压水堆和废水堆区别
❶ 压水堆优缺点
7月24日 22:13 目前潜艇用的反应堆只有两种:压水型反应堆和钠冷却金属堆。
世界上绝大多数潜艇是用的压水堆,因为人们对水的性能比较了解,容易控制。而金属堆传热好,效率较高,但最大的问题是对系统材料的腐蚀难以解决,经常泄漏。所以用得较少,只有俄罗斯用。
高温气冷反应堆是由普通的石墨气冷堆发展而来的反应堆。工作原理是:用石墨做为慢化剂,用气体氦作为冷却剂(这就是“气冷”),氦气的温度高达800度左右(这就是“高温”)
具体过程是:当反应堆内的核燃料进行核反应时,放出中子,速度太快的中子经过石墨碰撞便慢下来(因为在此堆里只有慢中子才能与铀燃料发生有效反应),以维持核反应。核反应时要释放出大量的热量,如果不把热量带走,就会烧毁反应堆,所以用气体(氦)流经堆芯,把热量带到热交换器,再由另一路冷却剂把氦气冷却,降温后的氦气又回到堆芯继续冷却反应堆,形成闭式循环回路。
这就是高温气冷堆的最简单原理。目前世界上使用最多的是压水堆,特别是核潜艇上基本都是压水堆,目前各国(包括我国)核潜艇上绝对没有高温气冷堆,它的体积太大。
聚变反应堆就更谈不上了,理由楼上“香烟的辛辣”已阐述,不再赘述。
❷ 原子能反应堆,清水堆与压水堆有什么区别
没有清水堆这个说法,用作动力堆的一般有压水堆,沸水堆,重水堆,快中子堆等等。
❸ 压水堆核电站和沸水堆核电站有什么区别
一. 沸水堆与压水堆工作原理
沸水堆(Boiling Water Reactor)字面上来看就是采用沸腾的水来冷却核燃料的一种反应堆,其工作原理为:冷却水从反应堆底部流进堆芯,对燃料棒进行冷却,带走裂变产生的热能,冷却水温度升高并逐渐气化,最终形成蒸汽和水的混合物,经过汽水分离器和蒸汽干燥器,利用分离出的蒸汽推动汽轮进行发电。福岛核电站建于20世纪70年代,属于沸水堆。
压水堆(Pressurized Water Reactor)字面上看就是采用高压水来冷却核燃料的一种反应堆,其工作原理为:主泵将120~160个大气压的一回路冷却水送入堆芯,把核燃料放出的热能带出堆芯,而后进入蒸汽发生器,通过传热管把热量传给二回路水,使其沸腾并产生蒸汽;一回路冷却水温度下降,进入堆芯,完成一回路水循环;二回路产生的高压蒸汽推动汽轮机发电,再经过冷凝器和预热器进入蒸汽发生器,完成二回路水循环。中国建成和在建共有13台核电机组,除秦山三期采用CANDU堆技术,山东荣成采用高温气冷堆,其余均为压水堆,
二. 沸水堆与压水堆共同点
沸水堆和压水堆都是属于轻水堆,两者都使用低浓铀燃料,采用轻水作为冷却剂和慢化剂,沸水堆系统比压水堆简单,特别是省去了蒸汽发生器;燃料都是以组件的形式在堆芯排布,组件由栅格排布的燃料栅元组成,燃料栅元由燃料芯块、包壳构成;燃料放置于压力容器当中,外面有安全壳,具备包壳、压力边界、安全壳三重防泄露屏障;沸水堆和压水堆的发电部分功能也都一样。
三. 沸水堆与压水堆的主要区别
沸水堆采用一个回路,压水堆有两个回路;沸水堆由于堆芯顶部要安装汽水分离器等设备,故控制棒需从堆芯底部向上插入,控制棒为十字形控制棒,压水堆为棒束型控制棒,从堆芯顶部进入堆芯;沸水堆具有较低的运行压力(约为70个大气压),冷却水在堆内以汽液形式存在,压水堆一回路压力通常达150个大气压,冷却水不产生沸腾。
四. 压水堆相对沸水堆的优势
沸水堆控制棒从堆芯底部引入,因此发生“在某些事故时控制棒应插入堆芯而因机构故障未能插入”的可能性比压水堆大,即在停堆过程中一旦丧失动力,就会停在中间某处,最终可能导致临界事故发生;而压水堆的控制棒组件安装在堆芯上部,如果出现机械或者电气故障,控制棒可以依靠重力落下,一插到底,阻断链式反应。另外,对于控制棒向上引入的反应堆,其堆芯上部的功率高于底部,当反应堆丧失冷却后,会导致产生热量大的地方带走热量少,上部的燃料发生熔毁的概率增加。
沸水堆遇紧急情况停堆,冷却动力丧失时,燃料温度增加,冷却水逐渐气化,回路压力增加,必须进行释压处理,则会导致带有放射性的气体进入大气,同时还需要起用备用电源进行主动地注水冷却;压水堆冷却动力丧失时,可以用应急水泵对蒸汽发生器进行喷淋,并调节稳压器压力,保证一回路不出现局部沸腾,依靠一二回路的温差实现自然循环,让堆芯慢慢退热。新的三代压水堆在设计上拥有非能动性或称自主能动性安全冷却体系,拥有类似水塔性质的蓄水,至于安全壳上层,可以依靠重力完成注入冷却水实现冷却;另外堆芯有排气管道开放外界,压力可以得到控制。而福岛为被动能动型冷却体系,所以堆芯温度在停堆后要依靠柴油发电机发电启动,在柴油发电机无法启动的情况下,导致温度失控。
沸水堆与压水堆不同之处在于沸水堆没有蒸汽发生器,一回路水通过堆芯加热变成约285℃的蒸汽并直接引入汽轮机,因此常规岛布置有一回路的冷却剂管道,管道失效可能引起冷却剂泄漏。压水堆的一回路和蒸汽系统通过蒸汽发生器分隔开,而且蒸汽发生器安置在安全壳内,只要蒸汽发生器完整,放射性物质不会释放到环境中,即使蒸汽发生器故障破损,利用安全壳贯穿件关闭,放射性物质也不会释放到环境中。
沸水堆压力远低于压水堆压力,因此在系统设备、管道、泵、阀门等的耐高压方面的要求低于压水堆。压水堆由于压力高,且多了蒸汽发生器、稳压器等设备,技术性能要求及造价都要高许多。但正是由于压水堆一、二回路将放射性冷却剂分开,因此安全性高于沸水堆。
五. 压水堆的发展趋势
压水堆核电厂因其功率密度高、结构紧凑、安全易控、技术成熟、造价和发电成本相对较低等特点,成为目前国际上最广泛采用的商用核电堆型,占轻水堆核电机组总数的3/4。我国核电站以及潜艇基本都采用了先进的压水堆核电机组,安全性比福岛高很多。
20世纪90年代,美国和欧洲核电先进国家对今后建设的核电厂的安全、技术、经济性确定了一系列具体的奋斗目标。各国也着手研发同时满足这些要求的第三代压水堆。其中有代表的有法、德合作开发的欧洲动力堆EPR和美国西屋公司研发的AP1000。EPR提出在未来压水堆设计中采用共同的安全方法,通过降低堆芯熔化和严重事故概率和提高安全壳能力来提高安全性,从放射性保护、废物处理、维修改进、减少人为失误等方面根本改善运行条件;AP1000则以全非能动安全系统、简化设计和布置以及模块化建造为主要特色。
安全可靠是核电站发展的基石,中国也始终把核电安全放在第一位。我们有理由相信,随着经验的积累以及技术的进步,核电站的安全性能将逐步得到进一步提高,将要发展的第三代反应堆和未来的第四代反应堆会为我们安全利用核能营造新的环境。
❹ 压水堆和高温气冷堆的区别
反应堆的两种冷却方法。
压水堆,使用循环水进行冷却反应堆
高温气冷堆,采用高压气体作为冷却介质冷却反应堆
❺ 核电站压水堆和沸水堆的区别其中先进技术是什么在建核电站中哪些是AP1000技术其他采用什么技术
沸水堆与压水堆不同之处在于沸水堆没有蒸汽发生器,一回路水通过堆芯加热变成约285℃的蒸汽并直接引入汽轮机,因此常规岛布置有一回路的冷却剂管道,管道失效可能引起冷却剂泄漏。压水堆的一回路和蒸汽系统通过蒸汽发生器分隔开,而且蒸汽发生器安置在安全壳内,只要蒸汽发生器完整,放射性物质不会释放到环境中,即使蒸汽发生器故障破损,利用安全壳贯穿件关闭,放射性物质也不会释放到环境中。
沸水堆与压水堆的详细比较:①沸水堆与压水堆同属轻水堆,两者都使用低浓铀燃料,并使用饱和汽轮机。②沸水堆系统比压水堆简单,特别是省去了蒸汽发生器。③对于失水事故的处理,沸水堆的应急堆芯冷却系统中有两个分系统都从堆芯上方直接喷淋注水,压水堆的应急注水通过环路管道从堆芯底部注入冷却水。④沸水堆直接产生蒸汽,有N16的放射性问题,还有燃料棒破损时的气体和挥发性裂变产物都会直接污染汽轮机系统。⑤沸水堆压力容器底部除有为数众多的控制棒开孔外,尚有中子探测器开孔,增加了小失水事故的可能性。⑥控制棒驱动机构较复杂,可靠性要求高。⑦沸水堆控制棒自堆底引入,发生"未能应急停堆预计瞬态"的可能性比压水堆的大。"未能应急停堆预计瞬态"指发生某些事故时控制棒应插入堆芯而因机构故障未能插入。而且压水堆内水压很高,达到大气压的150倍,水在堆内温度升高的很快但不沸腾,流到蒸汽发生器来为另一个循环中的水来加热。而沸水堆则允许水在堆内沸腾,产生蒸汽,并把蒸汽直接输送倒搜用之处。
山东海阳、浙江三门、湖南桃花江、湖北咸宁都是采用AP1000技术,辽宁红沿河、广东阳江、广西防城港、福建宁德都是中广核的CPR1000+技术,福建福清采用M310加改进堆型、海南昌江采用CNP600技术。
❻ 重水堆,压水堆,沸水堆三者谁更有优势
1,重水堆的成熟的只有CANDU堆型,在我国秦山三期有两台,不过运行业绩非常一般,其最主要的优势在于不停堆换料,不用浓缩铀,不过现在来讲意义不大。不停堆换料,但是一样得跟压水堆一样得停堆大修。
2,沸水堆,的优势在于少了一个环路,但是福岛事故几乎快判它死刑了,至少在我国没大考虑过这东西。它的劣势,比如,控制棒是往上插的,不像压水堆一样,有失电落棒的这种固有安全性问题。
3,压水堆,我国除了秦山三期,其他商用堆全是。技术成熟,运行经验丰富。在我国M310及其衍生堆型居多。但是新一代的也有AP1000和EPR。EPR系统有些过于庞大,当然功率也大。AP1000代表了一种新的理念,其正常生产所用的系统,和二代堆差距不大,但安全相关系统为非能动设计,个人认为AP1000代表了当下主流的一种发展方向。
❼ 高温气冷堆和压水堆的区别是什么
中 国 的 核 动 力 研 究 院 ( 成 都 ) 正 在 开 发 AC-600 型 先 进 压 水 堆, 它 将 采 用 非 能 动 安 全 系 统 导 出 热 量。
重 水 冷 却 反 应 堆 (HWR)。 除 轻 水 冷 却 反 应 堆 外,HWR 技 术 也 已 经 证 明 是 经 济、 安 全 和 可 靠 的。 在 现 今 正 在 运 行 的 所 有 反 应 堆 中,HWR 约 占 7%。 有 几 个 国 家 已 经 建 立 了 成 熟 的 基础 设 施 和 监 管 基础, 尤 其 是 加 拿 大, 它 是 开 发 HWR 概 念 的 先 驱。 已 经 开 发 出 了 两 种 类 型 的 商 用 H WR, 即 压 力 管 式 和 压 力 容 器 式 的 HWR, 两 者 都 已 非 常 成 熟。HWR 的 输 出 功 率 范 围 从 几 百 MWe 到 接 近 900 MWe。 采 用 重 水 慢 化 能 获 得 很 好 的 中 子 经 济 性, 使 得 能 够 用 天 然 铀 作 燃 料 从 而 使 燃 料 费 用 比 LWR 的 低。 但 是, 堆 内 的 易 裂 变 材 料 数 量 相 当 少, 因 此 压 力 管 型 设 计 采 用 不 停 堆 换 料, 以 便 获 得 反 应 堆 运 行 所 需 的 足 够 大 的 反 应 性。 这 种 不 停 堆 换 料 方 式 的 有 效 性 已 经 成 功 地 得 到 证 实; 而 且 多 数 压 力 管 式 HWR 的 年 度 负 荷 因 子 和 寿 期 负 荷 因 子 一 直 名 列 所 有 商 用 反 应 堆 类 型 的 前 茅。 安 全 实 绩 也 已 证 明 非 常 好。
❽ 压水堆核电站和沸水堆核电站的具体区别
沸水堆与压水堆共同点
沸水堆和压水堆都是属于轻水堆,两者都使用低浓铀燃料,采用轻水作为冷却剂和慢化剂,沸水堆系统比压水堆简单,特别是省去了蒸汽发生器;燃料都是以组件的形式在堆芯排布,组件由栅格排布的燃料栅元组成,燃料栅元由燃料芯块、包壳构成;燃料放置于压力容器当中,外面有安全壳,具备包壳、压力边界、安全壳三重防泄露屏障;沸水堆和压水堆的发电部分功能也都一样。
沸水堆与压水堆的主要区别
沸水堆采用一个回路,压水堆有两个回路;沸水堆由于堆芯顶部要安装汽水分离器等设备,故控制棒需从堆芯底部向上插入,控制棒为十字形控制棒,压水堆为棒束型控制棒,从堆芯顶部进入堆芯;沸水堆具有较低的运行压力(约为70个大气压),冷却水在堆内以汽液形式存在,压水堆一回路压力通常达150个大气压,冷却水不产生沸腾。
压水堆相对沸水堆的优势
沸水堆控制棒从堆芯底部引入,因此发生“在某些事故时控制棒应插入堆芯而因机构故障未能插入”的可能性比压水堆大,即在停堆过程中一旦丧失动力,就会停在中间某处,最终可能导致临界事故发生;而压水堆的控制棒组件安装在堆芯上部,如果出现机械或者电气故障,控制棒可以依靠重力落下,一插到底,阻断链式反应。另外,对于控制棒向上引入的反应堆,其堆芯上部的功率高于底部,当反应堆丧失冷却后,会导致产生热量大的地方带走热量少,上部的燃料发生熔毁的概率增加。
沸水堆遇紧急情况停堆,冷却动力丧失时,燃料温度增加,冷却水逐渐气化,回路压力增加,必须进行释压处理,则会导致带有放射性的气体进入大气,同时还需要起用备用电源进行主动地注水冷却;压水堆冷却动力丧失时,可以用应急水泵对蒸汽发生器进行喷淋,并调节稳压器压力,保证一回路不出现局部沸腾,依靠一二回路的温差实现自然循环,让堆芯慢慢退热。新的三代压水堆在设计上拥有非能动性或称自主能动性安全冷却体系,拥有类似水塔性质的蓄水,至于安全壳上层,可以依靠重力完成注入冷却水实现冷却;另外堆芯有排气管道开放外界,压力可以得到控制。而福岛为被动能动型冷却体系,所以堆芯温度在停堆后要依靠柴油发电机发电启动,在柴油发电机无法启动的情况下,导致温度失控。
水堆与压水堆不同之处在于沸水堆没有蒸汽发生器,一回路水通过堆芯加热变成约285℃的蒸汽并直接引入汽轮机,因此常规岛布置有一回路的冷却剂管道,管道失效可能引起冷却剂泄漏。压水堆的一回路和蒸汽系统通过蒸汽发生器分隔开,而且蒸汽发生器安置在安全壳内,只要蒸汽发生器完整,放射性物质不会释放到环境中,即使蒸汽发生器故障破损,利用安全壳贯穿件关闭,放射性物质也不会释放到环境中。
沸水堆压力远低于压水堆压力,因此在系统设备、管道、泵、阀门等的耐高压方面的要求低于压水堆。压水堆由于压力高,且多了蒸汽发生器、稳压器等设备,技术性能要求及造价都要高许多。但正是由于压水堆一、二回路将放射性冷却剂分开,因此安全性高于沸水堆。
❾ 重水堆、压水堆、沸水堆有什么区别
核电站重水堆、压水堆、沸水堆的主要区别:
重水堆是以重水作慢化剂的反应堆,可以直接利用天然铀作为核燃料。重水堆可用轻水或重水作冷却剂,重水堆分压力容器式和压力管式两类。
压水堆使用加压轻水(即普通水)作冷却剂和慢化剂,且水在堆内不沸腾的核反应堆。
沸水堆又叫轻水堆,沸水堆核电站工作流程是:冷却剂(水)从堆芯下部流进,在沿堆芯上升的过程中,从燃料棒那里得到了热量,使冷却剂变成了蒸汽和水的混合物,经过汽水分离器和蒸汽干燥器,将分离出的蒸汽来推动汽轮发电机组发电。