自然渗透的方向相反,因此称为反渗透。经过反渗透处理, 使水中杂质的含量降低, 提高水的纯度,其脱盐率可以达到99%以上, 并能将水中大部分的细菌、 胶体、 大部分盐类和有机物去除。反渗透法能适应各类含盐量的原水, 尤其是在高含盐量的水处理工程中,能获得很好的经济效益。目前, 超滤及反渗透装置已经实现模块化设计,可任意拆卸、 组装,配置灵活,安装调试方便;且设备结构紧凑,占地少,重量轻,便于运输和安装调试。采用反渗透脱盐工艺,以超滤作为反渗透的预处理,设计出一套试验装置。并且考察了用该装置处理某钢铁企业总排口污水的效果,确定了水通量、 回收率、 清洗周期及清洗药剂配方和药剂最佳浓度。实验证明, 双膜法在钢铁工业综合污水处理回收应用中是可行的。此外,还对太原钢铁集团, 邯郸钢铁集团和首钢集团采用的膜法脱盐技术的优缺点进行了分析,提出了用超滤代替传统的多介质过滤器、 活性炭过滤器等作为反渗透的预处理方法, 可为反渗透系统提供更优良的进水水质, 并可以减轻膜污染,延长膜的使用寿命。就全通量陶瓷膜在国内钢铁企业污水深度脱盐处理中,作为超滤的应用前景做了初步的分析和探讨, 指出了全通量陶瓷膜具有合适的机械强度和高渗透通量,对理想的渗透组分具有选择性, 在工业污水预处理方面,具有很好的应用前景。涟钢中心软水站改扩建工程采用了反渗透系统,其工艺设计、 设备选型及材料的选用, 均能够保证工艺流程的前后协调和脱盐水制备过程的正常运行, 产水水质、水量稳定。该工艺运行平稳可靠, 实现了整套工艺自动化控制, 具有产水质量高、 自动控制程度高、 易于操作控制等特点。整套工艺处理中膜分离不发生相变化,与其它分离方法相比能耗低,没有三废排放(浓盐水回收集中处理) , 不会对周围反渗透造成二次污染。超滤加反渗透的脱盐工艺已经逐步应用于钢铁企业污水的深度处理中,为企业减少新水消耗开辟了新途径。与传统法处理工艺相比,有着很大的经济、 技术和环保优势。鉴于钢铁企业高含盐量水质特点以及回收利用要求, 许多钢铁企业采用膜法处理技术及相应的配套设施, 对回收利用水进行脱盐处理, 以保持企业循环系统的水质、水量能满足要求, 膜法工艺已经被实践证明是一种合适的钢铁工业废水脱盐方法。但需要指出的是, 膜法工艺也有其不足之处: 对进水水样要求高,抗冲击能力小,膜损伤不易修复等缺点,同时膜法出水在使用过程中需要使用大量阻垢剂等化学药剂。
甘**度**环**境
⑩ 盐度为10%的高盐废水怎么除盐
低温多效板式蒸发浓缩脱盐
1.低温多效蒸发浓缩结晶技术原理
低温多效蒸发浓缩结晶系统,是由相互串联的多个蒸发器组成,低温(90℃左右)加热蒸汽被引入第一效,加热其中的料液,使料液产生比蒸汽温度低的几乎等量蒸发。产生的蒸汽被引入第二效作为加热蒸汽,使第二效的料液以比第一效更低的温度蒸发。这个过程一直重复到最后一效。
第一效凝水返回热源处,其它各效凝水汇集后作为淡化水输出,一份的蒸汽投入,可以蒸发出多倍的水出来。同时,料液经过由第一效到最末效的依次浓缩,在最末效达到过饱和而结晶析出。由此实现料液的固液分离。
低温多效蒸发浓缩结晶系统不仅可以应用于化工生产的浓缩过程和结晶过程,还可以应用于工业含盐废水的蒸发浓缩结晶处理过程中。
在工业含盐废水的处理过程中,工业含盐废水进入低温多效浓缩结晶装置,经过5-8效蒸发冷凝的浓缩结晶过程,分离为淡化水(淡化水可能含有微量低沸点有机物)和浓缩晶浆废液;无机盐和部分有机物可结晶分离出来,焚烧处理为无机盐废渣;不能结晶的有机物浓缩废液可采用滚筒蒸发器,形成固态废渣,焚烧处理;淡化水可返回生产系统替代软化水加以利用。
其主要技术参数如下:
①淡化水含盐量(TDS)<10ppm(可能含有微量随蒸汽出来的低沸点有机物)
②吨淡化水蒸汽耗量=(1/效数)/90%t/t
③吨淡化水电力消耗2-4 kw•h/t(依效数和装置大小而异)
2.装置结构方案:
⑴ 低温多效板式蒸发器+管式蒸发结晶器
⑵ 冷凝器:管式冷凝器
⑶ 除沫型式:每效采用“转角式挡板+旋风复挡+丝网”三级复合除沫系统,确保二次蒸汽(淡化水)清洁。
⑷ 真空泵为自冷式水环泵。
⑸ 系统控制:装置的温度、压力、液位、流量为系统自动控制调节。
3低温多效浓缩结晶装置技术特点:
工艺特点:
①该装置采用混程给水,使相同造水吨位装置的吨水电耗较国外工艺减少40%--50%。
②由于混程给水,废水从高温效依次进入低温效,浓度逐渐升高,温度逐渐降低。避免了国外工艺中,由低温效向高温效循环给水引起的在高温效给水浓度升高,有效减轻了高温效的结垢和腐蚀情况。
③水量在蒸发器上分布均匀,避免了现有装置喷头式给水不均匀易堵塞的缺点。
④真空系统采用差压抽气装置,各效间准确形成设计压差,使得装置运行稳定可靠。
结构特点:
①采用抽屉式结构,制造装配、检修维护方便;板式蒸发器,拆卸清洗。
②采用板式蒸发器,可实现废水高倍浓缩,无机盐可结晶分离。
③ 采用板式蒸发器,模块化设计,便于大规模批量生产。造价低。
④ 装置结构简单,制造工艺性好。
⑤ 装置配套机电设备全部国产化。
⑥ 吨水装置制造成本较国外公司降低30~40%。
生物法
生物处理是目前废水处理最常用的方法之一,它具有应用范围广、适应性强等特点。
化工废水如染料、农药、医药中间体等含盐较高的废水则给生物处理带来一定的难度。这类废水含盐较高,污染严重,必须处理才能排放。
况且,此类废水成分复杂,不具备回收价值,采用其他处理方法成本较高,因此生物处理仍是首选的方法。
无机盐类在微生物生长过程中起着促进酶反应,维持膜平衡和调节渗透压的重要作用。但盐浓度过高,会对微生物的生长产生抑制作用。
主要抑制原因在于:
盐浓度过高时渗透压高,使微生物细胞脱水引起细胞原生质分离;
高含盐情况下因盐析作用而使脱氢酶活性降低;
高氯离子浓度对细菌有毒害作用;
由于水的密度增加,活性污泥容易上浮流失。
为此,高含盐废水的生物处理需要进行稀释,通常在低盐浓度下(盐浓度小于1%)运行,造成水资源的浪费,处理设施庞大、投资增加,运行费用提高。随着水资源的日趋紧张,国家出台的保护水资源各项法规和收费的实施,给高含盐废水处理的企业带来了负担。
生物处理法具有经济、高效、无害的特点,被广从0提高至30g/L时,在为驯化的系统里有机物(以COD的形式)去除率从97%降至60%,氮(N)的去除率从88%降至68%;在经过驯化的系统里,当盐的质量浓度从5g/L提高至30g/L时,COD去除率从90%降至71%,N的去除率85%降至70%。
SBR工艺处理含盐废水
通过逐步提高盐度的方法驯化出耐高盐的活性污泥,采用序批式生物膜法(SBR)进行模拟高盐废水的处理试验,对盐度为0和2%,COD为300 mg/L的高盐废水进行研究。
结果表明,在每周期12 h、曝气量0.6 L/min、平均污泥质量浓度2 000~3 500 mg/L、污泥龄为18 d条件下,出水COD去除率变化不大,分别为97%和93%,而相应的出水NH4+-N去除率从93%降低到72%,表明废水盐度增大,对系统的硝化能力有较大影响。