亚沸蒸馏酸器savillex使用方法
A. 蒸馏水器有哪些分类
蒸馏水器有哪些分类
蒸馏水器是用电加热自来水来制取纯水的装置,通常是按照蒸馏次数和材质的不同进行分类:
一、按照材质进行分类:
蒸馏水器按其材质可分为玻璃蒸馏水器和不锈钢蒸馏水器。
1.玻璃蒸馏水器又可分为普通玻璃和石英玻璃。石英杂质少,出水很纯净但价格很贵。
石英玻璃蒸馏水器一般有普通玻璃蒸馏水器(一般只有蒸发锅是石英的),石英蒸馏水器,和石英亚沸蒸馏水器三种之分。
石英亚沸蒸馏水器是利用红外线辐射,在低于水的沸点的情况下使水蒸发的,可以避免传统电热加热煮沸使水蒸汽中含有其他杂质,也可避免与水共沸的杂质混入成水中。因此产出水水质比普通不锈钢和石英玻璃蒸馏水器要高很多。但是石英蒸馏水器由于材质问题易碎且体型较小,红外线加热缓慢,因此其产水量不是很高,一般亚沸的最多的1600ML/H。2.不锈钢蒸馏水器可分以不锈钢蒸馏水器和塔式蒸馏水器。
一般蒸馏水器就是传统的不锈钢蒸馏水器。塔式的一般要连接锅炉利用锅炉的蒸汽来制蒸馏水,一般体型也较大,出水量是最大的。塔式的为双重蒸馏水器。二、按照蒸馏次数进行分类:
按蒸馏水器蒸馏的次数可以分为单重,双重,三重蒸馏水器。单重即蒸馏过一次的蒸馏水,双重就是蒸馏过两次,三重就是三次。
1.不锈钢蒸馏水器的出水量一般比玻璃蒸馏水器的出水量要大。由于玻璃材质易碎所以一般玻璃蒸馏水器不是很大,因此出水量也不大。一般最大的在2L/H左右。而塔式的蒸馏水器出水量可以达到400L/H。
2.玻璃蒸馏水器的产出水质比不锈钢蒸馏水器的水质要好。
B. 锂同位素测量
热电离质谱法测量锂同位素
自然界锂有两种稳定同位素6Li和7Li,原子质量分别为6.0151223(5)u和7.0160041(5)u,其丰度分别为0.07591(2)和0.92409(20)(Coplenetal.,2002)。IAEA推荐的锂同位素标准参考物质是NBSL-SVECLi2CO3,其绝对6Li/7Li=0.0832±0.0002(Fleschetal.,1973)。另外还有两个标准物质是富6Li的IRMM-015和天然丰度的IRMM-016,后者的绝对6Li/7Li=0.08212±0.00028(Qietal.,1997)。根据IUPAC的推荐,试样的锂同位素组成要采用δ7Li表示(Coplen,1996)。
目前测定锂同位素的方法主要有历史悠久的热电离质谱法(TIMS)(Sahoo,Masuda,1995)和近期发展起来的多接收等离子体质谱法(MC-ICPMS)(Magnaetal.,2004)。
方法提要
采用碱熔、酸溶或水溶的方法将待测试样中的Li制备成含Li溶液,采用离子交换方法进行Li的分离并转型为Li2B7O4或Li3PO3形式,采用双带热电离的方法获得Li+离子进行锂同位素组成的TIMS测定。
仪器装置
热电离同位素质谱计(VG354,MAT262,IsoProbeT,Triton)。
原子吸收光谱仪。
真空烧带装置。
超净化实验室。
石英亚佛蒸馏器。
超净化干燥蒸发箱。
电子分析天平。
试剂与材料
硼酸优级纯。
氢氧化钠优级纯。
氯化钠优级纯。
磷酸。
低本底亚沸蒸馏盐酸。
无水甲醇优级纯。
低Li亚沸蒸馏水。
1.2mol/LHCl-(4+1)甲醇淋洗溶液由上述试剂配制。
NBS951硼同位素标准溶液ρ(B)=1mg/mL。
各类四氟乙烯器皿烧杯、洗瓶等。
NBSL-SVECLi2CO3锂同位素标准物质。
Ta金属箔和Re金属箔规格:长7.5mm,宽0.76mm,厚0.02mm。
上海正一号阳离子交换树脂(80~100目)。
石英离子交换柱=0.5cm。
离子交换柱的制备将浸泡过夜的上海正一号阳离子交换树脂(80~100目)装入直径为0.5cm的石英离子交换柱中,树脂床高度为10cm,继以200mL4mol/LHCl淋洗,再用高纯水洗至中性,并采用1.2mol/LHCl-(4+1)甲醇淋洗溶液将交换柱中的水排出,最后将树脂倒出,用1.2mol/LHCl-(4+1)甲醇溶液重新装柱备用。
分析步骤
(1)试样制备
a.盐类试样的溶解及水溶液试样的预处理。称取约0.1g盐类试样,用低锂亚沸蒸馏水溶解,过滤除去不溶部分,制备成含Li的溶液备用。水溶液试样过滤除去不溶物后,在低温下蒸发至约3mL备用。
b.离子交换纯化。在准备就绪的试样溶液中加入2.5gNaCl和15mL1.2mol/LHCl-(4+1)甲醇淋洗溶液,以0.2mL/min的流速过柱进行交换,盛样容器中残留的NaCl晶体用少量淋洗溶液转移,剩下的少量NaCl晶体用0.2mL水溶解后再加入2mL淋洗液,混合后倒入柱中,重复一次以上操作。最后用淋洗溶液以0.5mL/min的流速淋洗,根据淋洗曲线收集含Li的淋洗液部分。在超净箱中于60℃蒸发至干,加少量水溶解,再蒸干,重复2次。将生成的溶液通过OH-型阴离子交换柱,将Li转化成LiOH形式备用。
当采用Li3PO4作涂样物质时,将交换分离后的试样溶液蒸干后加入0.3mL0.017mol/LH3PO4,然后在电热板上于90℃蒸发数小时备用。
(2)锂含量和特殊组成测定
a.锂含量的检测。试液中锂的浓度可采用原子吸收光谱法测量,以确定锂同位素质谱测定时的取样量。
b.钽、铼带的加热去气处理。为了降低钽和铼带中的Li及其他杂质的含量,钽和铼带通常要进行加热处理,过程如下:将点焊在灯丝架上的钽和铼带在专用的真空系统中进行电加热处理,加热电流Ta带为3.0A,Re带4.5A,加热时间为1.0h,系统的真空度应优于1×10-3Pa。
c.锂同位素测定。锂同位素分析在热电离同位素质谱计(VG354,MAT261,MAT262,IsoProbeT,TritonT)上进行。
采用Li2B4O7作涂样物质(Xiao,1989):采用去过气的双带或三带,样品带为Ta带,电离带为Re带。涂样时在样品带上涂3μL浓度为1mg/mL的NBS951硼标准溶液(也可采用其他超纯的H3BO3化学试剂),蒸发至近干,再加入0.5~1.0μgLi的试液溶液,通以1.2A电流,加热2min使试液蒸干。装入质谱计,当离子源真空优于3×10-5Pa时开始进行测量。快速升高电离带电离至2.00A,然后以0.2A/min继续升高直到电离带温度为1500℃,温度采用光学温度计测量。然后缓慢升高样品带电流至7Li+离子流达到5×10-12A。对7Li+离子流进行仪器聚焦,当7Li+离子流达到2×10-11A时开始数据采集,采用峰跳扫方式测量7Li+和6Li+离子流强度,基线零点为u/e6.5。
采用Li3PO4作涂样物质(Moriguti,1998):采用去过气的双带或三带,样品带和电离带均为Re带。涂样时在样品带上涂添加有H3PO4的含Li的试样溶液,先在1.0A下加热,随后缓慢升高电流至1.7A,并避免试液沸腾,维持带电流直至磷酸冒烟消失。装入质谱计,当离子源真空优于3×10-5Pa时开始进行测量。首先升高电离带电流至电离带温度为1150℃,样品带电流升至0.3A,维持10min后快速将两加热电流降至0,冷却10min后再重新升高电离带电流至1.05~1.10A,此时温度为850℃,升高样品带电流至0.60A,此时将出现7Li+,随后缓慢升高至7Li+离子流达到(1.05~1.25)×10-11A时开始数据采集。采用峰跳扫方式测量7Li+和6Li+离子流强度,基线零点为u/e6.5。
若采用IsoProbeT或FinniganTriton进行测量,可采用双接收同时进行7Li+和6Li+离子流强度的测量。
试液的锂同位素组成用相对于NBSL-SVECLi2CO3锂同位素标准δ7Li表示:
岩石矿物分析第四分册资源与环境调查分析技术
图87.26表明在不同的电离带温度下以Li2B4O7作涂样物质时,7Li/6Li比值随测量时间的变化。结果表明,当电离带温度低于1200℃时,测定的7Li/6Li比值偏低,且有随时间而升高的趋势。
图87.26 以Li2B4O7作涂样物质时不同电离温度时7Li/6Li比值随时间的变化
按照以上方法对NBSL-SVECLi2CO3锂同位素标准进行重复涂样测定的7Li/6Li比值列于表87.25。
表87.25 对NBSL-SVECLi2CO3锂同位素标准7Li/6Li比值测定的重复性
采用正热电离质谱法测得的NBSL-SVECLi2CO3锂同位素比值
正热电离质谱法在Li同位素地球化学、环境等研究领域获得广泛应用。表87.26总结了世界各实验室采用正热电离质谱法测得的NBSL-SVECLi2CO3锂同位素比值和精度。
表87.26 各实验室采用热电离质谱法测定的NBSL-SVECLi2CO3Li同位素比值
讨论
锂同位素热电离质谱法测定有一个由单带到双带的发展过程。在多带法中由于Li以分子形式蒸发,降低了Li在蒸发过程中的同位素分馏而使测定精度得以提高,最常用的涂样物质有LiNO3、LiCl、LiI、Li2SO4、Li3PO4和Li2B4O7,被检测的离子有Li+、LiF+和Li2BO2+。近些年来,以Li3PO4作涂样形式测定Li+的方法得到更普遍的应用。Xiao(1989)等对采用Li2B4O7作涂样物质测定Li+的热电离质谱法高精度测定锂同位素进行系统研究,发现电离带温度对控制测定中的锂同位素分馏起着决定性作用。在多种涂样物质中,发现Li2B4O7是最好的,能获得最稳定的7Li/6Li比值测定。但是后来有研究表明,Li3PO4作涂样物质具有更多的优越性(Moriguti,1998)。
1)电离温度的影响。由于Li的两种稳定同位素6Li和7Li非常大的相对质量差,在热电离质谱法测定中会产生严重的同位素分馏,使得锂同位素的精密测定十分困难。电离温度是影响Li同位素分馏的重要因素,图87.27表明采用不同涂样物质时,7Li/6Li比值随电离温度的变化;在低温时,测定的7Li/6Li比值严重偏低,随电离温度的升高,测定的7Li/6Li比值逐渐升高,到1200℃时7Li/6Li比值才趋于平稳。这表明在低温时,Li同位素的分馏更为显著,因此在进行Li同位素热电离法测定时,电离温度应在1400℃以上。
2)不同形式涂样物质的比较。采用大分子量的涂样物质能降低Li化合物蒸发过程中的同位素分馏,因此Li同位素测定中采用的涂样物质有一个由低相对分子质量到高相对分子质量的发展过程,所采用涂样物质有LiOH、LiCl、LiNO3、LiF、LiI、Li2B4O7和Li3PO4等。除了这一因素外,涂样物质的腐蚀性和记忆效应以及能否产生稳定的Li+离子流应进行综合考虑。表87.27表明,LiCl和Li2B4O7可能是比较理想的涂样物质,7Li/6Li测定精度可达0.14%以上,而且记忆效应较弱。近些年来,很多实验室采用Li3PO4作涂样物质,也得到比较理想的测定结果。图87.27也表明采用Li3PO4涂样时,记忆Li量与Li2B4O7涂样时相似,测量条件控制得好,可望获得更高的测定精度,不妨采用之。LiF可能是最不合适作为锂同位素测定时的涂样物质,采用LiF作涂样物质,测定精度最低,而记忆效应最强。
图87.27 采用不同涂样物质时7Li/6Li比值随电离温度的变化
表87.27 采用不同锂化合物涂样时对NBSL-SVECLi2CO3锂测定的锂同位素比值和记忆量
参考文献
肖应凯,白玉珍,王蕴慧 .1983.大量钠和镁中微量锂的离子交换分离 [J].理化检验,化学分册,19(6) : 41-43
肖应凯,祁海平,王蕴慧,等 .1988.质谱测定锂同位素组成的分馏效应研究 [J].科学通报,33(17) : 1336-1338
肖应凯,祁海平,王蕴慧,等 .1991.热电离质谱法测定锂同位素中各种涂样形式的比较 [J].科学通报,36 (18) : 1386 -1388
Chan L H,Edmond J M, Thompson G, Gillis K.1992.Lithium isotopic composition of submarine basalts: implications for the lithium cycle in the oceans.Earth Planet Sci.Lett.,108: 151-160
Chan L H.1987.Lithium isotope analysis by thermal ionization mass spectrometry of lithium tetraborate.59: 2662-2665
Coplen T B,Blke J K,Bièvre P De,Ding T,Holden N E,Hopple J A,Krouse H R,Lamberty A,Peiser H S,Révész K,Rieder S E,Rosman K J R,Roth E,Taylor P D P,Vocke J R R D,and Xiao Y K.2002.Isotope-aboundance variations of selected elements.Pure Appl.Chem.,74 (10) : 1987-2017
Coplen T B.1996.Atomic weights of the elements.1995.Pure Appl.Chem,68: 2339-2359
Flesch G D, Anderson, Jr A R and Svec H J.1973.A secondary isotopic atandard for6Li /7Li determinations.Int.J.Mass Spectrom Ion Phys.,265-272.
Green L W, Leppinen J J, Elliot N L.1988.Isotopic analysis of lithium as thermal dilithium fluoride ions.Anal.Chim.Acta,60: 34-37
Huh Y,Chan L H,Zhang L,et al.1998.Lithium and its isotopes in major world revers: implications for weathering and the oceanic budget,geochim.Cosmochim.Acta,62: 2039-2051
Lamberty A,Michiels E,Bievre P D.1987.On the atomic weight of lithium.Int.J.Mass Spectrom Ion Proc.,79: 311-313
Magna T,Wiechert U H,Halliday A N.2004.Low-blank isotope ratio measurement of small samples of lithium using multiple-collector ICPMS.Int.J.Mass Spectrom.,239: 67-76
Moriguti T,Nakamura E.1993.Precise lithium isotopic analysis by thermal ionization mass spectrometry using lithium phosphate as an ion source meterial.Proc.Jpn.Acad.Sci.,69: 123-128
Moriguti T,Nakamura E.1998.High-yield lithium separation and the precise isotopic analysis for natural rock and aqueous samples.Chem.Geol.,145: 91-104
Qi H P,Taylor P D P,Berglund M,Bievre P De.1997.Calibrated measurements of the isotopic composition and atomic weight of the natural Li isotopic reference material IRMM-016.Int.J.Mass Spectrom.Ion Proc,171:263-268
Sahoo S K, Masuda A.1995.High precision isotopic measurement of lithium by thermal ionization mass spectrometry.Int.J.Mass Spectrom.Ion Proc.,151: 189-196
Xiao Y K,Beary E S.1989.High-precision isotopic measurement of lithium by thermal ionization mass spetrometry[J].Int.J.Mass Spectrom Ion Processes,94: 101-114.
You C F,Chan L H.1996.Precise determination of lithium isotopic composition in low concentration natural samples [J].Geochim Cosmochim Acta,60: 909-915
本节编写人: 肖应凯 (中国科学院青海盐湖研究所) 。
C. 质谱测定
1.仪器与试剂
1)质谱仪。本研究所用质谱仪为德国Finnigan公司生产的可调多接收热离子质谱仪(MAT-261),与之联机的计算机用于自动控制、收集数据和数据处理。该仪器通过热表面电离从离子源产生离子,离子束经0.2mm宽的固定狭缝离开离子源,加速到具有10keV的能量,以26.5°的角度射入90°磁扇场,并以同样的角度射出。这种装配可以使离散率增加一倍,使得23cm的分离系统具有与粒子轨迹半径为46cm的常规系统同等的离散效果。收集器狭缝宽度为0.6mm,分辨率大约为500(定义10%的峰谷)。
2)离子交换柱。实验用交换树脂是强碱型阴离子交换树脂AG-1×8(200~400目)或Dowex 1×8(200~400目)。下部树脂床内径为5.5~6mm,高15mm,上部盛液管内径为10mm,高100mm,总容积5~6mL。树脂柱用6mol/L HCl和亚沸蒸馏水(二次去离子水经亚沸蒸馏得到)交替再生3次,最后用混合酸(2mol/L HCl和1mol/L HBr以2:1混合)平衡酸度。
3)其他设备。本实验使用的是80-1型离心机,用于上柱前样品离心;水纯化系统:分别得到一次去离子水和二次去离子水,最后得到的水的电阻率可达18 106Ω;石英亚沸蒸馏器:用于蒸馏HCl、HNO3、HBr和二次去离子水;振荡器:用于振荡土壤样品;器皿:本实验所用器皿均为聚四氟乙烯、聚乙烯或石英玻璃。
4)试剂:盐酸和硝酸均由工艺超纯试剂经石英亚沸蒸馏器蒸馏制备;氢溴酸由分析纯氢溴酸经石英亚沸蒸馏器2次蒸馏之后,再经强碱型阴离子交换树脂AG-1×8(200~400目)或Dowex-1×8(200~400目)交换制备;混合酸(由2N 盐酸和1N 氢溴酸以2:1混合),铅同位素标准物质NBS-981,一次去离子水,二次去离子水和亚沸蒸馏水;硅胶(光谱纯SiO2和稀硝酸在超声波作用下配制成胶体溶液),磷酸(由优质纯磷酸经阳离子树脂交换纯化),饱和硼酸钠溶液(分析纯硼酸钠经亚沸蒸馏水重结晶)。
图5-5 铅的分离与纯化流程图
2.涂样及质谱分析
将铼带用无水酒精清洗干净,用点焊机将铼带点焊在灯丝支架上,将已点焊好的铼带支架插装在离子源转盘上,并装入烧带装置中,待抽真空至n×10-5Pa后按预定程序给灯丝供电,在3~5A电流下烧10~30min,以除去铼带表面及其本身所含的铅。
将已预烧好的灯丝转盘移入装样用的空气净化柜内,取下电离带位置上的所有灯丝,依次逐个往灯丝上滴加试样:用清洗干净的微量取样器吸取少量硅胶滴加在灯丝铼带的中心部位,给灯丝加上1A左右的电流以微热烤干硅胶;用微量取样器吸取1滴0.5%的硝酸溶液溶解试样,用清洗干净的微量取样器取出试样溶液滴加在已经烤干的硅胶上;继续加热灯丝使样液的水分蒸发干,再用微量取样器滴加一小滴饱和硼砂溶液(分析纯硼酸钠溶液经亚沸蒸馏水重结晶),蒸干;然后加大通过灯丝的电流驱赶试样中残余酸根,待不再冒白烟后,继续加大电流将灯丝烧至暗红色为止。转动转盘换至另一灯丝位置,以同样的程序装下一个试样。并以此将转盘上全部灯丝加满,装样结束后,往电离带位置上插装灯丝插件,检查灯丝带的几何位置,再装上屏蔽罩,最后将转盘装入质谱计离子源中,启动真空系统。
待质谱仪的真空达到要求(n×10-7Pa)后,打开通往分析管道的隔离阀,给蒸发带灯丝加上电流,缓慢升温。当灯丝温度达到1000~2000℃时,寻找208Pb的离子流,并小心调节加到蒸发带上的电流,使离子流达到足够的强度(10-13~10-11A)并保持稳定,即可启动自动测试程序,测定铅同位素比值。
每个试样分析采集6~20组数据,每组数据取8~10次扫描数据的平均值。由联机计算机给出由6~20组数据计算机样品铅同位素比值的平均值及其标准偏差。
D. 铁、铜、锌同位素测定
铁、铜、锌同位素多接收器等离子体质谱法测定
自然界中Fe有4个稳定同位素,分别为54Fe、56Fe、57Fe和58Fe;Cu有2个稳定同位素,分别为63Cu和65Cu;Zn有5个稳定同位素,分别为64Zn、66Zn、67Zn、68Zn和70Zn。目前,国际上通用的Fe同位素标准物质为IRMM-014,Cu同位素标准物质为SRM976。目前还没有经过严格同位素组成定值的Zn同位素标准物质,不同实验室有自己的内部标准,使用最多的是“里昂标准”。“里昂标准”是一种JMC生产的Zn单元素标准溶液,批号为3-0749L。
多接收器等离子体质谱仪(MC-ICPMS)的诞生使得精确测试Fe、Cu、Zn同位素组成成为可能。MC-ICPMS的优势主要是离子化效率高以及测定精度高。
自20世纪90年代末期以来,Fe、Cu、Zn同位素研究受到了广泛的关注并且被快速地应用于宇宙化学、地球化学和生物作用过程领域,成为国际地球科学和生命科学领域一个新兴的研究方向。这些新的同位素体系为了解地球各圈层中的相互作用提供一种崭新的地球化学示踪手段。各国学者对不同的样品进行了Fe、Cu、Zn同位素分析,其中包括:地外物质、火成岩、沉积岩、各种矿物、海水、河水、地下水、生物体等。δ56Fe的变化范围为-2.96‰~0.44‰(Anbar,etal.,2007);δ65Cu的变化范围为-3.70‰~5.74‰(Anbar,etal.,2007);δ66Zn的变化范围为-2.65‰~3.68‰(Luck,etal.,2005;Wasson,etal.,1999)。
随着研究和应用工作的进一步深入,Fe、Cu、Zn同位素势必将成为地球科学和生命科学研究中的一种重要的地球化学手段。
方法提要
采用酸溶法将天然样品中的Fe、Cu、Zn提取出来,使用AGMP-1阴离子树脂对Fe、Cu和Zn进行分离和纯化,制成分别含Fe、Cu、Zn的溶液。使用MC-ICPMS进行Fe、Cu、Zn同位素组成的测定。
仪器和装置
多接收器电感耦合等离子体质谱仪(Nu Plasma、Nu PlasmaHR、Nu Plasma1700、Ne ptune、Iso Probe)。
自动进样器。
膜去溶装置。
超净化学实验室。
双瓶亚佛蒸馏器。
电子分析天平。
水纯化系统。
高精度移液器。
超声波洗涤器。
试剂与材料
超纯盐酸由优级纯盐酸经聚四氟乙烯双瓶亚沸蒸馏制得。用于铜同位素分析需亚沸蒸馏2次。
超纯硝酸由优级纯硝酸经聚四氟乙烯双瓶亚沸蒸馏制得。
超纯氢氟酸由优级纯氢氟酸经聚四氟乙烯双瓶亚沸蒸馏制得。
超纯水自来水经预纯化、初级纯化、高级纯化三级纯化系统(如Millipore、Elga等水纯化系统)获得,电阻率18.2MΩ·cm。
双氧水优级纯。
Fe、Cu、Zn单元素标准溶液光谱纯试剂配制盐酸或硝酸介质。
聚四氟乙烯器皿溶样杯、洗瓶、试剂瓶、广口瓶等。
IRMM-014铁同位素标准物质,SRM976铜同位素标准物质。
高纯度液氩。
AGMP-1阴离子树脂。
离子交换柱的制备采用聚乙烯材料交换柱(规格:6.8×43mm)。AGMP-1树脂首次用前先以水浸泡,弃去上浮颗粒,湿法装柱。先以0.5mol/LHNO3和H2O交替洗数次,再以7mol/LHCl+0.001%H2O2平衡。
器皿清洗实验用器皿需经严格的清洗才能满足超净化学实验要求,基本清洗步骤如下:①优级HNO3加热浸泡24h后,用超纯水清洗3遍;②超纯HNO3加热浸泡24h后,用超纯水清洗3遍;③超纯水加热浸泡24h后,再用超纯水清洗3遍。
分析步骤
(1)试样消解
a.硅酸盐试样的消解。根据试样中铁、铜、锌的含量,称取一定量的粉末试样,放入聚四氟乙烯溶样罐中,加入适量HNO3和HF,加热至120℃,恒温至试样完全消解;蒸干后再用HNO3蒸干数次,去除氟化物;再用HCl蒸干数次,转化为氯化物形态。
b.碳酸盐试样的消解。根据试样中铁铜锌的含量,称取一定量的粉末试样,放入聚四氟乙烯溶样罐中,加入适量2mol/LHCl,加热至120℃,恒温24h,取出上清液;残渣用HNO3-HF混合酸消解后蒸干,再用HNO3蒸干数次,去除氟化物;再用HCl蒸干数次,转化为氯化物形态后,与先前取出的上清液混合,蒸干。
c.硫化物试样的消解。根据试样中铁、铜、锌的含量,称取一定量的粉末试样,放入聚四氟乙烯溶样罐中,加入2mol/LHNO3,加热至120℃,恒温24h,取出上清液;将上清液蒸干后再用HCl蒸干数次,转化为氯化物形态后,与先前取出的上清液混合,蒸干。
d.磁铁矿、赤铁矿、自然铜等试样的消解。将称取的磁铁矿、赤铁矿、自然铜等单矿物试样放入聚四氟乙烯溶样罐中,加入6mol/LHCl,加热至120℃,恒温24h,将上清液取出、蒸干。
(2)化学分离
离子交换纯化。试液以0.5mL7mol/LHCl上柱后,用6mL7mol/LHCl+0.001%H2O2(加H2O2以抑制铁被还原),去除基体元素,再以相同试剂22mL淋洗接收Cu。以20mL2mol/LHCl接收Fe。最后以11mL0.5mol/LHNO3接收Zn(图87.32)。
图87.32 Cu、Fe、Zn淋洗曲线m(Cu)=2μg,m(Fe)=200μg,m(Zn)=20μg
该方法的优点是使用同一离子交换柱实现Cu、Fe、Zn的依次分离。在7mol/LHCl介质条件下,Cu和Co的洗脱曲线重迭(唐索寒等,2006),当试液中Co的含量较高时,会影响Cu同位素比值的准确测定(蔡俊军等,2006)。在6mol/LHCl介质条件下,可以进行Cu和Co的有效分离(唐索寒和朱祥坤,2006)。另外,如果只对试液进行Fe或Zn同位素分析,可适当改变HCl的酸度,减少试剂用量,降低本底。
(3)质谱测定
a.进样方式。纯化后的试液以0.2mol/LHCl或HNO3介质进样。试液通过蠕动泵进入雾化器,形成气溶胶经雾室进入炬管,这就是所谓的“湿等离子体”(wetplasma);或通过膜去溶装置,将溶剂加热挥发穿过半透膜被吹扫气带走,载气将溶质以干气溶胶形式送入炬管,这就是所谓的“干等离子体”(dryplasma)。
与湿等离子体相比,干等离子体技术可以降低挥发性组分产生的干扰信号或噪音,提高信号的灵敏度。对于NuPlasmaHR,在干等离子体工作条件下,Fe的进样浓度约为5×10-6,Cu、Zn的进样浓度约为2×10-7。
为防止交叉污染,在试样-标样或不同试样测量之间需用与进样介质相同的酸对进样系统进行清洗,使待测元素的信号强度降低到可以忽略的程度后进行下个试样或标样的测定。为了提高清洗效果,可首先用较高酸度的酸(一般为2mol/L)清洗,然后用与进样介质相同酸度的酸清洗。
b.数据采集。同位素信号用法拉第杯接收。信号接收前需进行背景值测定,背景值的测定一般有3种模式:①峰位模式(onpeakmode):在不进样的情况下测定各个同位素峰位的背景值。②半峰位模式(half-peakmode):在不进样的情况下测定与待测同位素有半个原子质量数差的位置的噪声,以此作为峰位的背景值。③ESA偏转模式(ESA-offsetmode):在进样的情况下偏转EAS电压,阻止信号进入磁场和接收器,测定仪器噪声,以此作为峰位的背景值。
上述3种背景值测定方法各有利弊。峰位模式是最直接的测定方式,但由于在实际操作过程中难以做到试样测试之间对进样系统的彻底清洗,这种方法得到的背景值实际上含有一定程度的试样信号。ESA偏转模式测得的是仪器的电子噪声,是严格意义上的背景值;在试样测试过程中,实际背景值不仅包括电子噪声,还包括各种离子的散射对待测信号的影响。利用半峰模式进行背景值测定的原理是假定在远离待测同位素峰半个质量数的位置没有实际试样的信号,并且背景值的分布是均一的;实际上散射离子的分布并不一定均一,由于一些双电荷离子的存在可能在某些半个质量数位置存在一定的信号峰。
完成背景值测定之后即进行试样测定,试样的实际信号等于测量信号减去背景值。这一过程可以由计算机在线直接完成,也可以根据需要离线操作。
信号采集在计算机的控制下自动进行。在进行Fe、Cu、Zn同位素测量时,如果每个数据点的积分时间为10s,每组(block)数据采集10~20个数据点即可。
(4)仪器质量分馏校正与数据表达
a.仪器质量分馏校正。与TIMS相比,MC-ICPMS同位素分析可以产生较大的仪器质量歧视(instrumental mass discrimination)。在正常仪器工作条件下,Fe、Cu、Zn同位素质量范围的仪器质量歧视为3%u-1。原则上,用MC-ICPMS进行同位素比值测定时仪器的质量歧视可以通过元素外标法(element doping method)、标样-试样交叉法(standard-sample-bracketing method)或双稀释剂法进行校正。
标样-试样交叉法。在仪器调试稳定后,进行标样-试样的交叉测定。以试样前后两次标样结果的平均值为标准,计算试样的同位素组成相对与标样的偏差。该方法的最大优点是操作简便,但要求化学纯化过程的回收率达到99%以上,以避免纯化过程中可能造成的同位素分馏。运用标样-试样交叉法进行仪器质量歧视校正的前提,是仪器对于标样和试样的质量歧视在测试误差范围内相同。在实际操作过程中,标样的同位素比值是通过试样测定前后两次标样测定值的内差获得,因此该方法允许测试过程中存在相对均匀的质量分馏飘移。
元素外标法。在试样和标样溶液中加入与待测的元素的质量数相近的至少具有两个同位素的元素(进行Cu同位素测定时一般以Zn为外标元素,进行Zn同位素测定时一般以Cu为外标元素,进行Fe同位素测定时可以Ni为外标元素),对这两个元素的同位素进行同时测定,选择符合所用仪器的质量分馏规律,以外标元素为标准计算质量分馏因子,假定待测元素的同位素的质量分馏因子与外标元素的相同,计算试样和标样的待测元素的同位素“真值”,再根据此“真值”计算试样的同位素组成与标样的偏差。应当指出,运用元素外标法进行同位素测定时,仍需按标样-试样交叉法的程序进行。与单纯的标样-样品交叉法相比,该方法有可能在一定程度上提高试样的测试精度。
双稀释剂法。除了上述两种方法外,进行Fe同位素测定时还可用双稀释剂法。该方法在样品处理前定量加入已知同位素比值的两种Fe同位素(一般为57Fe和58Fe),选择适合所用仪器的质量分馏规律,对试样和标样测试过程中的质量分馏进行校正,获得试样和标样同位素组成的“真值”。该方法的优点是对试样化学处理的要求相对较低,并且可以避免测试可能存在的基质效应。该方法操作繁琐,并且不能对试样所有Fe同位素进行测定。
b.标准物质与数据表达。样品的Fe、Cu、Zn同位素组成以相对于标准物质的千分偏差或万分偏差表示:
岩石矿物分析第四分册资源与环境调查分析技术
岩石矿物分析第四分册资源与环境调查分析技术
当前,国际上通用的铁同位素标准物质为IRMM-014,铜同位素标准物质为SRM976。对于锌同位素,由于目前还没有经过严格同位素组成定值的标准物质,不同实验室有自己的内部标准,使用最多的是“里昂标准”。里昂标准是一种JMC生产的Zn单元素标准溶液,批号为3-0749L。
(5)同质异位素干扰运用MC-ICPMS进行Fe、Cu、Zn同位素测定时可能存在一系列的同质异位素干扰(表87.29)。概略地讲,这些同质异位素干扰可以分为两类:一类与试样的成分有关,如54Cr+对54Fe+、64Ni+对64Zn+的干扰;另一类与测试方法有关,如[14N40Ar]+对54Fe+、[16O40Ar]+对56Fe+的干扰。与试样有关的干扰可以通过化学纯化解决(唐索寒等,2006;唐索寒和朱祥坤,2006),而与测试方法本身有关的干扰则需要通过改变工作条件、干扰信号扣除等方法克服。
表87.29 Fe、Cu、Zn同位素测定过程中潜在的干扰信号
a.低分辨率模式下同质异位素干扰的评估。对于绝大多数试样而言,经过化学纯化后可以有效地去除可能的干扰元素,满足MC-ICPMS进行Fe、Cu、Zn同位素测定的要求(唐索寒等,2006;唐索寒和朱祥坤,2006)。
对于Cu、Zn同位素测定,化学纯化后的试样产生的同质异位素干扰信号非常低,加之运用标样-试样交叉法进行仪器质量分馏校正可以抵消部分干扰信号,干扰信号一般可忽略不计。应当注意的是,由于Na无处不在,进行Cu同位素测定时应特别注意可能的Na污染问题,经常性地对试剂中的Na含量进行检测。正常工作条件下,一般应保持试液中的23Na/63Cu<0.01。进行Zn同位素测定时,化学纯化后的试液几乎没有对64Zn+和66Zn+的干扰信号,但有可能存在一定程度的对67Zn+和68Zn+的干扰(表87.29)。对该问题的一种有效的评估方式是,以一定浓度的Zn溶液为标样,对含不同浓度的Zn的溶液进行测定,检测Zn同位素组成的测定值随浓度的变化情况(李世珍等,2008),并由此得出试液的Zn浓度相对与标样的允许变化范围。如果质量数为67和68的干扰信号难以控制到忽略不计的程度,可只报道66Zn/64Zn比值。
与Cu、Zn同位素不同,在低分辨模式下进行Fe同位素测定时存在较强的同质异位素干扰(表87.29),必须对干扰信号的强度进行详细评估,并通过一系列操作,抑制干扰信号强度,提高信号-干扰比。具体地讲,这些操作过程包括以下几个方面:①通过膜去溶装置进样,去掉溶液中的挥发性组分,降低干扰信号强度。②改变RF输出功率。干扰信号的强度可随RF功率的改变而改变,为了最大限度地降低干扰信号的强度,在低分辨率模式下运行时,需要在1100~1600W寻找RF的最佳输出功率。③降低仪器灵敏度。离子信号通过特制的低灵敏度进样锥进入质谱仪,在降低信号强度的同时,该进样锥可有效地抑制[40Ar14N]+、[40Ar16O]+和[40Ar17O]+等干扰信号的产生。④增加试液浓度。在降低仪器灵敏度的同时,增大试液浓度,提升信噪比,从而降低干扰信号的影响。⑤扣除干扰信号。经过上述操作后对仍存在的干扰信号的大小进行评估,在测得的离子信号中扣除相应的干扰信号。⑥试液与标样的浓度匹配。如上所述,仪器的质量歧视校正通过试液-标样交叉法进行,Fe同位素比值的测定结果以试液相对于标样的千分偏差表示,见公式(87.35)、公式(87.36)。因此,在理想状态下(即干扰信号的波动可以忽略不计),如果标样与试液的浓度完全相同,通过与标样的归一化,干扰信号的影响将被抵消。
b.高分辨率模式下同质异位素干扰的分离。进行Fe同位素测定的主要干扰信号是ArN+、ArO+离子(表87.29)。严格地讲,这些离子和与之相对应的Fe同位素间存在微小的质量差异,利用这一差异,可以在高分辨下实现Fe同位素和对应的ArN+、ArO+离子的有效分离。图87.33为NuPlasmaHR型质谱仪在高分辨模式下将多原子干扰信号与待测信号分开的图解,其中左边标有54、56、57的为真正试液的Fe信号,而中间3线重叠处为干扰信号与试液信号的叠加,右边为干扰信号。取无干扰处的Fe信号就可得到试液真正的Fe信号,从而有效地将干扰去除。
图87.33 高分辨下Fe同位素与干扰峰的分离54Fe+、56Fe+和57Fe+谱图的叠加
与低分辨相比,仪器在高分辨模式下运行时,信号损失约为90%。在高分辨模式下,采用正常的进样锥,所需试液浓度与低分辨模式下相近。
(6)基质效应与浓度匹配
运用标样-试液交叉法进行仪器质量分馏校正的前提是,在误差范围内,测试过程中仪器的质量分馏对于试样和标样是相同的。如果在测试过程中因试样与标样化学成分的不同而导致仪器质量分馏的变化,将会使运用标样-试样交叉法进行仪器质量校正后的数据偏离真值,这就是所谓的基质效应(matrixeffects)。在运用MC-ICPMS进行同位素测定时,基质效应是个值得重视的问题。例如,在进行Fe同位素测定时,当纯化后的试样中Al的含量大于Fe含量的2%时,Fe同位素的测量值就有可能偏离真值(朱祥坤等,2008)。
基质效应的另一种表现形式是酸度对仪器质量分馏的影响。李津等(2008)发现在HNO3介质条件下进行Cu、Zn同位素测定时,仪器的质量分馏对酸度非常敏感,而在HCl介质中,酸度的影响则小得多。
基质效应的一种特殊表现形式是浓度效应,也就是说,仪器的质量分馏受溶液中待测元素的浓度影响。Zhuetal.(2002)在研究Ti同位素测定方法时首先发现了这一现象,进一步的研究表明,在进行Fe同位素测定时需将样品相对于标样的Fe的浓度偏差保持在15%以内(朱祥坤等,2008)。
综上所述,基于基质效应和测试过程中一定程度的干扰信号的影响,在运用MC-ICPMS进行Fe、Cu、Zn等同位素测定时,必须保持试样和标样中待测元素的浓度以及介质的酸度相匹配。二者间允许的偏差可能与具体仪器和工作条件有关。因此,在Fe、Cu、Zn进行方法移植时,需对相关问题进行细致的调查,进而确定出针对所用仪器的酸度和试样浓度的允许变化范围。
方法的重复性
运用标样-样品交叉法进行仪器质量分馏校正时,Fe、Cu、Zn同位素的测试结果的长期重现性(即外部精度,2SD)一般好于0.05‰每原子质量数。
参考文献和参考资料
蔡俊军,朱祥坤,唐索寒,等.2006.多接收电感耦合等离子体质谱Cu同位素测定中的干扰评估[J].高校地质学报,12:392-397
李津,朱祥坤,唐索寒.2008.酸度对多接收器等离子体质谱法Cu、Zn同位素测定的影响[J].分析化学,36(9):1196-1200
李世珍,朱祥坤,唐索寒,2008.多接收器等离子体质谱法Zn同位素比值的高精度测定[J].岩石矿物学杂志,27(4):273-278
唐索寒,朱祥坤,蔡俊军,等.2006.用于多接收器等离子体质谱铜铁锌同位素测定的离子交换分离方法[J].岩矿测试,25:5-8
唐索寒,朱祥坤.2006.AGMP-1阴离子树脂元素分离方法研究[J].高校地质学报,12:398-403
朱祥坤,李志红,赵新苗,等.2008.铁同位素的MC-ICPMS测定方法与地质标准物质的铁同位素组成[J].岩石矿物学杂志,27 (4) : 263-272
Anbar A D,Rouxel O.2007.Metal stable isotopes in paleoceanography [J].Annu.Rev.Earth Planet Sci.,35:717-746
Luck J M,Ben Othman D,Albaréde F.2005.Zn and Cu isotopic variations in chondrites and iron meteorites: early solar nebula reservoirs and parent-body processes [J].Geochimica Cosmochimica Acta, 69(22) : 5351-5363
Wasson J T, Lange D E, Francis C A, et al.1999.Massive chromite in the Brenham pallasite and the ractionation of Cr ring the crystallization of asteroidal cores [J ].Geochim Cosmochim Acta,63: 1219-1232
Zhu X K,Makishima A,Guo Y,et al.2002.High precision measurement of titanium isotope ratios by plasma source mass spectrometry [J].Intenational Journal of Mass Spectrometry,220: 321-329
E. 硼同位素测量
硼同位素正热电离(Cs2BO2+)质谱法测量
自然界硼有两种稳定同位素,即11B和10B,它们的相对丰度分别为80.173(13)%和19.827(13)%(Coplen,etal.,2002)。近十几年来,自然环境样品中硼同位素比值的测定引起了人们极大的兴趣,因为它能给出有关地质和环境过程的非常有价值的信息。所研究的样品有铝硅酸盐岩石和沉积物、硼酸盐矿物、碳酸盐、珊瑚、海水、咸水、盐湖卤水、地下水、热液矿床水等,其δ11B值的变化范围为-34.2‰~59.2‰(Coplen,etal.,2002)。随着硼同位素化学及地球化学研究的更深层次的发展,对硼同位素测定的精度提出了更高的要求。
热电离质谱是硼同位素测定的主要方法,它的测定精度高,所用试样量少,试样的制备过程比较简单。热电离质谱法测定硼同位素有负热电离质谱法(NTIMS)和正热电离质谱法(PTIMS)两种。Palmer(1958)利用硼砂涂样,首次从Na2B4O7获得了质量数为88和89的Na210BO2+和Na211BO2+离子峰,建立了正热电离质谱测定硼同位素的方法,但是这种方法受到很多因素的影响,限制了测定精度的提高,测定精度为0.2%~0.3%。Spivack(1986)和Ramakumar(1985)首先实现了采用Cs2BO2+对硼同位素组成的高精度测定。由于Cs2BO2+比Na2BO2+具有高得多的质量数,因此在测定过程中的硼同位素分馏大为减小,硼同位素测定精度得到一定的提高。但是,它仍受到与采用Na2BO2+离子时相同影响因素的限制,特别对地质试样的测定精度难以保证。
肖应凯(XiaoYK,etal.,1988)发现电离带上石墨的存在能极大地增强Cs2BO2+离子的热发射,建立了高精度硼同位素的质谱测定新方法,在硼同位素测定上取得了重要突破,成为硼同位素测定最精密的方法,在世界上获得广泛应用。
方法提要
采用酸溶或碱熔的方法将天然试样中的B提取出来,制备成含硼溶液;或液态样品采用AmberliteIRA743型B特效离子交换树脂和由阳离子交换树脂与阴离子交换树脂组成的混合离子交换树脂进行B的分离和纯化,制成含H3BO3的溶液,加入适当量的Cs2CO3(或CsOH)和甘露醇,使B∶Cs∶甘露醇=1∶0.5∶1(摩尔比)。在石墨的存在下采用热电离方式获得Cs2BO2+离子进行硼同位素组成的测定(XiaoYK,etal.,1988)。
仪器和装置
热电离同位素质谱计(VG354,MAT262,IsoProbeT,FinniganTriton)。
真空烧带装置。
超净化实验室。
石英亚佛蒸馏器。
超净化干燥蒸发箱。
离心机。
铂金坩埚。
高温炉。
分光光度计。
试剂和材料
碳酸铯(Cs2CO3) 高纯。
进口光谱纯石墨。
氢氧化钠 优级纯。
Na2CO3优级纯。
K2CO3优级纯。
NaHCO3分析纯。
低B高纯水 将18.2MΩ.cm-1MilliQ纯化水再经AmberliteIRA743硼特效树脂交换柱纯化,或采用石英亚佛蒸馏器进行二次重蒸馏,再经AmberliteIRA743硼特效树脂交换柱纯化。
盐酸 优级纯。
低B亚沸蒸馏盐酸 将优级纯HCl经石英亚佛蒸馏器蒸馏或采用在密封容器中平衡方法纯化,9.0mol/L、2.0mol/L及0.1mol/L。
低B亚沸蒸馏无水乙醇。
(4+1)乙醇-石墨悬浮液 由低B亚沸蒸馏无水乙醇、低B亚沸蒸馏水和光谱纯石墨配制。
甘露醇溶液 分析纯,φ(甘露醇)=1.82%
AmberliteIRA743硼特效离子交换树脂粒径80目。
Dowex50W×8阳离子交换树脂。
Ion-exchangeⅡ(德国产)弱碱性阴离子交换树脂。
离子交换柱制备:
AmberliteIRA743硼特效离子交换柱将约0.5mLAmberliteIRA743(80~100目)硼特效树脂装入Φ0.2cm聚乙烯管中,树脂高度1.5cm.交换树脂顺序用5mL2mol/LHCl、5mL高纯水、5mL2mol/LNH4OH和10mL高纯水再生。
混合离子交换柱将Dowex50W×8阳离子交换树脂用2mol/LHCl再生,用低硼水洗至中性。IonexchangerII弱碱性阴离子交换树脂用饱和NaHCO3溶液再生,用低硼水洗至中性。将以上2种再生好的离子交换树脂等体积混合均匀,取1.0mL装入Φ0.2cm聚乙烯管中。
甲亚胺-H酸0.45g甲亚胺-H酸和1g抗坏血酸,溶解在100mL亚沸蒸馏水中。
缓冲溶液251gNH4AC、15gEDTA和125g冰醋酸,溶于400mL亚沸蒸馏水中。
各类四氟乙烯器皿烧杯、洗瓶等。
NBSSRM951H3BO3硼同位素标准物质。
NBSSRM952富10B稀释剂。
Ta金属箔(规格:长7.5mm,宽0.76mm,厚0.02mm)。
分析步骤
(1)试样制备
a.岩石试样分解。称取约1.0g岩石试样,在铂金坩埚内与2.5gNa2CO3和2.5gK2CO3混合均匀,然后在高温炉中于850℃熔融45min。冷却后用0.6mol/LHCl浸取坩埚内熔融物,在石英离心管内进行离心,并用无硼水洗涤不熔物两次,收集全部清液(含有试样中全部硼),此清液将进行下一步硼的纯化(王刚等,2000)。
b.离子交换纯化。试样溶液(pH7~10)首先通过再生好的AmberliteIRA743树脂柱,流速控制在0.5mL/min以内。然后用10~15mL低B水清洗柱子。柱子内吸附的硼用10mL75℃的0.1mol/mLHCl淋洗。淋洗液在超净蒸发干燥箱中于60℃蒸发至约0.1mL,冷却至室温后,将浓缩的淋洗溶液通过混合离子交换柱,流速控制在0.3mL/min以内,此时注意检测流出液应呈中性,若呈酸性,表明混合树脂量不够,应添加混合树脂,重新进行交换。最后用约10mL低B高纯水清洗混合离子交换柱子。最终的淋洗液被收集在Teflon烧杯中,进行淋洗液中B含量的测定。溶液中硼浓度用甲亚胺-H光度法测定。取1mL试样溶液、2mL甲亚胺-H酸溶液和2mL缓冲溶液,充分混合后静置120min,在420nm处测定硼-甲亚胺-H配合物的吸光值,由校准曲线获得B的含量。也可以采用SRM952作稀释剂,并在带上加入26μg恒定量铯用同位素稀释法测定硼量。根据测定结果,加入适量Cs2CO3,使B/Cs摩尔比约为2∶1,并加入甘露醇溶液,使硼与甘露醇的摩尔比约为1∶1。淋洗液再次在超净蒸发干燥箱中于60℃蒸发至约0.2mL,转移到聚乙烯离心管中继续蒸发至硼的浓度~1mg/mL。将离心管内的试样溶液密封保存,供质谱测定用(肖应凯等,1997;张崇耿等,2003;Wang,etal.,2002;Xiao,etal.,2003)。
(2)质谱测定
a.钽带的加热去气处理。为了降低Ta带中的B及其他杂质的含量,Ta带通常要进行加热处理:将点焊在灯丝架上的Ta带在专用的真空系统中进行电加热处理,加热电流为3.0A,加热时间为1.0h,系统的真空度应优于1×10-3Pa。
b.硼同位素测定。采用扁平并经去气的钽带(7.5mm×0.76mm×0.025mm),带首先涂覆2.5μL(约含100μg石墨)的石墨-乙醇-水悬浮液,蒸至近干,再加入试样溶液,石墨悬浮液和硼溶液布满整个带时能获得最好结果,然后并通以1.2A电流下烘干5min。
将涂好试样的灯丝装入质谱计离子源,对离子源抽真空达到3×10-5Pa时,开始进行测量。将带加热电流快速升至0.5A,然后以0.05A/min速率增加电流,在Cs2BO2+测量前发射的133Cs+离子可用作监控和对仪器聚焦。当133Cs+离子流为2×10-12A时,Cs2BO2+离子流信号一般为2×10-14A,以同样速度增加带电流直到Cs2BO2+离子流为3~5×10-12A,此时带电流一般为1.40~1.60A,由此电流产生的带温度太低,不能用光学高温计准确测量。
在308和309质量峰间采集数据,在306.5处测定基线零点,它在307~310质量范围内确实没有明显变化。测定时采用单峰跳扫的方法分别测量质量数为309(133Cs112B16O+2+133Cs102B16O17O+)和308(133Cs102B16O+2)的离子流强度I309和I308,得到R309/308=I309/I308。然后进行17O校正得到11B和10B丰度比11B/10B,即:
岩石矿物分析第四分册资源与环境调查分析技术
试样的硼同位素组成用相对于NISTSRM951硼酸标准的δ11B表示:
岩石矿物分析第四分册资源与环境调查分析技术
式中:(11B/10B)SRM951为测定的NISTSRM951硼酸标准的11B/10B比值。
图87.20为典型的单次测定中Cs2BO+2信号强度和同位素比值随时间的变化。
图87.20 R309/308比值和Cs2BO2+离子流强度随时间的变化
按照以上方法对NISTSRM951硼酸标准进行重复涂样测定,结果如表87.22所示,相对标准偏差为0.0034%(2σ)。
表87.22 方法的重现性(对NISTSRM951硼酸标准进行重复涂样测定)
续表
c.同质异位数的干扰。采用Cs2BO+2离子进行硼同位素测定时可完全消除锶的干扰,但有机质和NO-3却是潜在的干扰因素(Xiao,Wang,1998;Weietal.,2004)。有机质或NO-3存在时,除在质量数312处可观察到很强的离子峰外,还会诱发CNO-的合成,从而导致Cs2CNO+离子的产生,在质量数308(133Cs212C14N16O)和309(133Cs213C14N16O+133Cs212C15N16O+133Cs212C14N17O)处产生离子峰而严重干扰硼同位素的测定,由于14N丰度比15N丰度要高得多,因此会使11B/10B测定比值偏低,甘露醇的存在能加剧这种干扰。
图87.21是NO-3与含有Cs的NIST951硼溶液同时涂在事先涂有石墨的金属带上,在不同时间测定11B/10B比值的变化。只有NO-3存在时,测定的11B/10B比值在开始时明显偏低,然后再上升到正常值,11B/10B比值上升的速率随HNO3量的增加而降低;但一般在加热1h后,NO-3的影响将消失。有甘露醇存在时,NO-3的影响将严重得多。当有0.5μgNO-3存在时,开始时测定的11B/10B比值明显偏低,加热2h以后才上升到正常值;而当NO-3大于1.0μg时,加热270min以后,测定的11B/10B比值仍比正常值偏低(见图87.22)。
图87.21 只有NO-3存在时11B/10B测定比值随时间的变化
d.采用Cs2B4O7方法测得的SRM951硼同位素标准的11B/10B比值。目前世界上通用的硼同位素标准参考物质是NBSSRM951硼酸,绝对丰度值11B/10B=4.04362±0.00137(Catanzaro,1970)。不同实验室采用不同的测定方法的测定值却有较大范围的变化(3.987~4.05595)。
图87.22 NO-3和甘露醇同时存在时11B/10B测定比值随时间的变化
Cs2B4O7方法,特别是Cs2B4O7-石墨方法现已成为硼同位素质谱法测定的主流,在同位素地球化学、环境等研究领域获得广泛应用。表87.23总结了世界各实验室采用Cs2B4O7方法测定的SRM951硼同位素标准的11B/10B比值和测定精度。
表87.23 采用Cs2B4O7方法测得SRM951硼同位素标准的11B/10B比值
参考文献
王刚,肖应凯,王蕴慧,等 .2000.岩石中硼的提取分离及同位素组成的测定 .岩矿测试,19(3) : 169-172
张崇耿,肖应凯,魏海珍,等 .2003.珊瑚中硼的分离及其同位素组成的测定 .理化检验 (化学分册) ,39 (11) : 652-654
肖应凯 .2003.石墨的热离子发射特性及其应用 .北京: 科学出版社
肖应凯,刘卫国,肖云,等 .1997.硼特效树脂离子交换法分离硼的研究 .盐湖研究,5 (2) : 1 -6
Aggarwal J K,Palmer M R.1995.Boron isotope analysis: a review.Analyst,120: 1301-1307
Catanzaro E J,Champion C E,Garner E L,et al.1970.Standard reference materials: boron acid; isotoic and assay standard reference materials.natl.Bur.Stand.(U S) Spec.Publ.,260-17
Coplen T B,Blke J K,Bièvre P De,et al.2002.Isotope-aboundance variations of selected elements.Pure Appl.Chem.,74 (10) : 1987-2017
Deyhle A.2001.Improvements of boron isotope analysis by positive thermal ionization mass spectrometry using static multicollection of Cs2BO+2ions.Int.J.Mass Spectrom,206: 79-89
Gaillardet J, Allègre C J.1995.Boron isotopic compositions of coral: seawater or diagenesis record? Earth Plan.Sci.Lett.,136: 665-676
Ishikawa T,Nakamura E.1990.Suppression of boron volatilization from a hydrofluoric acid solution using a boron- mannitol complex.Anal.Chem.,62: 2612-2616
Ishikawa T,Nakamura E.1993.Boron isotope systematics of marine sediments.Earth and Planet Sci.Lett.,117:567-580
Jiang S Y.2001.Boron isotope geochemistry of hydrothermal ore deposits in China: A preliminary study.Phys Chem.Earth (A) ,26 (9-10) : 851-858
Leeman W P,Vocke B D,Beary E S,et al.1991.Precise boron isotopic analysis of aqueous samples: ion exchange extraction and mass spectrometry.Geochim Cosmochim Acta,35: 3901-3907
Nakamura E,Ishikawa T,Brick J L,et al.1994.Precise boron isotopic analysis of natural rock samples using a boron-mannitol complex.Chem Geol,94: 193-204
Nakano T,Nakamura E.1998.Sataic multicollection of Cs2BO+2ions for precise boron isotope analysis with positive thermal ionization mass spectrometry.Int.J.Mass Spectrom,176: 13-21
Palmer G.H.1958.Thermal emission ion source in solid-source mass spectrometry.J.Nucl.Energy,7: 1-12
Ramakumar K L, Parab A R, Khodade P S, et al.1985.Determination of isotopic composition of boron.J.Radioanal Nucl.Chem.Lett.,94: 53-62
Spivack A J,Edmond J M.1986.Determination of boron isotope ratios by thermal ionization mass spectrometry of the dicesium metaborate cation.Anal Chem,58: 31-35
Swihart G H,McBay E H,Smith D H,et al.1996.A boron isotopic study of a mineralogically zoned lacustrine borate deposit: the Kramer deposit,California,USA.Chem Geol,127: 241-250
Tonarini S,Pennisi M,Leeman W P.1997.Precise boron isotopic analysis of complex silicate (rock) samplesusing alkali carbonate fusion and ion-exchange separation.Chem Geol,142: 129-137
Wang Q Z,Xiao Y K,Wang Y H,et al.2002.Boron separation by the two-step ion-exchange for the isotopic measurement of boron.Chin J.Chem,20: 45-50
Wei H Z,Xiao Y K,Sun A D,et al.2004.Effective elimination of isobaric ions interference and precise thermal ionization mass spectrometer analysis for boron isotope.Int.J.Mass Spectrom,235,187-195
Xiao Y K,Beary E S,Fassett J D.1988.An improved method for the high-precision measurement of boron by thermal ionization mass spectometry.Int.J.Mass Spectrom Ion Proc.,85: 203-213
Xiao Y K,Liao B Y,Liu W G,et al.2003.Ion exchange extraction of boron from aqueous fluids by Amberlite IRA 743 resin.Chin.J.of Chem,21: 1073-1079
Xiao Y K,Wang L.1998.Effect of NO-3on the isotopic measurement of boron.Int.J.Mass Spectrom Ion Proc.,178: 213-220
Zhai M Z,Nakamura E,Shaw D M,et al.1996.Boron isotope ratios in meteorites and lunar racks.Geochim et Cosmochim Acta,60: 4877-4881
本节编写人: 肖应凯 (中国科学院青海盐湖研究所) 。
F. 详细介绍多效蒸馏器的工作原理及操作使用方法
太阳能海水蒸馏器 主题词或关键词: 太阳能 能源科学 蒸馏器 内容第二次世内界大战中,美国国防部制造了许容多军用海水淡化急救装置,供飞行员和船员落水后取水用,这种装置实际上是一种简易的太阳能蒸馏容器。
对于微小的压力降就会引起蒸汽的流动。在1mbar下运行要求在沸腾面和冷凝面之间非常短的距离,基于这个原理制作的蒸馏器称为短程蒸馏器。短程蒸馏器(分子蒸馏)有一个内置冷凝器在加热面的对面,并使操作压力降到0.001mbar。
G. 岩石与单矿物铷-锶年龄测定
在计算年龄的(86.41)式中,锶同位素初始比值(87Sr/86Sr)i既是未知数又不能直接测定。为了解决这个问题,测定岩石和单矿物的铷-锶年龄有模式年龄和等时线年龄两种方法。模式年龄法是给试样假设一个初始比值,这个方法仅适用于一些年代较老、富铷贫锶的单矿物,如天河石、铯榴石、锂云母等,以及一些特殊情况。获得等时线年龄需要测定一组试样(5~6个以上),该组试样要求具有相同形成年龄和相同的锶同位素初始比,并且自岩石(或矿物)形成以来其Rb-Sr体系一直保持封闭状态。在满足这3个条件情况下,(86.40)式是一个直线方程,在87Sr/86Sr-87Rb/86Sr直角坐标图上该组试样将能联成一条直线,该直线称作Rb-Sr等时线,它在Y轴上的截距给出锶同位素的初始比值(87Sr/86Sr)i,它的斜率是b:
岩石矿物分析第四分册资源与环境调查分析技术
另外根据直线最佳拟合需要,构成一条等时线的试样点要求有合理的分布,即试样之间Rb/Sr比值应该有一定程度变化。一般来说,低Rb/Sr比试样比较容易获得,关键在挑选高Rb/Sr比试样,下面的公式可以帮助选择:
岩石矿物分析第四分册资源与环境调查分析技术
该公式依据当前Sr同位素的测定精度而定,Δ(Rb/Sr)表示试样间Rb/Sr比的最大差值,年龄t单位:Ma。
方法提要
按照等时线要求选择一组岩石或单矿物试样,氢氟酸+高氯酸溶样,在阳离子树脂交换柱上用不同浓度盐酸色层分离铷和锶,在热电离质谱计(TIMS)上用同位素稀释法测定铷、锶含量,得到87Rb/86Sr比值,同时计算出试样的87Sr/86Sr比值,最小二乘拟合计算等时线年龄,同时给出锶同位素初始比值,或仅计算单个试样模式年龄。除同位素比值测定精度等共性要求外,选择适应试样以及在稀释法测定中满足最佳稀释度要求是测定结果成败的关键。
本方法对测定精度要求:87Rb/86Sr比值相对误差1%~2%,87Sr/86Sr比值相对误差小于1×10-4,等时线年龄在100~1000Ma内,95%置信度,相对误差2%~5%。
仪器、设备与器皿
热电离质谱计MAT260、MAT261、MAT262、VG354、TRITON等相当类型。
点焊机质谱计的配套设备。
质谱计灯丝预热装置,质谱计的配套设备。
聚四氟乙烯烧杯10mL与30mL。
氟塑料(F46)试剂瓶500mL、1000mL与2000mL。
聚乙烯塑料洗瓶500~1000mL。
氟塑料(F46)滴瓶30mL。
氟塑料(F46)对口双瓶亚沸蒸馏器500mL。
石英试剂瓶2000mL。
石英亚沸蒸馏器。
石英减压亚沸蒸馏器。
石英交换柱内径6mm,高300mm,上部接内径20mm高110mm敞口容器,尾端内嵌石英筛板,要求上面的树脂不泄漏,溶液滴速适当,树脂床直径6mm,高100mm,13或16支为一组。
氟塑料(PFA)密封溶样器15mL。
铂皿30mL,平底。
石英滴管。
石英量筒(杯)10mL、50mL。
硬脂玻璃量筒1000mL。
三角玻璃瓶250mL。
玻璃烧杯3000mL。
水纯化系统。
分析天平感量0.00001mg。
电热板(温度可控)。
超声波清洗器。
不锈钢恒温烘箱<300℃。
高速离心机。
聚乙烯或石英离心管。
微量取样器10μL与50μL。
器皿清洗
所有使用的氟塑料与石英器皿,用(1+1)优级纯盐酸和优级纯硝酸先后在电炉上于亚沸状态下各煮1h,去离子水冲洗后又用去离子水煮沸1h,再用超纯水逐只冲洗,超净工作柜中电热板上烤干。第一次使用的新器皿在用酸煮沸前,需先用洗涤剂擦洗。铂皿清洗设专用烧杯、专用(1+1)优级纯盐酸煮沸。
试剂与材料
去离子水 二次蒸馏水再经Milli-Q水纯化系统纯化。
超纯水 去离子水经石英蒸馏器蒸馏。
超纯盐酸 用优级纯(1+1)盐酸经石英蒸馏器亚沸蒸馏,实际浓度用氢氧化钠标准溶液标定,根据要求用超纯水配制为所需浓度。
超纯硝酸 用优级纯(1+1)硝酸经石英蒸馏器亚沸蒸馏。实际浓度用氢氧化钠标准溶液标定,根据要求用超纯水配制为所需浓度。
超纯氢氟酸 用优级纯氢氟酸经对口氟塑料(F46)双瓶亚沸蒸馏器制备。
超纯高氯酸 用优级纯高氯酸经石英蒸馏器减压亚沸蒸馏制备。
氢氧化钠标准溶液c(NaOH)≈0.3mol/L用分析纯固体氢氧化钠+去离子水配制,邻苯二甲酸氢钾标定;
丙酮 优级纯。
无水乙醇 分析纯。84Sr稀释剂 富集84Sr同位素的固体硝酸锶[Sr(NO3)2]。87Rb或85Rb稀释剂 富集87Rb或85Rb同位素的固体氯化铷(RbCl)。84Sr+87Rb(或85Rb)混合稀释剂溶液 溶液配制与浓度标定见附录86.2A。
固体硝酸锶[Sr(NO3)2]光谱纯,基准物质,保存在干燥器中。
固体氯化铷(RbCl)光谱纯,基准物质,保存在干燥器中。
NBS987碳酸锶(SrCO3) 国际同位素标准物质。
NBS607(或NBS70a)钾长石 国际标准物质。
GBW04411钾长石国家一级标准物质。
实验室专用薄膜(Parafilm)。
强酸性阳离子交换树脂 Bio RadAG50×8或Dowex50×8,或其他性能相似的或更好的树脂,200~400目。
阳离子树脂交换柱准备将约200g首次使用的200~400目AG50×8或Dowex50×8阳离子树脂置于石英烧杯中,用无水乙醇浸泡24h,倾出乙醇用去离子水漂洗,再用(1+1)优级纯盐酸浸泡24h,倾出盐酸后又用去离子水漂洗。最后转入已备好的石英柱中,使树脂床直径6mm,高100mm。待水淋干依次加30mL(1+1)优级纯盐酸和15mL超纯水淋洗,最后用10mL1.0mol/L超纯HCl平衡,待用。以后继续使用,同样用30mL(1+1)优级纯盐酸回洗,15mL超纯水淋洗,10mL1.0mol/L超纯HCl平衡。
铼带规格18mm×0.03mm×0.8mm。
试样准备
从同一火成岩岩体或同一火山岩层位中采集一组新鲜未蚀变的岩石试样,手标本大小,除去表层风化面或其他污染,粉碎至200目,按规则缩分至10g左右。采用一般化学分析方法(如原子吸收光谱)粗测Rb、Sr含量,根据(86.44)式或经验,从中挑选出5~6个Rb/Sr比值变化大的试样,待测年龄。
试样分解
称取30~50mg(精确至0.1mg)岩石或单矿物粉末试样,置于PFA氟塑料密封溶样器或铂皿中,按最佳稀释度要求加入84Sr+87Rb(或85Rb)混合稀释剂(精确至0.1mg),轻微摇晃令结成块的试样充分散开,加3mL超纯氢氟酸和几滴超纯高氯酸,在电热板上缓慢升温溶解(控制温度在120℃左右)。待试样完全分解后,蒸干,用少量6mol/L超纯盐酸冲洗器壁后再蒸干,温度升至180℃赶氟和多余高氯酸。用1mL1.0mol/LHCl溶解干涸物,将溶液倒入交换柱中。若发现试样溶液浑浊或存在明显残渣,表明试样分解不完全,则需要增加离心分离步骤。如果试样含铁量很高,也需要将试样溶液转入铂皿中放在电炉上于500℃下灼烧数分钟,冷却后用水溶解,离心分离提取清液上柱。
Rb-Sr分离:
试样溶液上柱后用1mL1.0mol/L超纯HCl清洗溶样器(或铂皿)器壁同样转入交换柱中,待溶液流干,加14mL1.0mol/L超纯HCl淋洗Li、Na、K、Fe等杂质元素,淋洗液弃去。加6mL1.0mol/L超纯HCl解析Rb,收集于10mL聚四氟乙烯烧杯中。然后用6mL2.5mol/L超纯HCl淋洗Mg、Ca、Al、Fe等,淋洗液弃去,继续用6mL2.5mol/L超纯HCl解析Sr,收集于10mL聚四氟乙烯烧杯中,蒸干。
用1mL1.0mol/LHCl将已蒸干的Rb、Sr分样重新溶解,分别倒入经过再生和用1mL1.0mol/LHCl平衡处理后的阳离子树脂柱中,按上述程序将Rb与Sr进一步纯化。蒸干解析液薄膜封盖,待质谱分析。
Rb、Sr同位素分析:
1)装样。Rb、Sr同位素分析采用双带源热电离质谱计,下面的操作以MAT261为例,其他型号质谱计类同。
灯丝铼带预处理将铼带用无水乙醇清洗,点焊机将铼带点焊在灯丝支架上,将已点好铼带的支架依次插在离子源转盘上,整体放进灯丝预热装置中,待真空抽至n×10-5Pa后,按预设程序给铼带通电,在4~6A电流强度1800℃温度下,每组带预烧15min,以除去铼带上杂质。
将离子源转盘上已烧好的铼带初步整形,依次取下电离带。一滴超纯水将纯化后的试样溶解,用微量取样器将溶液点滴在蒸发带中央,给蒸发带通电流,强度1A左右,使试样缓慢蒸干,以后逐步加大电流至带上白烟散尽,进一步升温至铼带显暗红后迅速将电流调至零,转到加下一个样。当试样全部装好后按原位置插上电离带,进一步给铼带整形,要求蒸法带与电离带两者彼此平行靠近,但又绝不能连到一起,两带间距离以0.7mm为宜。装上屏蔽罩,送入质谱计离子源中,抽真空。
2)Rb、Sr同位素测定。测定对象为金属离子流Sr+和Rb+。当离子源真空达到5×10-6Pa时打开分析室隔离阀,分别给电离带与蒸发带灯丝通电流缓慢升温,注意在加大电流过程中试样排气和真空下降情况,避免真空下降过快。在真空达到2×10-6Pa,电离带电流达到2A以上,蒸发带电流在1.5A左右,灯丝温度达到1000~1200℃时,将测量系统处于手动状态,在质量数88~84范围内寻找锶离子流,小心调节蒸发带电流使锶离子流达到足够强度(10-13~10-11A)并保持稳定。根据质谱计型号不同,分析采用多接收极同时接收或单接收极峰跳扫描依次接收锶同位素离子流。启动自动测量程序,系统采集锶同位素比值84Sr/86Sr、87Sr/86Sr、88Sr/86Sr数据,并以85Rb/86Sr比值监测铷的分离情况,当该比值大于10-4时,说明87Rb对87Sr/86Sr比值存在明显干扰,此时应适当降低带温度,在较低温度下停留一个时间,令电离温度稍低的铷蒸发殆尽,然后再升高温度继续测量锶同位素比值。每个试样采集4~6组(block)数据,每组数据由8~10次扫描组成,分别计算在加有稀释剂的试样中锶同位素的平均值和标准偏差。
铷的同位素分析与锶类似,但采集85Rb/87Rb数据时的温度较低,在1000℃左右(电离带电流1.5A以上,蒸发带电流越低越好。
3)Sr同位素比值直接测定。年轻海相碳酸盐的年龄测定仅需测定锶同位素比值,其他年轻岩浆岩在仅用于地球化学研究时也只需测定锶同位素比值,不需要测定铷、锶浓度。此种情况下,粗略称取相同量级的试样,不加稀释剂,采用相同化学分离程序分离和纯化锶,同样方法进行同位素分析,经质量分馏效应校正后直接得出试样的87Sr/86Sr比值。
H. 石英亚沸高纯水蒸馏器有什么用原理是怎样的
石英亚沸蒸馏水可用于极谱催化法,阳极溶出伏安法、差肪冲极谱、微服技术版分析、中子活化分析、同位素权称释、火花源质谱、化学电离质谱、电感藉合等源的原子发射光谱、无焰原子吸收光谱、气相色谱、及高压气相色谱、核子共振、电子探针、X射线荧光、电子熊谱学俄显电子能诺学等用水
石英亚沸高纯水蒸馏器原理是利用大自然的热辐射原理,保持液相温度低于沸点温度蒸发冷凝而制取高纯水。在提纯过程中因冷凝空间温度高可制取无菌无热超纯水,加热丝封闭在壳体内,接受水又不接触空气,整个提纯过程不受环境污染。
I. 微量锆石U-Pb年龄测定
方法提要
本方法适用于来自不同类型岩浆岩中的锆石,在测定偏基性岩浆岩中铀及放射成因铅含量较低的锆石,以及年轻火山岩中晶体细小的锆石时,更显示出优越性。因为该方法允许有较大试样称量(毫克级),在质谱分析中能够产生较强的铅离子流,保证测定精度。缺点是在一个样中可能包含有多种类型锆石,测定结果是它们不同年龄信息的平均值,直观表现为测定一个试样同时获得的三个U-Pb年龄彼此之间明显不一致。为此,测定前应该重视研究和合理挑选试样。
先用稀酸处理锆石晶体表面,氢氟酸封闭溶样,以不同浓度的盐酸在阴离子树脂交换柱上色层分离和纯化U与Pb,在热电离质谱计(TIMS)上进行Pb同位素分析,同位素稀释法测定Pb,U浓度。根据式(86.9)~式(86.12)直接计算或采用U-Pb一致曲线图解法,计算矿物中的U-Pb体系自进入封闭状态以来至今的时间,即矿物结晶年龄。由于铅污染无处不在,因此整个实验流程除测定精度等共性要求外,降低铅的全流程本底是关键。
本方法测定铀、铅含量误差允许限为±1.5%,铅同位素比值测定精度对于207Pb/206Pb应好于0.05%,当被测试样年龄在100~1000Ma时,在95%置信水平下年龄值的相对偏差应小于±5%。
仪器与设备
热电离质谱计 MAT260、MAT261、MAT262、VG354、TRITON等相当类型。
点焊机 质谱计的配套设备。
质谱计灯丝预热装置 质谱计的配套设备。
微量取样器 10μL与50μL。
聚四氟乙烯烧杯10mL与30mL。
氟塑料(F46)试剂瓶500mL与2000mL。
氟塑料(F46)洗瓶500mL。
氟塑料(F46)滴瓶30mL。
氟塑料(F46)对口双瓶亚沸蒸馏器500mL。
石英试剂瓶2000mL。
石英亚沸蒸馏器。
高压釜包括30mL容积聚四氟乙烯闷罐、氟塑料热缩套、不锈钢外套。
离子交换柱用石英管或氟塑料热缩管制作,下部嵌有石英筛板或聚丙烯筛板,保证装在上面的树脂不泄漏,规格:上部内径7mm,高50mm,下部(树脂床)内径5mm,高26mm。
石英滴管。
三角玻璃瓶250mL。
玻璃烧杯3000mL。
水纯化系统。
实验室专用薄膜(Parafilm)。
分析天平感量0.00001g。
电热板(温度可控)。
超声波清洗器。
不锈钢恒温烘箱<300℃。
器皿清洗
所有器皿在(1+1)优级纯盐酸和(1+1)优级纯硝酸中反复交替浸煮三遍,每次煮24h,以后用超纯盐酸或硝酸浸煮,去离子水与超纯水先后冲洗,超纯水浸煮,最后在空气净化柜中用超纯水冲洗,低温下烤干。
高压釜中的溶样闷罐在经过上述程序清洗后,再加入1mL超纯氢氟酸、一滴超纯硝酸,置于不锈钢套中,拧紧,放入不锈钢烘箱中,在温度(180±10)℃下加热48h,然后冷却,倾出氢氟酸,超纯水冲洗,加满超纯水后在电热板上于110℃温度下加热30min,反复三次。最后在超净柜中用超纯水冲洗,烤干。
试剂与材料
去离子水二次蒸馏水再经Milli-Q水纯化系统纯化。
超纯水去离子水经石英蒸馏器蒸馏。
超纯盐酸用(1+1)优级纯盐酸经石英蒸馏器亚沸蒸馏纯化,实际浓度用氢氧化钠标准溶液标定。进一步配制为需求浓度。
超纯硝酸用(1+1)优级纯硝酸经石英蒸馏器亚沸蒸馏纯化,实际浓度用氢氧化钠标准溶液标定。进一步配制为需求浓度。
超纯氢氟酸用优级纯氢氟酸经对口氟塑料(F46)双瓶亚沸蒸馏器制备。
丙酮优级纯。
无水乙醇优级纯。
235U稀释剂溶于3mol/LHCl中,235U丰度>90%,浓度标定见附录86.1A。
208Pb稀释剂溶于3mol/LHCl中,208Pb丰度>99.9%,浓度标定见附录86.1A。
强碱性阴离子交换树脂BioRadAG1×8(200~400目)或Dowex1×8(200~400目)或更好的性能相似树脂。
阴离子树脂交换柱准备将约100g200~400目AG1×8阴离子交换树脂倒入250mL烧杯中,先用无水乙醇浸泡24h以上,中间用玻棒搅动几次,倒出乙醇后晾干,用去离子水漂洗。再用优级纯(1+1)盐酸浸泡24h以上,同样不断用玻棒搅动,倒出盐酸用超纯水漂洗,转入200mL试剂瓶浸泡于水中供长期使用。用滴管从该试剂瓶中吸出少量呈糊状的树脂,分别装入已清洗好的石英(或氟塑料)交换柱中,树脂床高26mm,直径5mm,体积约0.5mL,用20mL(1+1)超纯盐酸和超纯水分别动态淋洗,最后用5mL3mol/L超纯盐酸平衡,待用。以后每分离一批试样,都需要拆柱,已用过的树脂弃去,按上述程序装入新树脂。
超纯磷酸c(1/3H3PO4)=0.5mol/L用优级纯磷酸经阳离子树脂交换纯化后配制。
硅胶由超细级光谱纯二氧化硅(SiO2)和稀超纯硝酸在超声波作用下制成的胶体溶液。
硼砂饱和溶液用超纯水溶解优级纯固体硼砂(Na2B4O7·10H2O)。
同位素标准物质NBS-981、NBS-982、NBS-983。
铀同位素标准物质铀-500。
铅标准物质。
铀标准物质光谱纯硝酸铀酰。
离子源灯丝铼带18mm×0.03mm×0.8mm。
试样选择与预处理
1)样品采集。锆石等副矿物一般从岩石大样中选取,岩石样的采集量视锆石在其中的含量而定。对于中酸性岩浆岩(如花岗岩),如果在岩石薄片中能见到一粒锆石,那么采集10kg左右足够,基性岩采样量相应增加。在风化作用强烈找不到新鲜露头的地方,可以选择半风化壳用淘砂盘就地淘洗,选出一标本袋重砂后回到室内再进一步选矿。
2)锆石分选。
A.碎样。碎样前严格清洗场地,用高压空气吹尽工作场地与台面上的灰尘,在每个样碎样前,都需要拆下碎样机各部件用水冲洗,酒精擦洗,复原后在下面垫一块白纸空转机器5min,视有无岩屑震落,如不合格,重复操作。在大量岩石开始破碎前先放入少部分,破碎后弃之。岩石破碎粒度视岩石结构粗细而定,原则是既不让大的锆石晶体因破碎过度变成晶屑,也不宜因破碎粒度不够,让锆石晶体普遍带有连晶。对于花岗岩,一般过0.1mm和0.25mm两级筛,从<0.1mm与0.1~0.25mm两级岩粉中选出锆石。过筛分级过程中注意清洗筛网布,绝不能在筛孔中塞有其他试样的锆石。
B.摇床分选。<0.1mm与0.1~0.25mm两级岩粉分别上摇床,在流水作用下利用重力分选原理,选取重矿物部分。上试样前先用6mol/LHCl对塑料床面进行刷洗和水冲洗。
C.重液分离和电磁选。经摇床分离后的重矿物部分先用U形磁铁吸去磁铁矿等强磁性矿物,然后用重液(二碘甲烷、三溴甲烷)分选,或用小淘砂盘淘洗,使锆石进一步富集。当试样中混有大量黄铁矿时,用上述方法很难选纯锆石,此时可将试样倒入7mol/LHNO3中缓慢加热,2~3min后黄铁矿逐渐浮至液面,锆石仍沉于容器底部,迅速而准确地将浮于液面的黄铁矿倒出,反复多次。这个方法对于黄铁矿-锆石的分离十分有效。利用分液漏斗,环形电炉加热,效果更好。最后使用电磁仪,有时还可以使用袖珍筛,将一个锆石大样按电磁性强弱及粒度不同,分成若干分样。
D.双目显微镜下挑选。可使锆石纯度达到100%,同时观测研究锆石矿物学特征,包括颜色、透明度、光泽、结晶形态、晶棱晶面磨损程度、裂纹、蜕晶化程度,有无包裹体及包裹体特征等,做好记录。有条件情况下进一步进行阴极发光、背散射电子图像研究,将晶体外部与内部结构特征保存下来。
E.锆石样清洗。被测锆石置于10mL聚四氟乙烯烧杯中先用(1+1)HNO3浸泡30~60min,在超声波清洗机中处理5min,倒出硝酸后用超纯水清洗,加入超纯丙酮在超声波清洗机中处理5min,倒出丙酮加入超纯水微热30min,再在超声波清洗机中处理5min,最后倒掉水溶液,加入超纯丙酮在超声波清洗机中处理5min,倒掉丙酮,电热板上低温烤干,待测。
U-Pb化学分离流程
1)称样、溶样、加入238U稀释剂。称取2~5mg(精确至0.01mg)经过预处理的锆石,置于溶样闷罐中(可在天平内对着秤盘放一个镅源以消除静电,否则细小锆石晶体极容易被静电吸附在容器壁上,很难处理)。加入2~3mL超纯HF,2~3滴超纯HNO3,盖上盖子后套上热缩套,放入不锈钢套中拧紧,放入不锈钢烘箱中,在(180±10)℃衡温下加热7昼夜。然后从烘箱中取出,冷却至室温。打开不锈钢套,用超纯水清洗闷罐外壁,打开闷罐检查锆石是否完全溶解。在确认锆石全部被分解情况下,小心拍打闷罐使沾在内壁上的液珠聚集于底部,在电热板上于110℃温度下缓慢蒸干,冷却至室温后加入2~3滴238U稀释剂溶液,称量(精确至0.00001g)(称量时需要在闷罐上盖一薄膜以隔离大气,否则天平不容易稳定)。在已加入238U稀释剂的闷罐中加入2mL3mol/L超纯盐酸,再次盖上盖子套上热缩套,放入不锈钢套中,再放入烘箱在180℃度下加热过夜,以保证试样与238U稀释剂达到完全混合。如果发现锆石没有完全分解,需要恢复原状再次放入烘箱中,适当延长溶样时间。
2)分液。取两组10mL氟塑料烧杯分别标以ID和IC。按上述程序取出闷罐,将锆石已完全分解并与238U稀释剂达到完全平衡的溶液,按1∶2比例分别倒入ID和IC两个烧杯中,准确称出每份溶液质量,在ID份中加入3~5滴208Pb稀释剂溶液,称量(精确至0.00001g)。小心摇匀,让两者完全混合。ID份用于测定U、Pb浓度,IC份用于测定铅同位素组成。
3)U-Pb分离。将ID和IC两份溶液分别倒入两根已准备好的阴离子树脂交换柱中,待溶液流干后加3mL3.0mol/L超纯HCl淋洗锆等离子,流干后加3mL(1+1)超纯HCl解析铅,下面用10mL氟塑料烧杯承接,最后用3mL超纯水解析铀,另换10mL氟塑料烧杯接收。为了增大强度,ID和IC两个分样中的铀分样可以合并一起进行质谱分析。接收的溶液在电热板上于110℃温度下蒸干,薄膜封盖,待质谱分析。
U、Pb同位素分析
1)铅同位素测定。加有208Pb稀释剂的ID与未加稀释剂的IC试样分别进行测定。下面的操作过程是以MAT261质谱计为例,其他类型质谱计大同小异。
A.装样。铼带的预处理将铼带用无水乙醇清洗,用点焊机将铼带点焊在灯丝支架上,将支架依次插在离子源转盘上,整体放进灯丝预热装置中,待真空抽至n×10-5Pa后,按预设程序给铼带通电,在4~6A电流下,每组带预烧15min,以除去铼带上的铀、铅杂质。
铅同位素分析采用单带源。将已烧好铼带的转盘移至超净工作柜中,取下电离带,接上蒸发带电源。用微量取样器在蒸发带中心部位先后加一滴硅胶和一滴饱和硼砂溶液,依次在1A左右电流下烤干。用微量取样器加2~3滴稀超纯磷酸于待测试样中(ID和IC)将试样溶解,然后逐滴将试样加在已覆有一层硅胶-硼砂的蒸发带上,通电流加热使水分逐渐蒸发。加大电流使铼带上白烟散尽,残余酸根完全被驱赶,再继续加大电流将铼带烧至暗红后迅速将带电流降至零。转动转盘到下一个位置,按同样程序加下一个样。加样程序结束后,依原位插上电离带卡上屏蔽罩,此时的电离带仅起支架作用。将整个转盘送入质谱计离子源中,启动真空系统抽真空。
B.铅同位素数据采集。当离子源真空达到n×10-6Pa后,打开分析室隔离阀,给蒸发带加电流缓慢升温,此时真空度下降,注意不要下降过快,升温与抽真空交替进行。当分析室真空达到5×10-6Pa以上,蒸发带温度在1100~1300℃左右时,在测量系统处于手动状态下,于质量数204~208范围内寻找铅离子流。小心调节加到蒸发带上的电流并不断调整峰中心,使铅离子流达到足够强度(10-13~10-11A),并较长时间地保持稳定。启动自动程序采集铅同位素比值数据204Pb/206Pb、207Pb/206Pb和208Pb/206Pb。
根据所使用的质谱计类型不同,分析采用多接收极同时接收铅同位素离子流或采用单接收极跳峰扫描。每个试样每次测定采集4~6个数据块(Block)数据,每个数据块由8~10次扫描组成,由计算机自动处理数据,给出铅同位素比值平均值及相对偏差。
2)U同位素分析。
A.装样。铀同位素分析采用单带源或双带源。用微量取样器在蒸发带中心先后各加一滴硅胶和硼砂饱和溶液作发射剂,通电流依次缓慢加热烤干。另用微量取样器取2~3滴磷酸溶解试样,小心滴加到已烤干的发射剂上,加大电流驱赶酸根并使铼带烧至暗红,迅速将电流降至零。以后操作同铅同位素。
B.U同位素数据采集铀。基本操作同铅同位素,但是采集数据温度在1300℃以上,接收的离子为UO2+,质量数为267~270,采集的同位素比值为238U/235U。
3)质量分馏校正。由于自然界Pb同位素的3个比值是变化的,都不可能当作标准值,因此对Pb同位素分析中的质量分馏作用不可能做出直接校正。间接校正方法是,测定国际铀、铅标准物质,求出实测值与标准值之间的偏差系数,然后对试样相应比值进行修正。这种校正法存在问题是,测标准物质和试样是在两次独立操作中完成的,样品在Re带(灯丝)上的量(一般前者高出很多)、化学组成、激发状态以及发射温度、数据采集时间等等各项条件互不相同,因此质量分馏状态很可能不一样,校正效果存在不确定性。此外,可以采用双稀释法进行质量分馏校正,即在试样中同时加入分别富集204Pb和207Pb(或206Pb)的两种Pb稀释剂,在一次测定中同时采集混合物的相关比值用于校正。该方法对Pb同位素分析精度要求更高,实验程序也较复杂,目前应用还不广泛。鉴于上述原因,对于Pb同位素分析一般不做质量分馏校正,仅根据经验在分析最佳状态下采集数据和尽可能多的采集数据,使质量分馏减至最小。
测定结果计算
这里仅涉及基本计算步骤与公式。
1)Pb含量计算。
A.ID分样中206Pb的量:
岩石矿物分析第四分册资源与环境调查分析技术
式中:206Pbpid为ID分样中206Pb的量,mol;c208t为铅稀释剂溶液中208Pb的质量摩尔浓度,mol/g;m208t为铅稀释剂溶液质量,g;R为206Pb/208Pb同位素比;右下角标p、t和m分别代表试样(未扣除本底)、稀释剂及两者的混合物;右上角标id和ic分别代表ID和IC分样。
B.全试样中Pb同位素的量:
岩石矿物分析第四分册资源与环境调查分析技术
式中:206Pbp、207Pbp、208Pbp、204Pbp分别为全样中206Pb、207Pb、208Pb和204Pb的量(未扣除本底),mol;mid、mic分别为ID和IC分样的质量,g;
R7/6、R8/6、R4/6分别为试样的铅同位素比值:207Pb/206Pb、208Pb/206Pb和204Pb/206Pb,经测定IC分样后获得。
C.扣除本底后全样中Pb同位素的量:
岩石矿物分析第四分册资源与环境调查分析技术
式(86.18)~式(8.21)中:206Pb、207Pb、208Pb、204Pb分别为206Pb、207Pb、208Pb和204Pb的量,mol;右下角标s和p分别代表扣除本底铅后的量与实际测定的量;Pbb为全流程本底铅的量,mol,Fb206、Fb207、Fb208、Fb204分别为本底铅的206Pb、207Pb、208Pb和204Pb的同位素丰度,通过实测获得。
扣除本底铅后全样的铅含量为:
岩石矿物分析第四分册资源与环境调查分析技术
式中:wPb为试样中铅的质量分数,μg/g;ms为称取试样的质量,g;MPb为铅的摩尔质量,g/mol。
D.扣除普通铅后试样中放射成因铅的量:
岩石矿物分析第四分册资源与环境调查分析技术
岩石矿物分析第四分册资源与环境调查分析技术
式中:206Pbγ、207Pbγ、208Pbγ分别为扣除普通铅后试样中放射成因206Pb、207Pb、208Pb的量,mol;R(6/4)s、R(7/4)s、R(8/4)s分别为扣除本底后试样的206Pbs、207Pbs、208Pbs对204Pbs之比;R(6/4)c、R(7/4)c、R(8/4)c分别为与试样同时代的普通铅206Pb/204Pb、207Pb/204Pb、208Pb/204Pb之比值,在实际运算中该组比值是根据地球铅演化模型应用叠代法确定。
试样中放射成因铅总量(Pbγ,mol)为:
岩石矿物分析第四分册资源与环境调查分析技术
2)U含量计算:
A.试样中238U与235U的量(mol):
岩石矿物分析第四分册资源与环境调查分析技术
B.试样中铀的质量分数:
岩石矿物分析第四分册资源与环境调查分析技术
式(86.27)~式(86.29)中:238Us、235Us分别为试样中238U、235U的量,mol;wU为铀的质量分数,μg/g;R为238U/235U比值;右下角标s、t、m分别代表试样、稀释剂及两者的混合物;c235t为稀释剂溶液中235U的质量摩尔浓度,mol/g;m235t为称取稀释剂溶液质量,g;ms为试样质量,g;Ub为U的全流程本底,mol;MU为铀的摩尔质量,g/mol。
在自然界中,钍的同位素半衰期长的仅有232Th,因此钍的含量测定不能采用同位素稀释法,只能采用一般化学方法。
3)年龄计算。目前通行两种方法。
A.单个试样。将从(86.23)和(86.24)式得到的放射成因铅206Pb和207Pb的量,以及从(86.27)、(86.28)式得到的238U、235U的量分别代入(86.9)和(86.10)两式,即得到一个试样的两个U-Pb年龄(t206/238,t207/235),另外将(86.24)与(86.23)两式相除得到放射成因铅的同位素比
岩石矿物分析第四分册资源与环境调查分析技术
,代入(86.11)式得t207/206年龄。在锆石自结晶以后其U-Pb体系一直处于单阶段封闭状态演化的情况下,它的t206/238、t207/235和t207/2063个年龄在±5%的测定误差范围内应该一致。如果不一致,则确定该矿物的形成年龄比较困难,一般取t206/238年龄作为参考值。B.一致曲线图解。当矿物中的U-Pb体系不处于封闭状态演化时,它的t206/238、t207/235和t207/2063个年龄会出现明显不一致。对于一组试样来说,此时宜用一致曲线图解方法处理。应用该方法的条件是,该组试样具有相同结晶年龄和相同演化历史,并且普通铅的同位素组成相同。在当前应用得比较成熟的是U-Pb体系两阶段演化模式。在206Pb/238U-207Pb/235U坐标图上,满足上述条件的试样采用最小二乘拟合将能形成一条直线,该直线与一致曲线的上、下交点年龄即所求年龄。
计算锆石U-Pb一致曲线年龄,目前最流行的程序是美国地质调查局提供的Ludwig(1996)程序以及它的最新版本。该方法除了206Pb/238U-207Pb/235U形式外,还有207Pb/206Pb-206Pb/238U形式,后者适用于年轻且两个阶段年龄间隔很短的试样。
J. 蒸馏水的制备
实验室中制备蒸馏水,多采用石英管加热的硬质玻璃蒸馏水器,蒸馏时不能用自来水,因为会产生水垢,最好用无离子水作为水源。如欲除去有机物,可在蒸馏水器中每升水加1g高锰酸钾和1mL
85%的磷酸,以便通过氧化除去有机物。不含金属离子的水,需用亚沸蒸馏水,即用石英亚沸蒸馏器进行蒸馏,其特点是在液面上方加热,但水并不沸腾,只是液面处于亚沸状态,可将水蒸气带出的杂质减至最低,但制水量较小,每小时约1~4升。
●无氨蒸馏水制备方法:
方法1:给普通蒸馏水中加硫酸调至pH<2,使水中各种形态的氨或胺最终都变成不挥发的盐类,用附有缓冲球的蒸馏器进行蒸馏,收集馏出液即可。
方法2:每升普通蒸馏水中加25ml5%的氢氧化钠溶液再煮沸1h即可获得。
在收集和存贮无氨水过程中注意避免实验室内空气中存在的氨的二次污染。
●无二氧化碳蒸馏水的制备方法:
煮沸法:将普通蒸馏水或去离子水煮沸至少10min(水多时),或使水蒸发量达10%以上(水少时),加盖冷却。
暴气法:将惰性气体或纯氮气通入蒸馏水或去离子水中至饱和即得。
制得的无二氧化碳水应贮于以附有碱石灰管的橡皮塞盖严的瓶中。
●无酚蒸馏水的制备方法:
加碱蒸馏法:在普通蒸馏水中加氢氧化钠调节至pH>11,使水中酚生成不挥发的酚钠,用附有缓冲球的蒸馏器进行蒸馏,收集馏出液即可。也可同时往普通蒸馏水中加入少量的高锰酸钾溶液使水呈现红色,再进行蒸馏。
活性炭吸附法:将粒状活性炭加热至150--170℃,烘烤2h以上进行活化,放入干燥器中冷却至室温后,装入预先盛有少量水(避免炭粒间留存气泡)的层吸柱中,使蒸馏水或去离子水缓缓通过柱床(一般以每分钟不超过100ml为宜),开始流出的水须再次返回柱中,然后正式收集。此柱所能净化的水量,约为所用炭粒表观容积的1000倍。